УДК 543.554: 543.6: 615.33

ПОТЕНЦИОМЕТРИЧЕСКИЕ СЕНСОРЫ, ЧУВСТВИТЕЛЬНЫЕ К НЕКОТОРЫМ ЦЕФАЛОСПОРИНОВЫМ АНТИБИОТИКАМ: СВОЙСТВА, ПРИМЕНЕНИЕ

© 2022 г. Е. Г. Кулапина^{*a*, *}, О. И. Кулапина^{*b*}, Е. Н. Чердакова^{*a*}, В. Д. Анкина^{*b*}

^аСаратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского ул. Астраханская, 83, Саратов, 410012 Россия

> ^bСаратовский государственный медицинский университет им. В.И. Разумовского ул. Б. Казачья, 112, Саратов, 410012 Россия

> > *e-mail: kulapinaeg@mail.ru Поступила в редакцию 30.06.2021 г. После доработки 10.08.2021 г. Принята к публикации 11.08.2021 г.

Разработаны немодифицированные и модифицированные твердоконтактные потенциометрические сенсоры (трубчатые и планарные) для определения некоторых цефалоспориновых антибиотиков в водных, биологических средах, фармацевтических препаратах. В качестве активных компонентов мембран использовали соединения тетраалкиламмония с комплексными соединениями серебро(I)– β -lac[Ag(β -lac)₂], в качестве модификаторов – углеродные нанотрубки, полианилин, наночастицы оксида меди и NiZnFeO. Определены основные электроаналитические и операционные характеристики исследуемых сенсоров в водных растворах антибиотиков и на фоне жидкости ротовой полости. Сенсоры обеспечивают широкий диапазон определяемых содержаний антибиотиков 1 × 10⁻⁴ (1 × 10⁻⁵)–1 × 10⁻² (0.1) М, значения $c_{\min} = n × 10^{-5}$ (1 × 10⁻⁶) М. Модификаторы стабилизируют электродный потенциал и осуществляют функцию медиатора электронного переноса, что приводит к улучшению электроаналитических характеристик сенсоров. Показана возможность применения твердоконтактных сенсоров для определения основного вещества в лекарственных препаратах различных производителей, в модельных водных растворах и ротовой жидкости с внесенными добавками антибиотиков, а также в мультисенсорных системах типа "электронный язык" для раздельного определения цефалоспориновых антибиотиков в двухкомпонентных смесях.

Ключевые слова: цефазолин, цефалексин, цефуроксим, цефотаксим, цефтриаксон, цефиксим, цефепим, немодифицированные и модифицированные твердоконтактные сенсоры, лекарственные и биологические среды, мультисенсорные системы типа "электронный язык".

DOI: 10.31857/S0044450222080059

β-Лактамные антибиотики широко используют в медицинской практике для лечения различинфекционно-соматических патологий. ных Широкое применение антибиотиков привело к развитию резистентных штаммов основных патогенов. Исследователи и клиницисты стараются решить эту проблему следующими путями: синтезом антибиотиков новых поколений, созданием ингибиторов В-лактамаз, комбинированием уже известных антибиотиков, созданием новых лекарственных форм и изменением режима дозирования [1], что, в свою очередь, требует определения концентрации антибиотиков в диагностически значимых биосредах экспрессным и доступным для клинических лабораторий методом. Цефалоспорины различаются по фармакокинетическим параметрам, по степени всасывания при разных путях введения, скорости наступления эффекта и длительности действия, а следовательно, по необходимой частоте введения препарата, метаболизму и элиминации [2, 3].

Исследуемые в настоящей работе цефалоспорины относятся к поколениям I (цефазолин, цефалексин), II – цефуроксим, цефуроксим аксетил, III – цефотаксим, цефтриаксон, цефиксим, IV – цефепим. Цефалоспорины IV поколения – цефепим; цефпиром – высокоэффективные антибиотики с биполярной структурой. Цефемовое ядро этих антибиотиков несет отрицательный заряд, четвертичный атом азота циклопентопиридиновой группы — положительный заряд, что придает молекуле структуру цвиттер-иона [4]. Они являются парентеральными лекарственными средствами, частично противостоят гидролизу плазмидными β-лактамазами [5, 6]. Несмотря на все достоинства цефалоспориновых антибиотиков IV поколения, отмечено увеличение смертности больных с нейтропенической лихорадкой при лечении цефепимом [7, 8], а также при инфекциях кожи и мягких тканей, в то же время этот антибиотик остается действенным средством лечений больных с пневмониями и инфекциями других локализаций как в виде монотерапии, так и, при необходимости, в сочетании с другими антибиотиками (например, метронидазолом) [4].

Цефалоспориновые антибиотики определяют в сыворотке и плазме крови методами жидкостной хроматографии с УФ-детектированием и масс-спектрометрии [2, 3], требующими сложной дорогостоящей аппаратуры. Экспрессное определение антибиотиков в биосредах необходимо для исследования фармакокинетики препаратов, выбора оптимальной терапевтической дозы. Для этих целей перспективно применение потенциометрических сенсоров [2, 3, 9–14].

На кафедре аналитической химии СГУ разработаны жидкоконтактные сенсоры, чувствительные к цефалексиму, цефуроксиму, цефиксиму [3, 15, 16], на основе соединений тетраалкиламмония с комплексом серебро(I)–β-лактамный антибиотик; их основной недостаток – возможность использования только в вертикальном положении [3]. Твердоконтактные и планарные сенсоры позволяют проводить исследования при любой ориентации в пространстве, в микрообъемах проб, что важно для анализа биологических жидкостей. На электрохимические характеристики сенсоров влияют способы изготовления и составы мембран. В зависимости от активного материала и модификаторов поверхности можно конструировать планарные сенсоры для определения неорганических и органических соединений в различных объектах [17, 18].

Угольно-пастовые электроды, модифицированные рутением с диоксидом титана, применяют для определения клозапина в фармпрепаратах и в моче человека [19]; наночастицами оксида никеля – для определения сульфасалазина [20] в фармпрепаратах; наночастицами палладия – для определения тербуталина, сальбутамола, рактопамина, кленбутерола [21] в свином мясе, моче человека; наночастицами оксида цинка – для определения ацетаминофена в сыворотке крови человека [22]. В качестве модификаторов для определения дофамина в сыворотке крови и в моче человека используют оксид графена и наночастицы золота [23], для определения накроксена в фармпрепаратах и в моче человека – углеродное нановолокно и наночастицы золота [24]. Электроды на основе углеродных нанотрубок, пирографита, оксида графена, сажи использовали для

определения метотрексата, клиндамицина [25] в фармпрепаратах.

Авторами работы [26] для определения тиохинолина предложены тиолчувствительные комбинированные планарные сенсоры, модифицированные слоем диоксида марганца. Предел обнаружения составляет 1×10^{-10} М. Для определения бисопролол фумарата в фармацевтических образцах и биологических жилкостях использовали угольно-пастовые электроды на основе В-циклодекстрина [27]. Модифицированные углеродной пастой планарные сенсоры предложены для определения гидрохлорида лидокаина, доксициклина [28] в фармацевтических препаратах и биологических жидкостях (моча и сыворотка). Разработаны [29-32] немодифицированные и модифицированные твердоконтактные и планарные потенциометрические сенсоры для определения некоторых цефалоспориновых антибиотиков (модификаторы – углеродные нанотрубки, наночастицы NiZnFeO, CuO, полианилин).

