———— ОРИГИНАЛЬНЫЕ СТАТЬИ ———

УДК 543.422

РАЗРАБОТКА МЕТОДА ИДЕНТИФИКАЦИИ ПОРОДЫ ДРЕВЕСИНЫ В АРХЕОЛОГИЧЕСКИХ МАТЕРИАЛАХ МЕТОДОМ ИК-СПЕКТРОСКОПИИ

© 2019 г. В. М. Пожидаев^{а,} *, В. М. Ретивов^b, Е. И. Панарина^b, Я. Э. Сергеева^a, О. А. Жданович^b, Е. Б. Яцишина^a

^аНациональный исследовательский центр "Курчатовский институт" пл. Академика Курчатова, 1, Москва, 123182 Россия ^bИнститут химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" Богородский Вал, 3, Москва, 107076 Россия *e-mail: pojidaev2006@yandex.ru Поступила в редакцию 21.05.2018 г. После доработки 26.11.2018 г. Принята к публикации 31.05.2019 г.

Методом ИК-спектроскопии однократного нарушенного полного внутреннего отражения исследованы 53 образца древесины хвойных пород и 77 образцов древесины лиственных пород деревьев средней полосы России. Описаны характеристические полосы поглощения в ИК-спектрах исследованных образцов, а также выявлены области полос поглощения, характерные для хвойных и лиственных пород древесины. Установлены характеристичные различия в спектрах хвойных и лиственных пород древесины, пригодные для их идентификации. С использованием установленных характеристичных различий идентифицированы породы древесины трех археологических материалов.

Ключевые слова: ИК-спектроскопия, нарушенное полное внутреннее отражение (НПВО), породы древесины, идентификация, археологические материалы.

DOI: 10.1134/S0044450219120107

Археологические артефакты являются неотьемлемой частью истории и культуры народа. Они наделены познавательными функциями, так как, будучи материализованными фактами прошедших исторических событий, содержат в себе определенную историческую информацию.

Древесные останки являются частыми находками в археологических раскопках, а также экспонатами в исторических музеях. Для атрибуции археологических и музейных материалов важно определение породы древесины, из которой они изготовлены. Разработка новых методов исследования природы археологических древесных материалов позволит получить новую историческую информацию, провести достоверную атрибуцию музейных предметов, интерпретировать связанный с ними исторический контекст, раскрыть подлинный информационный потенциал памятника, обеспечить современный уровень его хранения и реставрации.

Остатки древних предметов, найденные при археологических изысканиях, часто имеют небольшие размеры и представляют большую историческую ценность. В связи с этим предпочтительно использование неразрушающих методов анализа. Одним из таких методов является инфракрасная спектроскопия, что в приложении к археологическим артефактам представляет серьезное преимущество.

ИК-Фурье спектроскопия — полезный аналитический метод для характеристики химии древесины с минимальной подготовкой образцов, эффективный по времени, требующий для получения спектра лишь небольших количеств материала [1–5]. Большой вклад в изучение ИК-спектроскопии современной древесины и ее основных компонентов внесен коллективом авторов под руководством В.Б. Карклинь [6–11] еще во второй половине 20-го столетия, отмечены характерные особенности спектров поглощения разных пород древесины.

ИК-Фурье спектроскопию используют для исследования структуры и природы древесины, ее качественного и количественного анализа, благодаря способности метода предоставлять информацию о количестве функциональных групп и других специфических структурных особенностях [12–21].

В работе [12] проведен анализ различий в ИКспектрах хвойной и лиственной древесины и разработана методика количественного определения содержания лигнина методом внутреннего стандарта, апробированная на широком круге образцов хвойной и лиственной древесины.

Методом ИК-Фурье различали древесину твердых и мягких пород, а также принадлежность к семействам голосеменных и покрытосеменных [22–27]. Оказывается, основные различия обусловлены природой лигнинов и разным количеством метоксильных групп в лигнине твердой древесины по сравнению с мягкой [26, 27]. В ИКспектрах образцов древесины лиственных пород обнаружены полосы поглощения смеси гваяцильных (1-метокси-2-гидроксифенил) и сирингильных (1,3-диметокси-2-гидроксифенил) остатков, а в лигнине хвойной древесины только лишь гваяцильные остатки [22, 25].

