АККУМУЛЯТОРНАЯ ВОДНАЯ ЛИТИЙ-ИОННАЯ БАТАРЕЯ, РАССЧИТАННАЯ НА ВЫСОКИЕ ТОКИ РАЗРЯДА, НА ОСНОВЕ МЕТАЛЛИЧЕСКОГО КАДМИЯ И LiC002¹

© 2019 г. Ю Лю^{*a*, *b*}, Санин Гао^{*a*}, Рудольф Хольце^{*a*, *c*, *d*, *}

^аХемницкий технологический университет, Институт химии, Отделение электрохимии D-09107 Хемниц, Германия

^bНовый адрес: Отделение химической технологии, Университет Ватерлоо 200 Университет авеню Вест, Ватерлоо, Онтарио N2L3G1, Канада

^с Государственная главная лаборатория материаловедческого химического машиностроения, Колледж энергетических наук и технологий и Институт перспективных материалов,

Нанкинский технический университет, Нанкин, провинция Цзянсу, 211816 Китай

^dСанкт-Петербургский государственный университет, Институт химии Санкт-Петербург, 199034 Россия

> *e-mail: rudolf.holze@chemie.tu-chemnitz.de Поступила в редакцию 14.01.2019 г. После доработки 28.03.2019 г. Принята к публикации 20.05.2019 г.

Сообщается о водной перезаряжаемой литий-ионной батарее с металлическим кадмием в качестве отрицательного электрода, наночастицами Li–CoO₂ в качестве положительного электрода и воднонейтральным раствором электролита с 0.5 M Li₂SO₄ и 10 мM Cd(Ac)₂. Она обладает хорошими электрохимическими характеристиками. Расчетная удельная энергия на основе практически доступной мощности двух электродов составляет 72 Вт ч кг⁻¹; это сопоставимо с никель-кадмиевыми батареями. Положительный ртутный электрод нормального элемента Вестона заменен электродом LiCoO₂, отрицательный электрод на основе амальгамы кадмия заменен простым электродом из металлического кадмия. Ртуть полностью исключена. По сравнению с никель-кадмиевыми батареями раствор щелочного электролита не требуется, что делает систему более экологически чистой.

Ключевые слова: водная литий-ионная батарея, кадмий, LiCoO₂ **DOI:** 10.1134/S0424857019110112

1. ВВЕДЕНИЕ

В настоящее время аккумуляторные технологии обеспечивают выбор систем для хранения прерывистой возобновляемой энергии, поддерживая или даже позволяя использовать энергию ветра и солнца. Среди перезаряжаемых батарей литиевые батареи обладают высокой удельной энергией, но следует учитывать недостатки как для стационарных, так и для мобильных и портативных приложений, включая высокую стоимость и риски, связанные с безопасностью [1, 2]. Кроме того, ионы лития имеют низкую проводимость в растворах органических электролитов. что приводит к недостаточной плотности мощности литий-ионных аккумуляторов [3]. Следовательно, в последние годы широко исследовались водные перезаряжаемые батареи, которые по своей сути безопасны, поскольку позволяют избежать воспламеняющихся растворов органических электролитов. Кроме того, водные растворы электролитов недороги и просты в обращении при сборке. Также ионная проводимость водных растворов электролитов примерно на два порядка выше, чем у органических [4], что обеспечивает работу при высоких токах водных аккумуляторных батарей [5, 6], что также рекомендует их применение для накопления и преобразования энергии.

Нормальный элемент Вестона представляет собой классическую электрохимическую систему, изобретенную Эдвардом Вестоном в 1893 г. [7]. В типичной конфигурации (см. рис. S1) элемент Вестона [8] представляет собой стеклянный сосуд Н-образной формы с амальгамой кадмия в качестве отрицательного электрода и простой ртути в качестве положительного. Электрические соединения с ртутью и амальгамой кадмия выполнены с помощью платиновых проводов, впаянных в дно стеклянного сосуда. Используется насыщенный раствор электролита сульфата кадмия. Свя-

¹ Статья посвящена 80-летнему юбилею профессора В.В. Малева, внесшего большой вклад в развитие ряда современных направлений в электрохимии.