Анализ литературы показал, что в качестве модификаторов поверхности планарных сенсоров используют токопроводящие полимеры, углеродные нанотрубки и различные наночастицы (оксиды металлов, сульфиды меди и др.). В большинстве случаев модифицирование сенсоров осуществляют непосредственным введением модификатора в материал электрода. Данный способ имеет ряд преимуществ: не изменяется состав электродноактивного вещества, остается постоянным контакт модификатора с анализируемым раствором и проводником. Введение модификаторов в мембраны сенсоров улучшает их электроаналитические свойства [29–32].

С помощью сенсоров не всегда можно избирательно определить конкретное соединение. Для решения проблемы селективности разработаны мультисенсорные системы типа "электронный язык" и "электронный нос". "Электронный язык" — это система электрохимических сенсоров, способная обнаруживать индивидуальные вещества в смесях сложного состава [33]. Мультисенсорные системы включают массив сенсоров для определения веществ с дальнейшей обработкой многомерных данных хемометрическими методами, что позволяет определять несколько компонентов смеси при их совместном присутствии [34].

Массивы сенсоров применены для классификации фармацевтических препаратов по веществам, маскирующим вкус [35], для определения уровня креатинина в моче человека [36], метамизолата натрия, псевдоэфедринсульфата, гипромеллозы и кармеллозы в фармацевтических препаратах [37, 38]. Массив из шести потенциометрических сенсоров использовали для оценки маскирования вкуса диклофенака циклодекстрином, ацесульфамом, сахарозой, сахаринатом натрия и лактозой [39]. Авторами работы [40] предложена мультисенсорная система для обнаружения остатков антибиотиков в коровьем молоке, для идентификации фармацевтических препаратов различных фирм, выявления фальсификатов и аналогов лекарственных средств, содержащих бисопролол, инсулин и его аналог. Предложен [41, 42] массив из модифицированных стеклоуглеродных электродов. Для обработки аналитических сигналов использовали методы [43, 44], метод главных компонент [38] дискриминантный анализ [39], метод опорных векторов [36], а также нейронные сети [35], регрессии частичных наименьших квадратов [42]. Массивы потенциометрических сенсоров для раздельного определения пенициллиновых антибиотиков предложены авторами работ [45, 46].

В настоящей работе систематизированы результаты исследований по жидкостным, немодифицированным твердоконтактным (трубчатым и планарным, "screen-printed") сенсорам; модификаторы — полианилин, углеродные нанотрубки, наночастицы NiZnFeO и CuO; активные компоненты мембран — ионные ассоциаты тетраалкиламмония с комплексными соединениями серебро(I)–β-лактам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования. В качестве аналитов изучали цефалоспориновые антибиотики цефазолин, цефалексин, цефуроксим, цефуроксим аксетил, цефотаксим, цефиксим, цефтриаксон, цефепим фармакопейной чистоты (табл. 1). Исходные 0.1 М водные растворы антибиотиков готовили по точным навескам препаратов в дистиллированной воде; рабочие (свежеприготовленные) 1×10^{-6} — 0.01 М растворы получали последовательным разбавлением. Кислотность свежеприготовленных водных растворов цефотаксима, цефазолина, цефуроксима с изменением их концентрации не меняется (pH 6.0).

В качестве объекта исследования выбрали жидкость ротовой полости (**ЖРП**) (ротовая жидкость или смешанная слюна) – легкодоступную биологическую жидкость человека. Она представляет интерес для изучения фармакокинетики антибиотиков в связи с простотой и неинвазивностью отбора проб [47–49]. Жидкость ротовой полости содержит 98–99% воды, около 0.5% неорганических солей ($Mn^{2+}, Cu^{2+}, Fe^{2+}, Mg^{2+}, Ca^{2+}, Na^+, K^+, F^-, Cl^-, HCO_3^-, SO_4^{2-}$ и др.) и до 1% органических веществ (белки, мочевина, аммиак, креатин, остатки пищи и др.) [49]. Коэффициенты потенциометрической селективности цефалоспориновых антибиотиков по отношению к не-

органическим ионам, входящих в состав ЖРП, позволяют проводить их определение в ротовой жидкости [15, 29, 30]. Методика сбора ЖРП и способ ее пробоподготовки описаны в работе [29]. Пробу ЖРП центрифугировали в течение 15 мин при 3500 об/мин; сенсоры предварительно кондиционировали в ЖРП практически здорового человека в течение 20–30 мин.

Получение материалов сенсоров. Синтез электродноактивных компонентов (ЭАК) и получение мембран проводили согласно рекомендациям [29]. Учитывая сложность системы равновесий с участием цефепима необходимо было создать кислотность, при которой антибиотик существует в виде катиона (рН 2), поэтому ЭАК синтезировали из кислого раствора. Получали ЭАК смешением 50 мл 0.01 М тетрафенилбората натрия (ТФБ), 50 мл 0.01 М раствора цефепима и 5 мл 0.1 М HCl в стеклянном стакане. Осадок образовывался в течение суток. Затем осадок центрифугировали и высушивали в сушильном шкафу при 30°С в течение 2-3 ч. Попытки синтезировать соединение цефепим-катионы тетраалкиламмония (ТАА) не дали положительных результатов, так как в щелочной и нейтральной средах цефепим существует в виде цвиттер-иона [50].

В качестве ЭАК в твердоконтактных и планарных сенсорах использовали ионные ассоциаты тетрадециламмония и диметилдистеариламмония с комплексными соединениями серебро(I)β-лактам [Ag(β-lac)n]ТАА; с_{ЭАК} = 1−3%. Для стабилизации электродного потенциала твердоконтактных потенциометрических сенсоров в роли ионно-электронного трансдьютера использовали электропроводящий полимер полианилин (ПАНИ) (Эмеральдин, Турция), а также наночастицы оксида меди (d = 50 нм) (Sigma-Aldrich), NiZnFeO и углеродные нанотрубки. Модификаторы вносили непосредственно в мембрану или в углеродсодержащие чернила с ЭАК; соотношение ЭАК-модификатор составляло 2:1 (трубчатые) и 1 : 1 (планарные). Перед измерениями трубчатые сенсоры кондиционировали в 1 × 10⁻³ М растворах соответствующих антибиотиков в течение 24 ч, планарные – 1 ч для получения быстрого, воспроизводимого отклика. Синтез ЭАК, приготовление реактивов, изготовление углеродсодержащих чернил и screen-printed сенсоров, аппаратура описаны в работе [31].

Методы исследования. Для измерения ЭДС использовали элементы с переносом типа:

КУЛАПИНА и др.