В работах [2, 28] метод ИК-Фурье спектроскопии был применен для оценки содержания и установления природы углеводов и лигнина в древесине эвкалипта. В работе [29] приведены результаты исследования двух археологических образцов древесины методом ИК-спектроскопии. Один из образцов - сосновая древесина (Pinus sylvestris), полученная из материала крыши кафедрального Собора в Сеговии (Испания). Другой образец древесины был найден во время подводных археологических изысканий в 2012 г. на месте кораблекрушения в заливе Рибадео (Испания). Затонувшее судно было изготовлено из дуба (Ouercus robur). В спектре материала крыши собора обнаружены полосы поглощения около 1024 и 1032 см⁻¹, обычно приписываемые углеводам, но более характерные для хвойной древесины, чем для лиственной [30]. В образце дуба отчетливо прослеживаются скелетные колебания ароматических систем, типичные для сиринговых колец (1591 см⁻¹), тогда как колебания при 1419 и 1458 см⁻¹ и деформационные колебания С-Нсвязей пирановых колец (1477 см⁻¹) более характерны для лигнина древесины сосны. Результаты исследования показали, что различия между двумя образцами обусловлены тем, что в лигнине лиственных пород присутствует смесь гваяцила и сирингила, тогда как лигнин хвойных пород состоит исключительно из гваяцильных остатков.

Недавнее исследование методом ИК-Фурье спектроскопии [17] посвящено анализу древесных остатков на каменных орудиях, используемых палеолитическими людьми. Показаны возможности метода применительно к различным категориям растительных остатков (древесная кора, сердцевина древесины, смола и др.), отнесены основные пики в спектрах и предложены спектральные стандарты ИК-Фурье спектроскопии для каждого исследованного растительного остатка.

Цель работы состояла в применении ИК-спектроскопии для исследования древесины основных пород деревьев средней полосы России и разработке метода идентификации породы древесины археологических и музейных объектов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Отбор проб. Отбирали образцы древесины основных пород деревьев, произрастающих в средней полосе России. Образцы древесины кедра и кипариса отбирали на юге Краснодарского края. С целью обеспечения максимально возможной представительности проб собирали образцы древесины разного возраста и сохранности (свежая, упавшая и пролежавшая на земле несколько лет) вне зоны влияния антропогенных факторов современной окружающей среды. Образцы отбирали от деревьев на свежих порубках путем сбора опилок после спила ближе к сердцевине ствола, исключая отбор материала коры и ближайшей к ней древесины. Размеры древесных стволов 15–65 см в диаметре. Отобранные образцы измельчали растиранием в фарфоровой ступке и высушивали на открытом воздухе при 40-45°С до остаточной влажности не более 7%. В экспериментах использовали усредненную фракцию опилок размером 1-2 мм. Перечень исследуемых пород деревьев и количество отобранных образцов представлены в табл. 1.

ИК-спектры однократного нарушенного полного внутреннего отражения (НПВО) записывали путем прижатия исследуемого объекта прижимным устройством к кристаллу ZnSe, обеспечивая максимальный контакт поверхности образца с кристаллом. Измерения проводили, размещая образцы как вдоль, так и поперек расположения волокон древесины относительно кристалла НПВО.

Аппаратура и вспомогательное оборудование. Для регистрации ИК-спектров использовали программно-аппаратный комплекс ИК-Фурье спектрометра Vertex 70 (Bruker) и приставку однократного нарушенного полного внутреннего отражения (НПВО, ATR) с кристаллом ZnSe при следующих условиях: разрешение: 4 см⁻¹; количество сканов фона/образца: 16 (относительно воздуха); диапазон измерений: 4000–600 см⁻¹.

Спектр фона регистрировали перед каждым измерением. Регистрацию и обработку спектров проводили с помощью программы OPUS 7.0 (Bruker Optics, Германия).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Одной из составных частей древесины является лигнин — природный полимер, имеющий трехмерную сетчатую пространственную структуру

РАЗРАБОТКА МЕТОДА ИДЕНТИФИКАЦИИ ПОРОДЫ

Порода дерева	Латинское название	Количество образцов
Сосна обыкновенная	Pinus sylvestris	15
Ель обыкновенная или Ель европейская	Picea abies	12
Можжевельник обыкновенный	Juniperus commúnis	11
Лиственница европейская	Larix decidua	7
Кедр ливанский	Cedrus libani	5
Кипарис	Cupressus	3
Осина обыкновенная или Тополь дрожащий	Pópulus trémula	9
Клён остролистный или Клён платановидный	Acer platanoídes	7
Липа сердцевидная или Липа мелколистная	Tilia cordata	12
Берёза повислая	Betula pendula	17
Ольха серая или Ольха белая	Alnus incana	7
Вяз гладкий или Вяз обыкновенный	Ulmus laevis	6
Дуб черешчатый или Дуб обыкновенный	Quercus robur	19

Таблица 1. Описание образцов древесины для исследования

[31]. Мономерными звеньями лигнина являются фенилпропановые структурные единицы ($\Phi \Pi E$), которые подразделяются на три вида: *n*-гидроксифенилпропановые (H), гваяцилпропановые (G) и сирингилпропановые (S). Химическая структура фенилпропановых единиц представлена на схеме 1.