занные электродные и суммарная реакции представляют собой:

Отрицательный электрод:

$$Cd^{2+} + 2e \rightleftharpoons Cd \ (E_{SHE} = -0.403 \text{ B}).$$
(1)

Положительный электрод: $HgSO_4+$ (2)

$$+ 2e^- \rightleftharpoons Hg + SO_4^{2-} (E_{SHE} = +0.613 \text{ B}).$$

Суммарная реакция: $2Hg + Cd^{2+} + SO_4^{2-} \rightleftharpoons$ (3) $\rightleftharpoons Hg_2SO_4 + Cd \quad (U = +1.016 \text{ B}).$

Насколько нам известно, нормальный элемент Вестона используется только для калибровки вольтметров в лаборатории из-за его низкого температурного коэффициента, который приводит к очень стабильному напряжению. Тем не менее, он никогда не использовался в коммерческих приложениях, таких как свинцово-кислотные аккумуляторные батареи [9], вероятно, из-за низкого рабочего напряжения и высокотоксичных запасов тяжелых металлов (ртуть и кадмий). В послелние лесятилетия большинство исслелований. связанных с кадмием, было сосредоточено на Ni-Cd-перезаряжаемых батареях [10, 11] и окислительно-восстановительных батареях (RFB) [12, 13], хотя использование кадмия считалось крайне нежелательным. В ЕС (Директива об ограничении содержания опасных веществ (RoHS), Директива о батареях) продажа никель-кадмиевых батарей и устройств, содержащих такие батареи, подвергалась строгим ограничениям, начиная с 2006 г. Тем не менее, более 1.5 миллиарда никель-кадмиевых батарей все еще выпускается ежегодно (2000 г.) [14], см. также [10, 11]. Очевидно, что никель-кадмиевые батареи по-прежнему занимают огромную долю рынка, что можно объяснить их преимуществами, включая низкую стоимость, высокий ток разряда и простоту конструкции. Кроме того, использованное сырье может быть переработано практически полностью, технические показатели извлечения никеля (96%) и кадмия (99%) очень высоки [15]. Использование кадмия в тщательно контролируемых условиях (т.е., не отмеченных популярным потребителем), безусловно, является жизнеспособным решением, также рекомендуемым высокой стабильностью кадмиевого электрода и его способностью разряжаться высокими токами [16]. Однако растворы щелочных или кислотных электролитов, которые используются в качестве электролитов для никель-кадмиевых батарей или однопоточных аккумуляторов Cd–PbO₂, соответственно, вызывают серьезную коррозию оборудования. Кроме того, удельная энергия Ni-Cd аккумуляторов существенно ниже по сравнению с литий-ионными аккумуляторами [10]. Этот недостаток предполагает исследования возможных улучшений.

Чтобы уменьшить количество ртути и щелочи (или кислоты), а также увеличить удельную ем-

кость, здесь мы сообщаем о водной литий-ионной батарее на основе металлического Cd в качестве отрицательного электрода и LiCoO₂ в качестве положительного электрода в нейтральном водном электролите 0.5 M Li₂SO₄ и 10 мM Cd(Ac)₂. Cd(Ac)₂ использовали вместо CdSO₄, чтобы поддерживать значение pH раствора электролита как можно ближе к нейтральному. Он обладает хорошими характеристиками с кулоновской эффективностью около 100% и способен выдерживать большие токи.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нитрат лития (LiNO₃), нитрат кобальта (Co(NO₃)₂ · 6H₂O), крахмал ((C₆H₁₀O₅)_n), уксусная кислота (99% CH₃COOH), ацетат кадмия (Cd(Ac)₂ · 2H₂O) и сульфат лития (Li₂SO₄) были использованы без дополнительной очистки. Водные растворы готовили с деионизованной сверхчистой водой (Seralpur Pro 90 C).

2.1. Подготовка материалов

Наночастицы LiCoO₂ были получены зольгель методом с использованием крахмала [17]. Сначала, 0.4 г крахмала помещали в круглодонную колбу и в колбу добавляли 25 мл деионизованной сверхчистой воды. Затем смесь нагревали при 110°С при перемешивании до тех пор, пока раствор не стал прозрачным (раствор А). После этого, 5 ммоль нитрата лития и 5 ммоль нитрата кобальта растворяли в 5 мл сверхчистой воды, чтобы получить гомогенный раствор (раствор В). Затем раствор В по каплям добавляли в раствор А при перемешивании, эту смесь выдерживали при 110°С в течение 2 ч. Смесь высушивали при 110°С для получения пенообразного прекурсора. Наконец, осуществляли прокаливание прекурсора при 700°С в течение 36 ч со скоростью нагревания 2° С мин⁻¹, чтобы получить наночастицы LiCoO₂.