Антибиотик	Сокращение	Формула		
Цефазолин; ОАО "Биосинтез" (Курган)	Cef	$ \begin{array}{c} COOH \\ O \\ N \\ M \\ N \\ N$		
Цефалексин, капсулы; "Хемофарм" (Москва)	Cefl	$H_2N - CH H_3 - CH_3$		
Цефтриаксон; ОАО "Биосинтез" (Курган)	Ceftr	NH_{2} N		
Цефотаксим; ЗАО ф.ф. "Лекко"	Ceftx	$H_{2N} \xrightarrow{N-O} H H_{1} H_{1} S$		
Цефиксим, гранулы; "Гедеон Рихтер" (Москва)	Cefix	$\begin{array}{c} H_2N & COOH \\ S & N & O \\ S & M & O \\ H & H & H \\ N & O \\ O & COOH \end{array} CH_2$		
Цефуроксим (цефурабол); ООО "АБолмед" (Новосибирск)	Cefur1	$ \begin{array}{c} O = C - NH \\ \hline \\ O \\ \\ O \\ \\ \\ O \\ \\ \\ O \\ \\ \\ O \\ \\ \\ \\ O \\$		
Цефуроксим аксетил, таблетки; "Glaxo Operation UK Limited" (UK)	Cefur2	O = C - NH C O C O N C O C C O C C O C		

Таблица 1. Названия и формулы цефалоспориновых антибиотиков и компонентов мембран сенсоров

Таблица 1. Окончание

Антибиотик	Сокращение	Формула		
Цефепим; "Линкольн Парентеральс" (Индия)	Cefet	$H_{2}N \xrightarrow{N^{-O}} H H_{\overline{z}} S \xrightarrow{N^{+}} O \xrightarrow{N^{+} O \longrightarrow{N^{+}} O \xrightarrow{N^{+}} O \xrightarrow{N^{+}} O \xrightarrow{N^{+} O \xrightarrow{N^{+}} O N$		
Диметилдистеарил-аммония хлорид	ДМДСА	$\begin{bmatrix} C_{17}H_{35} & CH_3 \\ C_{17}H_{35} & CH_3 \end{bmatrix} CI^-$		
Тетрадециламмония бромид	ТДА	$\begin{bmatrix} C_{10}H_{21} & C_{10}H_{21} \\ C_{10}H_{21} & C_{10}H_{21} \end{bmatrix} Br^{-}$		

(ЖК) Ag, AgCl/NaCl 0.1 М/Мембрана/Исследуемый раствор // КСl_{нас.}/AgCl, Ag;
 (ТК) Ag, AgCl/KCl_{нас.} // Исследуемый раствор/Мембрана/Графит;
 Ag, AgCl/KCl_{нас.} // Исследуемый раствор/Углеродсодержащие чернила.

Контакт между полуэлементами осуществлялся через солевой мостик, заполненный насыщенным раствором хлорида калия.

ЭДС цепи измеряли с помощью иономера Эксперт-001-3(0.1) при 20 ± 3°С (погрешность измерения ЭДС ±1 мВ); электрод сравнения стандартный хлоридсеребряный ЭВЛ-1М. В анализируемых растворах ЭДС измеряли от меньшей концентрации к большей. Для ускорения достижения постоянного потенциала внешний раствор перемешивали магнитной мешалкой.

Время установления стационарного потенциала сенсоров (время отклика ($t_{0.95}$) определяли при скачкообразном изменении концентраций антибиотиков на порядок величины в 1 × 10⁻⁴— 0.1 М растворах согласно рекомендациям ИЮ-ПАК [51, 52]. Коэффициенты потенциометрической селективности (K_{ijj}) оценивали методом бионных потенциалов и смешанных растворов [53].

Для определения срока службы сенсоров регистрировали электродные функции в свежеприготовленных растворах антибиотиков на протяжении длительного времени и по изменению угла наклона судили о чувствительности данных электродов к антибиотикам.

Спектрофотометрические измерения проводили на спектрофотометре Shimadzu UV-1800, совмещенном с IBM PC, использовали кюветы из кварцевого стекла. Для измерения pH применяли pH-метр pX-150Mn, погрешность измерения 0.01 pH. Для создания определенного значения pH к стандартным растворам антибиотиков добавляли 0.1 M HCl или 0.1 M NaOH. Ионную силу pаствора $\mu = 0.1$ создавали добавлением 0.1 M NaCl. Для отделения белковых компонентов из ротовой жидкости использовали центрифугу ЦЛМИ-P-10-0.1 "Элекон". Пробу ЖРП центрифугировали в течение 10–20 мин при 3500 об/мин. В подготовленные пробы ЖРП вносили различные добавки растворов антибиотиков. Концентрацию антибиотиков в ЖРП находили по градуированному графику. Статистическую обработку результатов проводили согласно рекомендациям [54, 55].

Для исследования объемных свойств мембран под током использовали четырехэлектродную схему, состоящую из пары платиновых (токопроводящих) и пары хлоридсеребряных (регистрирующих) электродов. Измерения проводили в гальваностатическом режиме при силе тока 5 мкА в течение 3 ч. Направление тока поляризации изменяли каждый час. При этом оценивали падение напряжения на мембране при прохождении через ячейку постоянного тока и электрическое сопротивление мембран, контактирующих с растворами антибиотиков различных концентраций.

Сенсоры использовали для определения антибиотиков в модельных растворах, ЖРП, лекарственных препаратах различных производителей, основного вещества в препаратах "Зиннат", "Цефалексин", в мультисенсорных системах типа "электронный язык" для раздельного определения цефалоспориновых антибиотиков в двухкомпонентных модельных системах [45, 46], контроля фармакокинетики цефуроксим аксетила по динамике его распределения в ЖРП [56]. Содержание антибиотика в модельных водных растворах, ротовой жидкости, лекарственных препаратах определяли прямой потенциометрией (способом градуировочного графика или способом добавок); правильность контролировали методом ввелено-найлено.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Цефазолин и цефуроксим — антибиотики кислотного типа, полностью диссоциируют при pH 5; цефотаксим, цефтриаксон, цефалексин, цефиксим — амфотерные антибиотики, имеющие в своей структуре карбоксильную, аминную и аминотиазольную группы. Эти антибиотики существуют в виде катиона (сильнокислая среда), цвиттер-иона (слабокислая среда) и аниона (нейтральная и слабощелочная среда). Цефалоспорины подвержены гидролизу: при раскрытии β-лактамного кольца образуется 7-аминоцефалоспорановая кислота [1]. Цефуроксим аксетил (эфир цефуроксима) гидролизуется до цефуроксима (в водной среде и кишечнике) [57].

Существенной особенностью строения цефалоспориновых антибиотиков является большая доля гетероатомов (наличие групп -OH, $-NH_2$, $-S^-$, и др.), т.е. это потенциально комплексообразующие реагенты. Известно [58], что только ион серебра(I) образует отрицательно заряженные комплексные соединения с β -лактамами. Состав и константы образования комплексов исследуемых антибиотиков с ионами серебра(I) определены методами спектрофотометрии и потенциометрии [59]. В слабокислой среде цефазолин, цефотаксим образуют комплексы стехиометрического состава 1 : 1, в щелочной среде эти же антибиотики взаимодействуют с серебром(I) с образованием билигандных

заряженных комплексных соединений (AgL_2) .

Константы устойчивости соединений $Ag(\beta-lac)_2^$ равны: $\lg K = 7.56$ (цефазолин), $\lg K = 7.35$ (цефотаксим), $\lg K = 7.56$ (цефтриаксон), $\lg K = 7.39$ (цефалексин) [59]. Комплексные соединения серебра(I) с цефалоспоринами использовали в качестве ЭАК мембран потенциометрических сенсоров, противоионами являлись катионы тетрадециламмония (ТДА); произведения растворимости [Ag(β -lac)₂]ТДА равны соответственно 1.9 × 10⁻⁸ и 2.1 × 10⁻⁸ для цефазолина и цефотаксима, для цефепима Сеfep-ТФБ $K_s = (9.8 \pm 0.1) \times 10^{-9}$, а в мембранной фазе $(4.0 \pm 0.2) \times 10^{-3}$ [16, 59].