Схема 1. Химическая структура фенилпропановых единиц лигнинов древесины.

Древесина хвойных и лиственных пород различается по количественному и качественному составу лигнинов. Массовая доля лигнина в хвойной древесине достигает 30%. В лиственной древесине доля лигнина не превышает 25%. Лигнин хвойных пород в основном состоит из гваяцилпропановых структурных единиц (G). В лиственной древесине наряду с гваяцилпропановыми структурными единицами присутствует значительное количество сирингилпропановых структурных единиц (S). Довольно значительное количество лигнина в древесине и разное соотношение ФПЕ предполагает возможность идентификации пород древесины методом ИК-спектроскопии.

Полученные спектры некоторых образцов древесины разных пород приведены на рис. 1. Сравнение спектров одного и того же образца, записанных вдоль и поперек расположения во-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 12 2019

локон древесины, не показало существенных различий.

Анализ полученных ИК-спектров показал наличие областей характерного поглощения и для хвойных, и для лиственных пород. Основные характеристичные полосы поглощения, выявленные в результате спектрального исследования пород древесины, представлены в табл. 2. Отнесение выявленных полос поглощения колебаниям соответствующих функциональных групп и связей, выполненное на основе данных [1, 6–16, 19–21, 32– 36], иллюстрирует табл. 3. Анализ ИК-спектров позволил определить основные различия в положении максимумов поглощения хвойной и лиственной древесины в пяти характеристичных областях спектра, соответствующих колебаниям различных связей гваяцильного и сирингильного колец лигнинов, которые можно использовать

Рис. 1. ИК-спектры хвойной (ель) (а) и лиственной (осина) (б) древесины.

для идентификации породы древесины: 1665– 1593, 1515–1505, 1270–1225, 875–830 и 815–805 см⁻¹. Характерные отличия полос поглощения хвойных и лиственных пород древесины приведены в табл. 4. Как видно, в спектрах образцов хвойных пород в области 1665–1593 см⁻¹ присутствуют три полосы средней интенсивности: около 1652 (валентные колебания связи С=О *пара*-замещенных фенолов H-колец лигнинов), 1637 (валентные колебания связи С=О в *пара*-замещенных кето-фенолах) и 1600 см⁻¹ (валентные колебания связи С=О *пара*-замещенных фенолов G-колец лигнинов с одной группой –OCH₃). В спектрах же лиственных пород в этой области обнаружены две полосы средней интенсивности: около 1644 (валентные колебания связи C=O *пара*-замещенных кето-фенолов лигнинов) и 1594 см⁻¹ (валентные колебания связи C=O *пара*-замещенных фенолов S-колец лигнинов с двумя группами –OCH₃). В области 1515–1505 см⁻¹ в спектрах хвойной древесины появляется полоса поглощения ~1509 см⁻¹ (скелетные колебания связей C–C ароматического гваяцильного кольца). В спектрах лиственной древесины обнаружена полоса поглощения около 1505 см⁻¹ (скелетные колебания связей С–С ароматического сирингильного кольца).

В спектрах древесины хвойных пород в области 1270–1225 см⁻¹ присутствуют две полосы средней интенсивности: более интенсивная в области ~1263 см⁻¹ (скелетные колебания G-кольца плюс деформационные колебания связи C=O) и равная или примерно вдвое менее интенсивная в области ~1229 см⁻¹ (скелетные колебания связей C–C G-колец лигнинов и валентные колебания С–O в фенолах гваяцильных структурных единиц).

В спектрах лиственных пород в этой области спектра имеется одна широкая полоса средней интенсивности в области ~1233 см⁻¹ (скелетные колебания связей С–С S-колец лигнинов и валентные колебания С–О в фенолах сирингильных структурных единиц). Возможно, ее уширение является результатом слияния двух полос, что проявляется в спектрах хвойных пород древесины. Если это так, то полоса ~1263 см⁻¹ может проявляться только как плечо на более интенсивной полосе поглощения ~1229 см⁻¹. Отношение интенсивностей максимумов поглощения для древесины лиственных пород обратное: интенсивная полоса около 1233 см⁻¹ и примерно вдвое менее интенсивная около 1263 см⁻¹.