2.2. Характеристика готовых материалов

Кристаллическая структура полученных наночастиц LiCoO₂ была охарактеризована методом порошковой дифракции рентгеновских лучей (XRD) с использованием дифрактометра Rigaku Rotalflex RU-200B с Cu K_{α} -излучением, отфильтрованным тонкой никелевой пластиной при 40 кВ и 40 мА при скорости сканирования 0.02 с⁻¹. Сканирующие электронные микрофотографии (SEM) были получены на сканирующем электронном микроскопе JEOL JSM-7500F.

Электрохимические исследования проводили в двухэлектродной ячейке с обоими электродами, погруженными в раствор электролита на расстоянии нескольких миллиметров или в трехэлектродной ячейке с использованием провода из металли-

Рис. 1. Микрофотография СЭМ (а) и рентгенограммы наночастиц LiCoO₂ (б).

ческого калмия в качестве электрола сравнения. платиновой пластинки в качестве противоэлектрода и нейтрального водного раствора электролита 0.5 M Li₂SO₄ и 10 мМ Cd(Ac)₂. Положительный электрод готовили прессованием порошкообразной смеси полученных наночастиц LiCoO₂, ацетиленовой сажи и поли (тетрафторэтилена) (ПТФЭ) в массовом соотношении 8:1:1. Полученную пленку перфорировали в небольшой диск массой около 2 мг. плошалью 0.25 см² и толшиной 0.3 мм. Наконец. эти диски были напрессованы на сетки из нержавеющей стали под давлением 10 МПа, а затем высушены при 120°С в течение 12 ч. В качестве отрицательного электрода использовали пластину кадмия (ширина 1.5 см, длина 2.5 см, толщина 0.1 см). Чтобы удалить оксидную пленку с поверхности, перед испытанием ее травили в 50%-ной уксусной кислоте с использованием ультразвуковой ванны в течение 2 мин. Уксусную кислоту использовали в качестве химического полирующего агента, чтобы избежать введения других ионов, таких как ионы нитрата и фосфата. Серную кислоту нельзя использовать в качестве травителя, так как кадмиевая пластина быстро корродирует в сильной кислоте [18].

Для измерения электрохимического импеданса (EIM) использовался потенциостат Solartron SI 1287, подключенный к анализатору частотной характеристики SI 1255, подключенному к ПК. Измерения проводились при самопроизвольно установленном напряжении разомкнутой цепи (OCV) с амплитудой модуляции 5 мВ в диапазоне частот от 0.1 до 105 Гц. Оценка данных импеданса проводилась с использованием программного обеспечения Boukamp версии 2.4. Гальваностатический заряд и разряд между 0.4 и 1.8 В (в сравнении с Cd²⁺/Cd) выполнялись в двухэлектродной электрохимической ячейке на многоканальном тестере батарей ATLAS 0961 и потенциостате-гальваностате. Циклическая вольтамперометрия (ЦВ) была выполнена на электрохимическом интерфейсе IVIUMSTAT в двухэлектродной, а также трехэлектродной электрохимической ячейке. Все электрохимические измерения проводились при температуре окружающей среды.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

СЭМ-микрофотография и рентгенограмма полученного LiCoO₂ при 700°С представлены на рис. 1. Наночастицы LiCoO₂ на рис. 1а имеют размер около 50-100 нм, они агломерированы, образуя объемную структуру с частицами субмикронного размера. На рис. 16 все пики дифракции могут быть проиндексированы на LiCoO₂ в соответствии с литературными значениями (JCPDS 50-0653) [19]. Пики при 19.0°, 37.4° и 45.0° можно отнести к плоскостям (003), (101) и (104) LiCoO₂, соответственно, которые показывают, что он имеет ромбоэдрическую решетку (пространственная группа R3m) и гексагональную слоистую кристаллическую структуру α-NaFeO₂. Эта слоистая структура обеспечивает легкую интеркаляцию/деинтеркаляцию ионов лития во внутреннее пространство, что, в свою очередь, определяет скорость заряда и разряда и, наконец, эффективность батарей [20].