Рассмотрим основные электрохимические характеристики сенсоров на основе $[Ag(\beta-lac)_2]TДА$. Зависимости ЭДС от концентрации антибиотиков линейны в интервале концентраций 1×10^{-4} (5 × $\times 10^{-5}$)-0.01 (0.1) М; угол наклона электродных функций близок к теоретическому для однозарядных (цефуроксим, цефуроксим аксетил, цефотаксим, цефазолин, цефалексин, цефепим) и двухзарядных ионов (цефтриаксон, цефиксим). Оптимальная концентрация ЭАК в мембранах составляет 2–5%; дрейф потенциала сенсоров 10–20 (2–4) мВ/сут. По зависимости $E = f(-lgc_{\beta-lac})$ определили пределы обнаружения антибиотиков (табл. 2).

Время отклика сенсоров определяли при скачкообразном изменении концентрации растворов антибиотиков на порядок величины от меньшей концентрации к большей. На рис. 1 в качестве примера приведены зависимости ЭДС от времени при скачкообразном изменении концентрации для цефуроксима. Исследуемые сенсоры на основе [Ag(β-lac)₂]ТДА характеризуются небольшим временем отклика: для модифицированных полианилином и наночастицами оксида меди в пределах 5-10 с, для немодифицированных — 10-20 с. Уменьшение времени отклика при переходе от разбавленных растворов к более концентрированным связано, вероятно, с образованием вблизи электродной поверхности со стороны водной фазы тонкого слоя, в котором происходит резкое уменьшение концентрации реагирующих веществ и толщина которого с увеличением концентрации электролита уменьшается.

Исследовали электроаналитические свойства твердоконтактных (трубчатых и планарных) сенсоров на основе $[Ag(\beta-lac)_2]TДА$, модифицированных полианилином, наночастицами CuO, NiZnFeO в растворах β -лактамных антибиотиков. Сенсоры проявляют чувствительность к исследуемым антибиотикам и могут быть использованы для их определения в водных растворах (табл. 2).

Сравнение электроаналитических характеристик сенсоров показало, что модифицирование поверхности мембран или введение модификаторов в углеродсодержащие чернила планарных сенсоров приближает крутизну электродных функций к нернстовским значениям для одно- и двухзарядных ионов исследуемых антибиотиков; при этом сокращается время отклика, уменьшаются пределы обнаружения антибиотиков, а интервалы линейности электродных функций одинаковы для исследуемых немодифицированных и модифицированных сенсоров [29–31]. Процесс перехода от ионной проводимости мембраны к

	Раствор	Линейный диапазон	$S \pm \Delta S$,	с моль/л		
Tim cencopa, SAR	антибиотика	электродных функций, М	мВ/рс	c _{min} , wonby n		
Жидкостные						
[Ag(Cef) ₂]ТДА	Цефазолин	$1 \times 10^{-5} - 0.1$	57 ± 2	3×10^{-6}		
[Ag(Cefur) ₂]ТДА	Цефуроксим	$5 \times 10^{-4} - 0.1$	52 ± 2	1×10^{-5}		
[Ag(Cefix) ₂]ТДА	Цефиксим	$1 \times 10^{-5} - 0.01$	28 ± 2	5×10^{-6}		
Трубчатые						
[Ag(Cef) ₂]ТДА	Цефазолин	$5 \times 10^{-5} - 0.1$	52 ± 5	2×10^{-5}		
[Ag(Cef) ₂]ТДА + ПАНИ		$5 \times 10^{-5} - 0.1$	56 ± 4	2×10^{-5}		
[Ag(Ceftx) ₂]TДA	Цефотаксим	$5 \times 10^{-5} - 0.1$	55 ± 5	3×10^{-5}		
[Ag(Ceftx) ₂]ТДА + ПАНИ		$5 \times 10^{-5} - 0.1$	58 ± 5	2×10^{-5}		
	Планарн	ые				
[Ag(Ceftx) ₂]ТДА	Цефотаксим	$1 \times 10^{-4} - 0.1$	52 ± 4	5×10^{-5}		
[Ag(Cefur) ₂]ТДА	Цефуроксим	$5 \times 10^{-5} - 0.1$	54 ± 4	7×10^{-6}		
[Ag(Ceftx) ₂]TДА	Цефотаксим	$5 \times 10^{-5} - 0.1$	54 ± 2	6×10^{-6}		
$[Ag(Cefur)_2]TДА + углеродные нанотрубки$	Цефуроксим	$5 \times 10^{-6} - 0.1$	55 ± 2	3×10^{-6}		
[Ag(Cef) ₂]ТДА	Цефазолин	$5 \times 10^{-5} - 0.1$	48 ± 4	3×10^{-5}		
[Ag(Cef) ₂]ТДА + ПАНИ		$5 \times 10^{-5} - 0.1$	54 ± 3	2×10^{-5}		
[Ag(Cef) ₂]TДА + NiZnFeO		$5 \times 10^{-5} - 0.1$	57 ± 3	2×10^{-5}		
[Ag(Cef)2]ТДА + ПАНИ-NiZnFeO		$5 \times 10^{-5} - 0.1$	55 ± 3	2×10^{-5}		
[Ag(Ceftr) ₂]ТДА	Цефтриаксон	$3.1 \times 10^{-5} - 0.01$	28 ± 4	2.6×10^{-5}		
[Ag(Ceftr) ₂]ТДА + ПАНИ		$3.1 \times 10^{-5} - 0.01$	28 ± 3	2.0×10^{-5}		
[Ag(Ceftr) ₂]ТДА + NiZnFeO		$3.1 \times 10^{-5} - 0.01$	29 ± 2	1.7×10^{-5}		
[Ag(Ceftr) ₂]ТДА + ПАНИ-NiZnFeO		$3.1 \times 10^{-5} - 0.01$	29 ± 3	1.9×10^{-5}		
[Ag(Ceflx) ₂]ТДА	Цефалексин	$1 \times 10^{-4} - 0.01$	46 ± 5	1×10^{-4}		
$[Ag(Ceflx)_2]TДА + ПАНИ (c = 2\%)$		$1 \times 10^{-4} - 0.01$	50 ± 4	0.8×10^{-5}		
$[Ag(Ceflx)_2]TДА + ПАНИ (c = 3\%)$		$1 \times 10^{-4} - 0.01$	58 ± 3	1.4×10^{-5}		
[Ag(Ceftx) ₂]ДМДСА ($c = 3\%$)		$1 \times 10^{-4} - 0.01$	53 ± 5	9.8×10^{-5}		
$[Ag(Ceftx)_2]ДМДСА + ПАНИ (c = 3\%)$		$1 \times 10^{-4} - 0.01$	56 ± 4	2.1×10^{-5}		

Таблица 2. Электроаналитические характеристики немодифицированных и модифицированных β -лактамных сенсоров в растворах соответствующих антибиотиков ($c_{\Im AK} = 2\%$, соотношение $\Im AK$ -модификатор 2 : 1, n = 3, P = 0.95)

электронной в проводнике достаточно сложен. Модификаторы осуществляют функции медиатора электронного переноса (электрокатализатора), способствуют химической конверсии аналита, его физико-химическому концентрированию на поверхности электрода [60].

Срок службы немодифицированных сенсоров составил 1.5 и 2 мес — модифицированных [29—31]. Улучшение электрохимических характеристик связано с тем, что модификаторы обладают высокими электропроводящими свойствами, снижают сопротивление мембран в два раза, обеспечивают большую удельную поверхность мембран сенсоров.