В области 900-830 см⁻¹ ИК-спектров хвойных пород присутствуют достаточно хорошо выраженные две полосы слабой интенсивности: около 896 см⁻¹ (деформационные внеплоскостные колебания связей С-Н в G ароматическом кольце) и ~872 см⁻¹ (деформационные внеплоскостные колебания связей С-Н в положениях 2, 5 и 6 ароматического G-кольца). При этом интенсивность полосы около 896 см⁻¹, как правило, больше, чем полосы ~872 см⁻¹. В спектрах лиственных пород в этой области спектра также имеются две полосы слабой интенсивности: около 897 см⁻¹ (деформационные внеплоскостные колебания связей С-Н в S и G ароматическом кольце) и около 830 см⁻¹ (деформационные внеплоскостные колебания связей С-Н в положениях 2 и 6 ароматического S-кольца). Интенсивность полосы при 897 см⁻¹ больше, чем полосы при 830 см^{-1} .

В ИК-спектрах хвойных пород в области 815— 805 см⁻¹ присутствует хорошо выраженная полоса слабой интенсивности около 808 см⁻¹ (деформационные внеплоскостные колебания связей С–Н в позициях 2, 5 и 6 ароматического G-кольца). В спектрах лиственных пород в этой области полоса отсутствует.

Характерные отличия полос поглощения отмечены для образцов современной древесины.

Ископаемые древесные остатки подвержены значительным структурным изменениям, однако изучить влияние таких изменений на положение и интенсивность характеристичных полос в спектрах пока не представилось возможным. В связи с этим особый интерес представляет работа [13], в которой авторы исследовали изменение содержания основных компонентов древесины ели, можжевельника и осины. Методом ИК-Фурье спектроскопии показано, что в течение 10-148 лет содержание лигнина не только не уменьшается, но возрастает на 5-7%. Дополнительно следует отметить, что метод ИК-спектроскопии был успешно использован разными авторами для идентификации древней древесины эвкалипта [28], сосны и дуба [29].

С целью оценки возможности применения метода ИК-спектроскопии для идентификации породы древесины археологических предметов выбрали три образца из коллекции Государственного исторического музея (ГИМ). Образцы хорошо сохранились и предварительно были проанализированы сотрудниками биологического факультета МГУ и Государственного Эрмитажа традиционным для идентификации породы древесины методом оптической микроскопии [37]. Этот метод применим только для исследования образцов древесины, не подвергшихся значительным дегенеративным изменениям. По результатам микроскопических исследований образцы № 1 и 3 идентифицировали как Можжевельник обыкновенный (Juniperus commúnis), образец № 2 – Вяз гладкий или обыкновенный (Ulmus laevis). Описание археологических образцов древесины приведено в табл. 5.

Используя характеристичные полосы поглощения, представленные в табл. 4, идентифицировали породы древесины этих трех археологических образцов. ИК-спектры двух археологических образцов приведены на рис. 2. Как видно, в спектре образца 1 в области $815-805 \text{ см}^{-1}$ присутствует полоса слабой интенсивности 810 см^{-1} . В области $915-835 \text{ см}^{-1}$ имеются полоса слабой интенсивности 870 см^{-1} и плечо около 900 см^{-1} . В области $1270-1225 \text{ см}^{-1}$ присутствуют хорошо выраженные две полосы средней интенсивности: $1265 \text{ и } 1225 \text{ см}^{-1}$. Полоса 1265 см^{-1} В спектре имеется хорошо выраженная полоса при 1509 см^{-1} .

В ИК-спектре образца 2 в области $815-805 \text{ см}^{-1}$ полоса поглощения отсутствует. В области $915-835 \text{ см}^{-1}$ имеются две полосы слабой интенсивности 896 и 833 см^{-1} . Полоса около 896 см^{-1} более интенсивна, чем полоса 833 см^{-1} . В области $1270-1225 \text{ см}^{-1}$ присутствует интенсивная полоса около 1230 см^{-1} . В спектре присутствует полоса средней