На рис. 2а–2г показаны кривые ЦВ двухэлектродной системы (два кадмиевых электрода) и обычной трехэлектродной системы при различных скоростях сканирования 2, 5, 10 и 20 мВ с⁻¹ соответственно. В случае трехэлектродной ячейки кривые ЦВ показывают только один пик восстановления, который можно отнести к осажде-

Рис. 2. ЦВ трехэлектродной системы и двухэлектродной системы при различных скоростях сканирования: 2 (а), 5 (б), 10 (в) и 20 мВ/с (г); упрощенная модель электрической эквивалентной схемы и (д) гистограмма отношения тока I_3/I_2 в зависимости от различных скоростей сканирования (е).

нию ионов кадмия. При анодном сканировании происходит растворение металла. В двухэлектродной ячейке Cd//Cd может наблюдаться одна пара симметричных пиков тока. Они связаны с растворением/осаждением металла соответственно. Пиковые потенциалы соответствующих ЦВ согласуются (за исключением незначительного различия из-за небольшой разницы в площади поверхности кадмиевых электродов в двухэлектродной установке), поскольку электрод сравнения в трехэлектродной ячейке находится в состоянии покоя (E_0) и напряжение ячейки в двухэлектродной установке можно разделить, поскольку используются симметричные кадмиевые электроды. Различные отклики катодного тока могут быть объяснены применением закона Ома в соответствии

ЭЛЕКТРОХИМИЯ том 55 № 11 2019

(5)

Рис. 3. Кривые ЦВ двухэлектродной системы Cd//Cd и полной батареи Cd/LiCoO₂ в водном электролите 0.5 M Li₂SO₄ и 10 мM Cd(Ac)₂ при скорости сканирования 5 мB c⁻¹.

с упрощенной электрической схемой, показанной на рис. 2д. Соответствующие уравнения можно выразить следующим образом²:

Трехэлектродная система:

$$I_3(R_{\rm sol} + R_{\rm Cd}) = U_3^2.$$
⁽⁴⁾

Двухэлектродная система:

$$I_2(R_{\rm Cd} + R_{\rm sol} + R_{\rm Cd}) = U_2,$$
 (3)

где R_{sol} — сопротивление раствора, R_{Cd} — сопротивление поляризации (наклон кривой ток-потенциал) электрода Cd, U_3 и U_2 — напряжение, а I_3 и I_2 — токи в трехэлектродной и двухэлектродной системе соответственно. Следовательно, соотношение токов I_3/I_2 может быть получено согласно уравнениям (4) и (5):

$$I_{3}/I_{2} = U_{3} (2R_{\rm Cd} + R_{\rm sol}) / (U_{2} (R_{\rm Cd} + R_{\rm sol})).$$
(6)

Если $U_3 = U_2$, с учетом $R_{sol} \neq 0$, уравнение (6) можно упростить:

$$I_3/I_2 = (2R_{\rm Cd} + R_{\rm sol})/(R_{\rm Cd} + R_{\rm sol}) = {\rm const.}$$
 (7)

Следовательно, уравнение Рэндлса–Шевчика (см. ниже) также применимо в двухэлектродной ячейке с учетом соотношения тока (см. уравнение (7)). Для дальнейшего понимания, когда $U_1 = U_2$ и R_{sol} не учитывается (учитывая только поляризационные сопротивления электрода), уравнение (6) может быть далее преобразовано:

$$I_3/I_2 = 2R_{\rm Cd}/R_{\rm Cd} = 2.$$
 (8)

Расчеты и экспериментальные данные хорошо согласуются, как показано на рис. 2д. СV металлического Cd-электрода при различных скоростях сканирования от 1 до 100 мB с⁻¹ в 0.5 М водном растворе Li_2SO_4 и 10 мМ Cd(Ac)₂ в диапазоне