Оценили коэффициенты потенциометричекой селективности *К*^{пот} немолифицированных и

ской селективности $K_{i/j}^{\text{пот}}$ немодифицированных и модифицированных наночастицами CuO селективных сенсоров по отношению к мешающим ионам антибиотиков. Сенсоры на основе $[Ag(\beta-lac)_2]TДА$ не обладают специфичностью по отношению к основному иону, они проявляют чувствительность и к другим цефалоспоринам. Неорганические анионы Cl⁻, I⁻, Br⁻, HCO₃⁻, H₂PO₄⁻, HPO₄²⁻ также могут вступать в реакцию ионного обмена, и в этом случае зависимость ЭДС от концентрации описывается уравнением Никольского: $E = E^0 - \frac{2.3RT}{F} \lg(a_i + K_{i/j}^{\text{пот}} \cdot a_j)$, где $K_{i/j}^{\text{пот}} - \text{коэф-}$

Рис. 1. Зависимость ЭДС от времени при скачкообразном изменении концентрации растворов цефуроксима для модифицированных полианилином (*1*) и наночастицами оксида меди (*2*) сенсоров.

фициент потенциометрической селективности, который показывает в присутствии каких количеств мешающих ионов возможно определение основного иона [51–53]. Величины $K_{i/j}^{\text{пот}}$ мембран свидетельствуют о том, что сенсоры высокоселективны по отношению к ряду неорганических ионов Cl⁻, I⁻, Br⁻, HCO₃⁻, H₂PO₄⁻, HPO₄²⁻ ($K_{i/j}^{\text{пот}} \le 10^{-3}$) и неселективны к антибиотикам своей группы ($K_{i/j}^{\text{пот}} \rightarrow 1$). Сенсоры можно использовать для

Рис. 2. Электродные функции сенсора на основе цефиксим—ДМДСА на фоне смешанной слюны в первые (1) и вторые (2) сутки; $c_{\text{ЭАК}} = 3.11\%$ (ДМДСА – диметилдистеариламмония хлорид).

определения индивидуальных антибиотиков или их суммарного содержания в лекарственных препаратах, биологических жидкостях.

Электроаналитические характеристики сенсоров на фоне смешанной слюны и **сыворотки кро**ви. В качестве объекта исследования выбрали ротовую жидкость. Известно [2, 48], что в каждый момент времени плазма крови превращается в некоторое количество ЖРП, поэтому можно считать, что концентрация лекарственного препарата в ЖРП соответствует концентрации его в плазме крови.

Исследовали поведение сенсоров в пробах ЖРП практически здоровых людей с внесенными добавками β -лактамов. Установили уменьшение интервала линейности и углового коэффициента электродных функций сенсоров в ЖРП вследствие высокой ионной силы раствора и "белкового отравления" поверхности мембран. Так, в растворах цефиксима на фоне ЖРП электродная функция линейна в интервале 1 × 10⁻⁴–0.01 М, угловой коэффициент электродных функций составляет 28 ± 3 мВ/рс (рис. 2).

Для всех исследуемых антибиотиков интервалы линейности электродных функций составляют $1 \times 10^{-5} - 5 \times 10^{-3}$ М. Полученные градуировочные характеристики являются воспроизводимыми, и увеличение времени кондиционирования сенсоров не влияет на их свойства. Для ионометрических определений антибиотиков нет необходимости осаждать белки. Аналогичные зависимости E = f(c) получены на фоне сыворотки крови практически здоровых людей и больных с различными патологиями.

С целью полученияданных о транспорте ионов в мембранах на примере ЭАК Сеfep—ТФБ получили зависимость сопротивления мембран от времени при различных концентрациях ЭАК. Установили, что при увеличении концентрации ЭАК стационарное сопротивление мембран уменьшается и происходит увеличение концентрации ионообменных центров в фазе мембран (рис. 3). По величинам стационарного сопротивления графическим методом Краусса—Брея [16] рассчитали кажущуюся константу диссоциации ЭАК в фазе мембраны, которая оказалась равной (4.0 $\pm \pm 0.2$) × 10⁻³.

Исследовали также зависимости сопротивления мембран от времени при смене полярности при различных концентрациях цефепима в примембранных растворах. Установили уменьшение стационарного сопротивления мембран с возрастанием концентрации цефепима в примембранных растворах, что свидетельствует о проникновении антибиотика в фазу мембран.

Аналитическое применение. Исследуемые цефалоспориновые антибиотики определяли в модельных водных растворах ($s_r \le 0.08$) и в ЖРП ($s_r \le \le 0.1$) с внесенными добавками антибиотиков; анализировали препараты "Зиннат", "Цефалексин" на содержание основного вещества. Планарные потенциометрические сенсоры применили для определения цефуроксима в лекарственных препаратах различных производителей (ЭАК [Ag(Cefur)₂]ТДА). Электроаналитические характеристики сенсоров, чувствительных к цефуроксиму, представлены в табл. 3. Интервал линейности электродных функций для всех препаратов одинаков (1 × 10⁻⁴-0.01 М), срок службы 1 мес.

В растворе цефуруса (ОАО "Синтез", Курган) сенсоры генерируют аналитический сигнал лучше, чем в растворах препаратов других производителей. Наблюдается уменьшение времени отклика, угол наклона электродных функций приближается к теоретическому в соответствии с уравнением Нернста для однозарядных ионов.

Цефуроксим определяли в препаратах различных производителей (табл. 4). Установили, что $\lambda_{\rm max}$ исследуемых препаратов цефуроксима, оптическая плотность при $c = 2.5 \times 10^{-5}$ М одинаковы

Рис. 3. Зависимость стационарного сопротивления мембран на основе цефепимтетрафенилборат от концентрации электродноактивного компонента в мембране.

(λ_{max} 274–275 нм), что доказывает идентичность исследуемых лекарственных препаратов.

Применение немодифицированных и модифицированных твердоконтактных В-лактамных сенсоров в мультисенсорных системах типа "электронный язык" для раздельного определения цефалоспориновых антибиотиков. Сушествует необходимость раздельного экспрессного определения цефалоспориновых антибиотиков в биологических жидкостях и лекарственных формах. Сенсоры на основе $[Ag(\beta-lac)_2]TДА$ не обладают специфичностью по отношению к основному иону, они проявляют чувствительность и к другим цефалоспоринам. Близость значений $K_{i/i}^{\text{пот}}$ к единице свидетельствует о том, что данные сенсоры можно применять для раздельного определения цефалоспориновых антибиотиков в мультисенсорных системах типа "электронный язык".