	Таблица 2. Осн сины	ювные хара	ктеристич	ные полосі	ы поглощен	ия (см ⁻¹), ₁	выявленны	е в результ	ате спектр;	льного исс	следовани	я исслед	уемых пор	од древе-
	Порода древесины	1655—1649	1649–1635	1600–1593	1509-1503	1328–1315	1264–1260	1235-1227	1154–1158	1108-1103	900895	877-870	833-828	811-806
						Xı	войные порс	ДЫ						
	Сосна	1655 ± 2	1639 ± 3	1600 ± 4	1508.8 ± 0.3	1315 ± 2	1263 ± 1	1230 ± 2	1155 ± 1	1104 ± 2	896 ± 2	877 ± 1		809 ± 2
	Ель	1649 ± 4	1636 ± 3	1600 ± 8	1509.1 ± 0.8	1316.5 ± 0.9	1264 ± 2	1229 ± 2	1154 ± 2	1106. ± 2	895 ± 1	875 ± 2		807 ± 2
	Можжевельник	1652 ± 3	1637 ± 3	1600 ± 3	1508.7 ± 0.8	1316 ± 2	1263 ± 2	1228 ± 2	1157 ± 2	1106 ± 1	895 ± 2	870 ± 2		809 ± 1
2	Лиственница	1654 ± 2	1635 ± 2	1599 ± 2	1508.9 ± 0.5	1316 ± 2	1263.4 ± 0.7	1227 ± 2	1156 ± 2	(105.9 ± 0.9)	895 ± 2	872 ± 2		809 ± 2
курна	Кедр	1652.2 ± 0.4	1641 ± 1	1603.3 ± 0.5	1508.6 ± 0.3	1316.7 ± 0.7	1262.7 ± 0.6	1228.5 ± 0.8	1157.1 ± 0.2	1106.0 ± 0.9	895.8 ± 0.6	868 ± 1		808.0 ± 0.8
ПАНА	Кипарис	1653 ± 2	1637.3 ± 0.9	1594.8 ± 0.5	1508.6 ± 0.3	1317.1 ± 0.1	1262.5 ± 0.7	1229.0 ± 0.9	1155.8 ± 0.7	1103 ± 2	896 ± 1	870 ± 3		810 ± 1
пити		- -			-	Лис	твенные поן	роды			-	- -		
ЧЕСКО	Осина		1639 ± 1	1593.3 ± 0.6	1505 ± 1	1322 ± 2		1234 ± 2	1158 ± 1	1105 ± 2	896 ± 2		831 ± 2	
ой хи	Клен		1639 ± 2	1595 ± 2	1504 ± 2	1324 ± 2		1234 ± 1	1156 ± 2	1107 ± 2	898 ± 1		830 ± 1	
мии	Липа		1640 ± 2	1593.1 ± 0.3	1504 ± 1	1320 ± 1		1235 ± 1	1157.4 ± 0.5	1104 ± 1	897.3 ± 0.4		829 ± 2	
том 7	Bepe 3a		1643 ± 3	1595 ± 3	1505 ± 3	1321 ± 3		1233 ± 2	1158 ± 2	1104 ± 2	898 ± 2		829 ± 1	
4 No	Ольха		1648 ± 1	1593.4 ± 0.3	1505.4 ± 0.1	1328 ± 1		1233 ± 1	1155.6 ± 0.2	(105.4 ± 0.4)	896.2 ± 0.4		833 ± 1	
12	Вяз		1648 ± 2	1593.0 ± 0.1	1505.2 ± 0.4	1327 ± 2		1235.3 ± 0.3	1158.4 ± 0.9	1104.6 ± 0.8	896 ± 1		829.4 ± 0.6	
2019	Дуб		1649 ± 2	1595 ± 3	1505 ± 1	1326 ± 1		1230 ± 2	1155 ± 1	1105 ± 2	896 ± 1		829 ± 2	

916

ПОЖИДАЕВ и др.

РАЗРАБОТКА МЕТОДА ИДЕНТИФИКАЦИИ ПОРОДЫ

Волновое число, см ⁻¹	Отнесение полосы поглощения
3460-3300	Валентные колебания гидроксильных групп фенолов (связанных межмолекулярными
	водородными связями)
3000-2840	Валентные колебания связей С–Н в метильных и метиленовых группах
1740-1710	Валентные колебания связей С=О в несопряженных кетонах, карбонильных соедине-
	ниях и в сложноэфирных группах (часто углеводного происхождения); сопряженные
	альдегиды и карбоновые кислоты поглощают около 1/00 см ⁻¹
1675-1640	Валентные колебания связи C=O в сопряженных <i>пара</i> -замещенных кето-фенолах; сильные электроотрицательные заместители понижают волновые числа
1660-1655	Валентные колебания связи С=О <i>пара</i> -замещенных фенолов Н-колец лигнинов
1645-1640	Валентные колебания связи С=О в <i>пара</i> -замещенных кето-фенолах
1605-1600	Валентные колебания связи C=O <i>пара</i> -замещенных фенолов G-колец лигнинов с одной группой –OCH ₃
1600-1593	Валентные колебания связи C=O <i>пара</i> -замещенных фенолов S-колец лигнинов с двумя группами –OCH ₃
1515-1510	Скелетные колебания связей С–С ароматического гваяцильного кольца
1510-1505	Скелетные колебания связей С–С ароматического сирингильного кольца
1470-1455	Деформационные антисимметричные колебания связей С–Н в метильных группах и деформационные ножничные колебания в метиленовых группах
1430-1420	Скелетные колебания ароматических С–С-связей в сочетании с плоскостными дефор- мационными колебаниями связей С–Н
1370-1363	Деформационные симметричные колебания связей С–Н в СН ₃ -группах, кроме колеба- ний в ОСН ₃ -группах; деформационные колебания фенольного ОН
1330-1315	Скелетные колебания связей С–С S-кольца плюс колебания конденсированного G-кольца (колебания G-кольца, замещенного в положении 5)
1270-1260	Скелетные колебания G-кольца плюс деформационные колебания связи C=O
1235-1230	Скелетные колебания связей С–С S-колец лигнинов и валентные колебания С–О в фенолах сирингильных структурных единиц
1230-1225	Скелетные колебания связей С–С G-колец лигнинов и валентные колебания С–О в фенолах гваяцильных структурных единиц
1166-1155	Деформационные колебания связей С–Н HGS колец лигнинов и колебания связей С=О в сопряженных сложноэфирных группах
1128–1135	Деформационные плоскостные колебания связей С–Н в ароматическом кольце (типичные для S-колец), плюс колебания вторичных спиртов, плюс колебания связей C=O
1108-1103	Деформационные колебания С–Н ароматических соединений
1055-1045	Деформационные колебания связей С–О первичных спиртов и простых эфиров
1035-1028	Деформационные плоскостные колебания связей С–Н в ароматическом кольце более интенсивны для G-колец, чем S-колец; плюс деформационные колебания связей С–О в первичных спиртах; плюс несопряженные колебания связей С=О
915-895	Деформационные внеплоскостные колебания связей С–Н в S и G ароматическом кольце
875-865	Деформационные внеплоскостные колебания связей С–Н в положениях 2, 5 и 6 ароматического G-кольца
835-825	Деформационные внеплоскостные колебания связей С–Н в положениях 2 и 6 аромати-

ческого S-кольца и во всех положениях ароматического Н-кольца

Деформационные внеплоскостные колебания связей С-Н в позициях 2, 5 и 6 аромати-

Таблица 3. Отнесение выявленных полос поглощения колебаниям соответствующих функциональных групп и связей, проведенное по данным [1, 6–16, 19–21, 32–36]

ческого G-кольца

815-805

ПОЖИДАЕВ и др.

Порода древесины	1675-1593	1515-1505	1270-1225	900-830	815-805
Хвойные	3 полосы: 1652 ± 3, 1637 ± 2, 1600 ± 3	Полоса 1509 ± 2	2 полосы: 1263 ± 2, 1229 ± 2. Интенсивность полосы 1263 больше, чем полосы 1229	2 полосы: 896 ± 2, 872 ± 4. Интенсивность полосы 896 больше, чем полосы 872	Полоса 808 ± 2
Лиственные	2 полосы: 1644 ± 4, 1594 ± 2	Полоса 1505 ± 2	1 полоса 1233 ± 2	2 полосы: 897 ± 2 830 ± 3 Интенсивность полосы 897 больше, чем полосы 830	Полоса отсутствует

Таблица 4. Характеристичные полосы поглощения (см⁻¹) пригодные для идентификации породы древесины методом ИК-спектроскопии

Таблица 5. Археологические объекты для исследования

Шифр образца	Описание образца
Образец 1	Труха от деревянной шкатулки. Регистрационный номер — ГИМ 25118. Первая половина 2 в. н.э. Некрополь Пантикапея, Керчь, Крым. Раскопки Ю.А. Кулаковского, 1890 г.
Образец 2	Образец фрагмента дерева с остатками ткани. Регистрационный номер — ГИМ 98658, XVII—XIII вв. до н.э. Борисо-Глебовский курганный могильник, Владимирская область, Муромский район, д. Борисо-Глебово, Курган 2. Раскопки экспедиции ГИМ под руководством Т.Б. Поповой, 1963 г.
Образец 3	Образцы фрагментов деревянных украшений мужской верхней одежды ("Катандинского халата"). Регистрационный номер – ГИМ 54746, IV–III вв. до н.э. Томская губерния, Барнаульский округ, д. Катандинская, "Большой Катандинский курган". Раскопки В.В. Радлова, 1865 г.

интенсивности ~1503 см⁻¹. Также обнаружены две полосы поглощения ~1643 и 1593 см⁻¹.

В спектре образца 3 в области $815-805 \text{ см}^{-1}$ присутствует хорошо выраженная полоса слабой интенсивности при 813 см^{-1} . В области спектра $915-835 \text{ см}^{-1}$ присутствуют две полосы слабой интенсивности: $897 \text{ и} 869 \text{ см}^{-1}$. В области $1270-1225 \text{ см}^{-1}$ обнаружена полоса поглощения 1265 см^{-1} , а также слабая полоса поглощения в области 1227 см^{-1} . Полоса 1265 см^{-1} более интенсивная,

чем полоса в области 1227 см⁻¹. Имеется полоса поглощения в области 1509 см⁻¹.