Наиболее перспективным является использование в составе мультисенсорной системы сенсоров с низкой селективностью и с высокой перекрестной чувствительностью, т.е. чувствительностью к максимальному числу определяемых компонентов в сложных растворах [33]. В связи с этим в настоящей работе наряду с селективностью оценивали параметры перекрестной чувствительности сенсоров в растворах β-лактамных антибиотиков согласно [61, 62]. К параметрам пере-

Таблица 3. Электроаналитические характеристики планарных сенсоров в растворах антибиотиков (n = 3, P = 0.95, E = f(c), $1 \times 10^{-4} - 0.01$ M)

Производитель	$S \pm \Delta S$, м B /р c	c _{min} , M	τ, c
Цефуроксим, ОАО "Красфарма" (Красноярск)	50.6 ± 1.8	5×10^{-5}	20-30
Цефурус, ОАО "Синтез", (Курган)	52.3 ± 1.9	6.3×10^{-5}	20-25
Цефурозин, "Протекх Биосистемс" (Индия)	48.5 ± 1.5	6.8×10^{-5}	20-30

Введено, мг/10 мл Антибиотик Найдено, мг/10 мл D. % S_r Цефуроксим 0.85 0.74 ± 0.02 0.011 12.9 Цефурус 0.85 0.81 ± 0.03 0.015 4.7 Цефурозин 0.78 ± 0.03 0.015 8.2 0.85

Таблица 4. Результаты определения цефуроксима в препаратах различных производителей (n = 3, P = 0.95)

крестной чувствительности относятся средний наклон электродной функции сенсора S_{cp} , фактор неселективности *F*, фактор воспроизводимости *K*:

$$S_{\rm cp} = 1/n \Sigma S_i; \ F = S_{\rm cp}/s^2; \ K_{\rm cp} = 1/n \Sigma (S_{\rm cp}/s_i^2),$$

где S_i — угловой коэффициент электродной функции сенсора в растворе *i*-го иона; *n* — число ионов; *s* — среднеквадратичное отклонение среднего наклона; *s_i* — среднеквадратичное отклонение S_i . Для расчета параметров перекрестной чувствительности использовали угловые коэффици

Рис. 4. Результаты раздельного определения цефазолина и цефотаксима в двухкомпонентных модельных смесях с использованием мультисенсорной системы "электронный язык".

енты электродных функций сенсоров в растворах цефазолина, цефотаксима, цефуроксима. Значения параметров перекрестной чувствительности для исследуемых сенсоров составляют 46.3 < S (мB/pc) < 48; 0.85 < F < 0.90; 144 < K < 170.

Количественный анализ двухкомпонентных модельных смесей антибиотиков (Cef-Ceftx, Cef-Cefur, Ceftx-Cefur) проводили с помощью массива из немодифицированных и модифицированных полианилином и наночастицами CuO сенсоров с разными составами мембран (ЭАК: [Ag(Cefur)₂]ТДА, [Ag(Ceftx)₂]ТДА, [Ag(Cef)₂]ТДА). Для анализа двухкомпонентных смесей приготовили 17 растворов различного состава: концентрации антибиотиков изменялись в интервалах 2.5×10^{-4} — 0.01 М. Отклики сенсоров измеряли три раза в каждой смеси. Аналитические сигналы (ЭДС, мВ) от массива сенсоров обрабатывали методом искусственных нейронных сетей (ИНС), использовали программу Statistica 6.1. Входными данными для обучения и тестирования сети являлись значения ЭДС (мВ), а выходными – значения концентрации (рс). Далее рассчитывали значения концентрации в моль/л и пересчитывали содержание в мг/л. Использовали ИНС с обратным распространением ошибок (активационная функция – сигмоида, скорость обучения 0.1; момент 0.9; число эпох 20000). Применяли трехслойную нейронную сеть, состоящую из четырех нейронов в первом слое, двух – во втором, одного – в третьем. Результаты обучения нейронной сети можно использовать в дальнейших анализах, что сокращает продолжительность определения до 10-15 мин.

Рис. 4 иллюстрирует пример раздельного определения β -лактамных антибиотиков в двухкомпонентных модельных смесях. Показано что, мультисенсорный подход вместе с математической обработкой аналитических сигналов позволяет раздельно определять β -лактамные антибиотики в двухкомпонентных смесях при совместном присутствии [46, 63].

* * *

Таким образом, разработанные немодифицированные и модифицированные твердоконтактные потенциометрические сенсоры на основе соединений тетрадециламмония с комплексными соединениями серебро(I)–β-lac применимы для определения цефалоспориновых антибиотиков в водных средах, ротовой жидкости, лекарственных препаратах. Слабоселективные и перекрестно-чувствительные β-лактамные сенсоры позволяют раздельно определять цефалоспориновые антибиотики с применением мультисенсорных систем и метода ИНС.

К перспективам развития следует отнести разработку планарных сенсоров различных типов, в том числе с псевдоэлектродом сравнения, выявление влияния окислителей и восстановителей, кислотности, модификаторов на электроаналитические и эксплуатационные характеристики screen-printed сенсоров; создание массивов планарных сенсоров для раздельного определения β лактамных антибиотиков в многокомпонентных смесях в водных и биологических средах; разработку планарных сенсоров на другие группы антибиотиков – тетрациклины, макролиды, фторхиналоны и др.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Яковлев В.П.* Рациональная антимикробная фармакотерапия. М.: Литтерра, 2007. 784 с.
- Кулапина О.И., Кулапина Е.Г. Антибактериальная терапия. Современные методы определения антибиотиков в биологических и лекарственных средах. Саратов: Саратовский источник, 2015. 91 с.
- Кулапина Е.Г., Снесарев С.В., Кулапина О.И., Баринова О.В. Некоторые проблемы обеспечения избирательности и чувствительности определения антибиотиков в лекарственных и биологических средах / Проблемы аналитической химии. Т. 16. Фармацевтический анализ. М.: Аргамак-Медиа, 2013. С. 326.
- 4. *Березняков И.Г.* Цефепим сегодня и завтра // Болезни и антибиотики. 2011. Т. 5. № 2. С. 95.
- 5. *Егоров Н.С.* Основы учения об антибиотиках. М.: Наука, 2004. 528 с.
- 6. Богомолова Н.С., Орешкина Т.Д., Большаков Л.В. Перспективы использования цефалоспоринового антибиотика четвертого поколения в хирургии // Антибиотики и химиотерапия. 2003. Т. 48. № 7. С. 20.
- Paul M., Yahav D., Fraser A., Leibovici L. Empirical antibiotic monotherapy for febrile neutropenia : Systematic review and meta-analysis of randomized controlled trials // J. Antimicrob. Chemother. 2006. V. 57. P. 89.
- Yahav D., Paul M., Fraser A., Sarid N, Leibovici L. Efficacy and safety of cefepime: A systematic review and meta-analysis // Lancet Infect. Dis. 2007. V. 7. P. 48.
- Khaled E., Khalil M.M., Abed el Aziz G.M. Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples // Sens. Actuators B: Chem. 2017. V. 244. P. 876.
- 10. Yu J., Tang W., Wang F., Zhang F., Wang Q., He P. Simultaneous detection of streptomycin and kanamycin based on an all-solid-state potentiometric aptasensor

array with a dual-internal calibration system // Sens. Actuators B: Chem. 2020. V. 311 Article 127857.