Следовательно, на основании анализа ИКспектров можно утверждать, что идентифицированы древесина хвойной породы в образцах № 1 и № 3 и лиственной породы в образце № 2. Полученные результаты совпадают с предварительной идентификацией, проведенной методом оптической микроскопии, что предполагает хорошие перспективы использования метода ИК-спек-

Рис. 2. ИК-спектры археологических образцов: (а) – образец 1; (б) – образец 2.

троскопии для объективной идентификации пород древесины археологических образцов.

* * *

Таким образом, метод ИК-спектроскопии однократного нарушенного полного внутреннего отражения представляется перспективным для сравнительного исследования образцов древесины разных пород. Выявлены характеристические полосы поглощения в ИК-спектрах образцов, соответствующие им функциональные группы. На основании анализа полученных ИК-спектров определены области поглощения, характерные для хвойных и лиственных пород древесины. Основные различия в спектрах представленных образцов отмечены в пяти характеристичных областях поглощения, которые можно использовать для идентификации породы: 1665—1593, 1515—1505, 1270—1225, 875—830 и 815—805 см⁻¹. Установлены различия в ИК-спектрах хвойных и лиственных пород древесины, пригодные для их идентификации. С использованием выявленных характеристичных полос поглощения идентифицированы породы древесины трех археологических образцов.

ИК-спектры были записаны на оборудовании ЦКП "Исследовательский научно-аналитический центр НИЦ "Курчатовский институт"-ИРЕА".

Авторы выражают благодарность сотрудникам Государственного исторического музея Н.И. Шишлиной и Е.С. Азарову за предоставленные для исследования археологические материалы, а также сотруднику Ресурсного центра оптической микроскопии и спектроскопии НИЦ "Курчатовский институт" С.Н. Малахову за помощь в интерпретации ИК-спектров.

Работа выполнена при поддержке гранта РФФИ 17-29-04100 офи-м.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Faix O., Bottcher J.H.* The influence of particle size and concentration in transmissionand diffuse reflectance spectroscopy of wood // Holz. Roh. Werkst. 1992. V. 50. № 1. P. 221
- Popescu C.M., Popescu M.C., Singurel G., Vasile C., Argyropoulos D.S., Willfor S. // Appl. Spectrosc. 2007. V. 61. № 11. P. 1168.
- 3. Banks W.B., Owen N.L. FTIR studies of hydrophobic layers on wood // Spectrochim. Acta A. 1987. V. 43. № 12. P. 1527.
- Moore A.K., Owen N.L. Infrared spectroscopic studies of solid wood // Appl. Spectrosc. Rev. 2001. V. 36. № 1. P. 65.
- 5. *Higuchi T.* Biochemistry and Molecular Biology of Wood. Berlin: Springer-Verlag, 1997. 362 p.
- 6. Карклинь В.Б., Трейманис А.П., Громов В.С. ИКспектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 2. С. 45.
- Карклинь В.Б., Якобсон М.К., Столдере И.А. ИКспектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 3. С. 100.
- 8. Карклинь В.Б., Охерина Е.Э. ИК-спектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 4. С. 49.
- Карклинь В.Б., Эйдус Я.А., Крейцберг З.Н. ИК-спектроскопия древесины и ее основных компонентов // Химия древесины. 1977. № 4. С. 86.
- 10. Карклинь В.Д. ИК-спектроскопия древесины и ее основных компонентов. V. количественное сравнение ИК-спектров древесины на основе внешнего стандарта –гексаферрицианида калия // Химия древесины. 1975. № 1. С. 56.
- Карклинь В.Б., Крейцберг З.Н., Екабсоне М.Я. ИКспектроскопия древесины и ее основных компонентов. VII. Определение по ИК-спектрам содержания лигнина в препаратах березовой древесины,

разрушенной грибом *Fomitopsis pinicola* // Химия древесины. 1975. № 2. С. 53.

- Хвиюзов С.С., Боголицын К.Г., Гусакова М.А., Зубов И.Н. Оценка содержания лигнина в древесине методом ИК-Фурье спектроскопии // Фундаментальные исследования. 2015. № 9 (часть 1). С. 87.
- 13. Пустынная М.А., Гусакова М.А., Боголицын К.Г. Региональные и возрастные изменения химического состава лигноуглеводной матрицы лиственной древесины (на примере осины *Populus tremula*) // Лесной журн. 2015. № 1. С. 133.
- 14. *Хабаров Ю.Г., Песьякова Л.А.* Аналитическая химия лигнина. Архангельск: АГТУ, 2008. 172 с.
- Derkacheva O., Sukhov D. Investigation of lignins by FTIR spectroscopy // Macromol. Symposia. 2008. V. 265. № 1. P. 61.
- 16. *Lin S.Y., Dence C.W.* Methods in Lignin Chemistry. Berlin: Springer-Verlag, 1992. 578 p.
- 17. *Monnier G., Frahm E., Luo B., Missal K.* Developing FTIR microspectroscopy for analysis of plant residues on stone tools // J. Arch. Sci. 2017. V. 78. P. 158.
- Bodirlau R., Teaca C.A. Fourier transforminfrared spectroscopy and thermal analysis of lignocelluloses fillers treated with organic anhydrides // Rom. J. Phys. 2009. V. 54. № 1. P. 93.
- Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis // Carbohydr. Polym. 2010. V. 82. № 3. P. 772.
- 20. Esteves B., Marques A.V., Domingos I., Pereira H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR // Maderas. Cienc. Tecnol. 2013. V. 15. № 2. P. 245.
- 21. Popescu C.M., Popescu M.C., Singurel G., Vasile C. Structural changes in biodegraded lime wood // Carbo-hydr. Polym. 2010. V. 79. № 2. P. 362.
- Colom X., Carrillo F. Comparative study of wood samples of the northern area of Catalonia by FTIR // J. Wood Chem. Technol. 2005. V. 25. № 1–2. P. 1.
- 23. *Evans P.A.* Differentiating "hard" from "soft" woods using Fourier transform infrared and Fourier transform Raman spectroscopy // Spectrochim. Acta A: Mol. Spectrosc. 1991. V. 47. № 9–10. P. 1441.
- 24. Müller G., Schöpper C., Vos H., Kharazipour A., Polle A. FTIR–ATR spectroscopic analyses of changes in wood properties during particle- and fiberboard production of hard- and softwood trees // BioRes. 2009. V. 4. № 1. P. 49.
- 25. *Pandey K.K.* A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy // J. Appl. Polym. Sci. 1999. V. 71. № 12. P. 1969.
- 26. *Colom X., Carrillo F., Nogués F., Garriga P.* Structural analysis of photodegraded wood by means of FTIR spectroscopy // Polym. Degrad. Stab. 2003. V. 80. № 3. P. 543.
- 27. *Zhao J., Xiuwen W., Hu J., Liu Q., Shen D., Xiao R.* Thermal degradation of wood lignin and hardwood lignin by TG–FTIR and Py–GC/MS // Polym. Degrad. Stab. 2014. V. 108. P. 133.

- Popescu C.M., Popescu M.C., Singurel G., Vasile C., Argyropoulos D.S., Willfor S. Spectral characterization of eucalyptus wood // Appl. Spectrosc. 2007. V. 61. № 11. P. 1168.
- Traoré M., Kaal J., MartínezCortizas A. Application of FTIR spectroscopy to the characterization of archeological wood // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2016. V. 153. P. 63.
- Picollo M., Cavallo E., Macchioni N., Pignatelli O., Pizzo B., Santoni I. Spectral characterization of ancient wooden artefacts with the use of traditional IR techniques and ATR device: a methodological approach // e-PRESERVATION Sci. 2011. V. 8. P. 23.
- Боголицын К.Г., Лунин В.В. Физическая химия лигнина. М.: Академкнига, 2010. 492 с.
- Herrera R., Erdocia X., Llano-Ponte R., Labidi J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties // J. Anal. Appl. Pyrol. 2014. V. 107. P. 256.

- Lojewska J., Miskowiec P., Lojewski T., Proniewicz L.M. Cellulose oxidative and hydrolytic degradation: in situ FTIR approach // Polym. Degrad. Stab. 2005. V. 88. № 3. P. 512.
- Sills D.L., Gossett J.M. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali pretreated biomasses // Biotechnol. Bioeng. 2012. V. 109. № 2. P. 353.
- Zhao J., Xiuwen W., Hu J., Liu Q., Shen D., Xiao R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS // Polym. Degrad. Stab. 2014. V. 108. P. 133.
- Methods in Lignin Chemistry / Eds. Lin S.Y., Dence C.W. Berlin-Heidelberg: Springer-Verlag, 1992. 578 p.
- Терентьева Э.П., Удовенко Н.К., Павлова Е.А. Химия древесины, целлюлозы и синтетических полимеров: учебное пособие. Ч. 2. СПб: СПбГТУРП, 2015. 83 с.