- 11. *Ismail F, Adeloju S.B.* Comparison of single layer and bilayer biosensors based on crosslinking of penicillinase for potentiometric detection of penicillin in milk and antibiotics // Electroanalysis. 2015.V. 27. № 6. P. 1523.
- Abdel-Haleem F.M., Gamal E., Rizk M.S., El Nashar R.M., Anis B., Elnabawy H.M. Barhoum, A. t-Butyl calixarene/Fe₂O₃@MWCNTs composite-based potentiometric sensor for determination of ivabradine hydrochloride in pharmaceutical formulations // Mater. Sci. Eng. 2020. V. 116. Article 111110.
- Badr I.H.A., Saleh G.A., Sayed S.M., El-Deen A novel membrane sensor for batch and flow injection potentiometric determination of cefazolin sodium in pharmaceutical preparations // Int. J. Electrochem. Sci. 2014. V. 9. P. 1621.
- Saleh G.A., Badr I.H.A., El-Deen D.A.M.N., Derayea S.M. Novel potentiometric sensor for the selective determination of cefotaxime sodium and its application to pharmaceutical analysis // IEEE Sensors J. 2019. V. 20. № 7. P. 3415.
- 15. Кулапина О.И., Макарова Н.М., Кулапина Е.Г. Потенциометрические сенсоры для определения некоторых цефалоспориновых антибиотиков в биологических жидкостях и лекарственных препаратах // Журн. аналит. химии. 2015. Т. 70. № 4. С. 399. (*Kulapina O.I., Makarova N.M., Kulapina E.G.* Potentiometric sensors for the determination of some cephalosporin antibiotics in biological fluids and medicinal preparations // J. Anal. Chem. 2015. V. 70. № 4. P. 477.)
- 16. Кулапина Е.Г., Кулапина О.И., Каренко В.А. Потенциометрические сенсоры для определения цефепима в водных и биологических средах // Изв. Сарат. ун-та Нов. сер. Сер. Химия. Биология. Экология. 2016. Т. 16. № 2. С. 138.
- Li M., Li Y.T., Li D.W., Long Y.T. Recent developments and applications of screen-printed electrodes in environmental assays – A review. // Anal. Chim. Acta. 2012. V. 734. P. 31.
- Alonso-Lomillo M.A., Domínguez-Renedo O., Arcos-Martínez M.J. Screen-printed biosensors in microbiology; A review// Talanta. 2010. V. 82. № 5. P. 1629.
- Shetti N.P., Nayak D.S., Malode S.J., Kulkarni R.M. An electrochemical sensor for clozapine at ruthenium doped TiO₂ nanoparticles modified electrode // Sens. Actuators B: Chem. 2017. V. 247. P. 858.
- 20. Amani-Beni Z., Nezamzadeh-Ejhieh A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor // Anal. Chim. Acta. 2018. V. 1031. № 4. P. 47.
- Lomae A., Nantaphol S., Kondod T., Chailapakul O., Siangproh W., Panchompoo J. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode // J. Electroanal. Chem. 2019. V. 840. P. 439
- 22. Kenarkob M., Pourghobadi Z. Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functional-

ized multi-walled carbon nano-tubes // Microchem. J. 2019. V. 146. P. 1019.

- Chang Y.H., Woi P.M., Alias Y. The selective electrochemical detection of dopamine in the presence of ascorbic acid and uric acid using electro-polymerisedβ-cyclodextrin incorporated f-MWCNTs/polyaniline modified glassy carbon electrode // Microchemical J. 2019. V. 148. P. 322.
- 24. Afzali M., Jahromi Z., Nekooie R. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode // Microchem. J. 2019. V. 145. P. 373.
- 25. Хади М., Хонарманд Э. Применение электрода из анодированного пирографита с торцевой поверхностью для анализа клиндамицина в фармацевтических препаратах и образцах человеческой мочи // Электрохимия. 2017. Т. 53. № 4. С. 431. (*Hadi M., Honarmand E.* Application of anodized edge-plane pyrolytic graphite electrode for analysis of clindamycin in pharmaceutical formulations and human urine samples // Russ. J. Electrochem. 2017. V. 53. № 4. Р. 380.)
- 26. Еременко А.В., Прокопкина Т.А., Касаткин В.Э., Осипова Т.А., Курочкин И.Н. Планарные тиол-чувствительные сенсорные элементы для определения активности бутирилхолинэстеразы и анализа ее ингибиторов // Вест. Моск. ун-та. Серия 2. Химия. 2014. Т. 55. № 3. С. 174.
- 27. *Frag E.Y., Mohamed S.H.* Carbon potentiometric sensors modified with beta-cyclodextrin as a carrier for the determination of bisoprolol fumarate // Int. J. Electrochem. Sci. 2019. V. 14. № 7. P. 6603.
- Ali T.A., Mohamed G.G., Yahya G.A. Development of novel potentiometric sensors for determination of lidocaine hydrochloride in pharmaceutical preparations, serum and urine samples // Iran. J. Pharm. Res. 2017. V. 16. № 2. P. 498.
- 29. Кулапина Е.Г., Тютликова М.С., Кулапина О.И., Дубасова А.Е. Твердоконтактные потенциометрические сенсоры для определения некоторых цефалоспориновых антибиотиков в лекарственных препаратах и ротовой жидкости // Журн. аналит. химии. 2019. Т. 74. № 7. С. 63. (Kulapina E.G., Tyutlikova M.S., Kulapina O.I., Dubasova A.E. Solid-contact potentiometric sensors for the determination of some cephalosporin antibiotics in pharmaceuticals and oral fluid // J. Anal. Chem. 2019. V. 74. № 7. Р. 52.)
- 30. Кулапина Е.Г., Дубасова А.Е., Кулапина О.И. Модифицированные твердоконтактные сенсоры для определения цефуроксима и цефалексина в лекарственных средствах и ротовой жидкости // Заводск. лаборатория. Диагностика материалов. 2019. Т. 85. № 9. С. 4.
- Кулапина Е.Г., Кулапина О.И., Анкина В.Д. Планарные потенциометрические сенсоры на основе углеродных материалов для определения цефотаксима и цефуроксима // Журн. аналит. химии. 2020. Т. 75. № 2. С. 145. (Kulapina E.G., Kulapina O.I., Ankina V.D. Screen-printed potentiometric sensors based on carbon materials for determining cefotaxime and cefuroxime // J. Anal. Chem. 2020. V. 75. № 2. P. 231.)

- 32. Ayad M.F., Trabik Y.A., Abdelrahman M.H., Fares N.V., Magdy N. Potentiometric carbon quantum dots-based screen-printed arrays for nano-tracing gemifloxacin as a model fluoroquinolone implicated in antimicrobial resistance // Chemosensors. 2021. V. 9. № 8. P. 1.
- 33. Легин А.В., Рудницкая А.М., Власов Ю.Г. "Электронный язык" – системы химических сенсоров для анализа водных сред / Проблемы аналитической химии. Т. 14. Химические сенсоры / Под ред. Власова Ю.Г. М.: Наука, 2011. С. 79.
- 34. Кулапина Е.Г., Макарова Н.М. Мультисенсорные системы в анализе жидких и газовых объектов. Саратов: ИЦ "Наука", 2010. 165 с.
- 35. *Wesoly M., Ciosek-Skibinska P.* Comparison of various data analysis techniques applied for the classifi cation of pharmaceutical samples by electronic tongue // Sens. Actuators. B. 2018. V. 267. P. 570.
- Saidi T., Moufi M., Zaim O., Bari N.E., Bouchikhi B. Voltammetric electronic tongue combined with chemo metric techniques for direct identification of creatinine level in human urine // Measurement. 2018. V. 115. P. 178.
- Wesoly M., Cal K., Ciosek P., Wroblewski W. Influence of dissolution-modifying excipients in various pharmaceutical formulations on electronic tongue results // Talanta. 2017. V. 162. P. 203.
- Wesoly M., Zabadaj M., Amelian A., Winnicka K., Wroblewski W., Ciosek P. Tasting cetirizine-based microspheres with an electronic tongue // Sens. Actuators. B. 2017. V. 238. P. 1190.
- Lenik J., Wesoly M., Ciosek P., Wroblewski W. Evaluation of taste masking effect of diclofenac using sweeteners and cyclodextrin by a potentiometric electronic tongue // J. Electroanal. Chem. 2016. V. 780. P. 153.
- Wei Zh., Wang J. Detection of antibiotic residues in bovine milk by a voltammetric electronic tongue system // Anal. Chim. Acta. 2011. V. 694. P. 46.
- Зильберг Р.А., Сидельников А.В., Яркаева Ю.А., Кабирова Л.Р., Майстренко В.Н. Идентификация лекарственных средств на основе бисопролола с использованием вольтамперометрического "электронного языка" // Вестн. Башкир. ун-та. 2017. Т. 22. № 2. С. 356.
- 42. Зильберг Р.А., Яркаева Ю.А., Максютова Э.И., Сидельников А.В., Майстренко В.Н. Вольтамперометрическая идентификация инсулина и его аналогов с использованием модифицированных полиариленфталидами стеклоуглеродных электродов // Журн. аналит. химии. 2017. Т. 72. № 4. С. 348. (Zil'berg R.A., Yarkaeva Y.A., Maksyutova E.I., Sidel'nikov A.V., Maistrenko V.N. Voltammetric identification of insulin and its analogues using glassy carbon electrodes modified with polyarylenephthalides // J. Anal. Chem. 2017. V. 72. № 4. Р. 402.)
- 43. Safronova E., Parshina A.V., Kolganova T., Yelnikova A., Bobreshova O.V., Pourcelly G., Yaroslavtsev A. Potentiometric multisensory system based on perfluorosulfonic acid membranes and carbon nanotubes for sulfacetamide determination in pharmaceuticals // J. Electroanal. Chem. 2020. V. 873. № 15. Article 114435.
- 44. Salama F.M., Attia K.A.M., El-Olemy A., Mohamad A. Potentiometric determination of Enrofloxacin using

PVC and coated graphite sensors // Glob. Drugs Ther. 2018. V. 3. \mathbb{N} 3. P. 1.

- 45. Кулапина Е.Г., Снесарев С.В., Макарова Н.М., Погорелова Е.С. Массивы потенциометрических сенсоров для раздельного определения антибиотиков пенициллинового ряда с использованием метода искусственных нейронных сетей // Журн. аналит. химии. 2011. Т. 66. № 1. С. 82. (Kulapina E.G., Snesarev S.V., Makarova N.M., Pogorelova E.S. Potentiometric sensor arrays for the individual determination of penicillin class antibiotics using artificial neural networks // J. Anal. Chem. 2011. V. 66. № 1. Р. 78.)
- 46. Кулапина Е.Г., Дубасова А.Е., Кулапина О.И., Анкина В.Д. Мультисенсорные системы типа "электронный язык" для раздельного определения цефотаксима и цефазолина // Изв. Сарат. ун-та Нов. сер. Сер. Химия. Биология. Экология. 2021. Т. 21. № 1. С. 4.
- 47. Вавилова Т.П., Янушевич О.О., Островская И.Г. Слюна. Аналитические возможности и перспективы. М.: БИНОМ, 2014. 312 с.
- 48. *Савинов С.С., Анисимов А.А.* Влияние условий отбора образцов слюны на результаты определения макро- и микроэлементов // Журн. аналит. химии. 2020. Т. 75. № 4. С. 327. (*Savinov S.S., Anisimov А.A.* Effect of conditions for sampling of human saliva on the results of determination of macro- and micronutrients// J. Anal. Chem. 2020. V. 75. № 4. Р. 453.)
- 49. Жирков А.А., Ягов В.В., Антоненко А.А., Коротков А.С., Зуев Б.К. Определение минерального состава слюны человека при помощи микроплазменной атомно-эмиссионной спектроскопии // Журн. аналит. химии. 2020. Т. 75. № 1. С. 43. (Zhirkov A.A., Yagov V.V., Korotkov A.S., Zuev B.K., Antonenko A.A. Determination of the mineral composition of human saliva by microplasma atomic emission spectroscopy // J. Anal. Chem. 2020. V. 75. № 1. Р. 63.)
- 50. Алексеев В.Г. Бионеорганическая химия пенициллинов и цефалоспоринов. Тверь: Твер. гос. ун-т, 2009. 104 с.
- Buck R., Lindner E. Recommendations for nomenclature of ion-sensitive electrodes (IUPAC Recommendatoin 1994) // Pure Appl. Chem. 1994. V. 66. № 12. P. 2527.
- Umezawa Y., Buhlmann P., Umazawa K., Tohda K., Amemiya S. Potentiometric selectivity coefficients of ionselective electrodes. Part I. Inorganic cations (IUPAC Technical Report) // Pure Appl. Chem. 2000. V. 72. № 10. P. 1851.
- Белюстин А.А. Потенциометрия: физико-химические основы и применения. СПб: Лань, 2015. 336 с.

- 54. *Реброва О.Ю.* Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica. Медиа Сфера, 2002. 312 с.
- Гайдышев И. Анализ и обработка данных. Специальный справочник. СПб, 2011.
- 56. Кулапина О.И., Михайлова М.С. Изучение фармакокинетики цефуроксима по динамике его распределения в жидкости ротовой полости больных синуситами // Антибиотики и химиотерапия. 2014. Т. 59. № 9–10. С. 29.
- 57. *Машковский М.Д.* Лекарственные средства. М.: Новая волна, 2014. 1216 с.
- 58. Алексеев В.Г., Демская JI.В. Комплексообразование серебра(1) с ампициллином, амоксициллином и цефалексином // Коорд. химия. 2007. Т. 33. № 3. С. 211. (Alekseev V.G., Demskaya L.V. Ag(I) complexes with the ampicillin, amoxicillin, and cephalexin anions // Russ. J. Coord. Chem. 2007. V. 33. № 3. Р. 203.)
- 59. Кулапина Е.Г., Снесарев С.В. Потенциометрические сенсоры на основе органических ионообменников тетраалкиламмония и комплексов серебра с ампициллином, оксациллином и цефазолином // Журн. аналит. химии. 2012. Т. 67. № 2. С. 198. (*Kulapina E.G., Snesarev S.V.* Potentiometric sensors based on organic ion exchangers of tetraalkylammonium and silver complexes with ampicillin, oxacillin, and cefazolin // J. Anal. Chem. 2012. V. 67. № 2. Р. 163.)
- 60. Будников Г.К., Евтюгин Г.А., Майстренко В.Н. Модифицированные электроды для вольтамперометрии в химии, биологии, медицине. М.: Бином, 2009. 331 с.
- 61. *Vlasov Yu., Legin A., Rudnitskaya A.* Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions // Sens. Actuators B: Chem. 1997. V. 44. № 1–3. P. 532.
- 62. Власов Ю.Г., Легин А.В., Рудницкая А.М. Катионная чувствительность стекол системы AgI-Sb₂S₃ и их применение в мультисенсорном анализе жидких сред // Журн. аналит. химии. 1997. Т. 52. № 8. С. 837. (Vlasov Yu.G., Legin A.V., Rudnitskaya A.M. Cation sensitivity of AgI-Sb2S3 glasses and their use in the multisensor analysis of liquid media // J. Anal. Chem. 1997. V. 52. № 8. Р. 758.)
- 63. Кулапина Е.Г., Дубасова А.Е., Кулапина О.И., Анкина В.Д. Массивы твердоконтактных потенциометрических сенсоров для раздельного определения некоторых цефалоспориновых антибиотиков // Заводск. лаборатория. Диагностика материалов. 2021. Т. 87. № 5. С. 5.