 $-0.5 \le E$ (в сравнении с Cd²⁺/Cd) ≤ 0.5 В показаны на рис. S2a. Кривые ЦВ отражают хорошую обратимость окислительно-восстановительной реакции Cd²⁺/Cd благодаря наличию высокосимметричных окислительно-восстановительных пиков даже при высокой скорости сканирования 100 мВ c⁻¹. Это подразумевает, что металлический кадмиевый электрод обладает высокой емкостью. Пиковый потенциал восстановления несколько уменьшается, а пиковый ток восстановления увеличивается с ростом скорости сканирования от 1 до 100 мВ c⁻¹, что указывает на быструю кинетику Cd²⁺/Cd. Это также может быть доказано путем анализа данных ЦВ с использованием уравнения Рэндлса–Шевчика [21]:

$$I_{\rm p} = 0.4463 \left(F^3 / RT \right)^{1/2} n^{3/2} A D^{1/2} c v^{1/2} =$$

= 2.69 × 10⁵ n^{3/2} A D^{1/2} c v^{1/2}, (9)

где наклон b составляет 2.69 × $10^5 n^{3/2} A D^{1/2} c$, n – число электронов, перенесенных в окислительновосстановительном процессе (здесь n равно 2), A площадь электрода (используется геометрическая площадь поверхности электрода, здесь 3.75 см^2), *F* – постоянная Фарадея (в Кл моль⁻¹), c – концентрация ионов Cd²⁺ (здесь 0.01 M), а D – их коэффициент диффузии (в см 2 с $^{-1}$). Согласно уравнению (9), график зависимости пикового тока снижения (I_p) от квадратного корня частоты сканирования ($v^{1/2}$) должен быть прямой линией, как представлено на рис. S2b. Это функция y == a + bx, и наклон b получается непосредственно линейной аппроксимацией. Коэффициент диффузии ионов кадмия был рассчитан как 1.85-5 × $\times 10^{-5}$ см² с⁻¹. Этот результат соответствует контролируемому диффузией пику тока в ЦВ, вы-званному восстановлением Cd²⁺/Cd. Полученный коэффициент диффузии сравним с коэффициентом диффузии кислорода в водных и органических растворах электролитов для литийвоздушных батарей, который составляет примерно 7×10^{-6} и 1.67×10^{-5} см² с⁻¹ соответственно [22, 23].

Циклические вольтамперограммы двухэлектродных аккумуляторов установки Cd//Cd и полных батарей Cd//LiCoO₂ с 0.5 М водного электролита Li₂SO₄ и 10 мМ Cd(Ac)₂ при скорости сканирования 5 м $B c^{-1}$ показаны на рис. 3. B случаеCd//Cd существует одна пара высокосимметричных окислительно-восстановительных пиков, расположенных при -0.13/0.12 В (по сравнению с Cd²⁺/Cd), как обсуждалось выше, что связано с уменьшением $Cd^{2+} \rightarrow Cd$. Симметрия говорит о том, что металлический кадмиевый электрод обладает хорошей обратимостью в этом нейтральном водном растворе электролита. Один набор окислительно-восстановительных пиков, связанных с полной батареей Cd//LiCoO2, расположен при напряжении 1.15/1.61 В (по сравнению с Cd²⁺/Cd),

² Напряжение между рабочим и электродом сравнения.

Период	R _{sol} , Ом	$R_{\rm ct}$, Ом	$C_{\rm DL}, \Phi$	$Y_{\rm o} (=1/Q, n=1)/S$	$Y_{\rm o} (= 1/Z_{\rm diff})/S$
До циклирования	8.15	11.27	1.34×10^{-5}	1.33×10^{-3}	5.60×10^{-3}
После циклирования	8.55	62.23	4.88×10^{-5}	4.99×10^{-3}	1.58×10^{-3}

Таблица 1. Результаты оценки импеданса

что соответствует интеркаляции/деинтеркаляции ионов Li⁺ в/из LiCoO₂ в водном растворе электролита. Ионный радиус иона Cd²⁺ составляет 97 пм (радиус Полинга), что больше, чем у Li⁺ (60 пм, радиус Полинга). Кроме того, ион имеет двойной заряд, по этим причинам он не может легко войти в узлы литий-ионной решетки в LiCoO₂. Результирующие напряжения ниже, чем у батареи Cd/PbO₂ [12] и кадмиево-железного RFB [13] из-за различных положительных электродов.

Комбинация из кадмиевого и LiCoO₂-электрода представляет собой аккумуляторную батарею со следующими электродом и реакционными ячейками, как показано на схеме 1.

Схема 1. Схематическое изображение окислительно-восстановительных реакций для водной аккумуляторной батареи Cd//LiCoO₂ во время процессов заряда/разряда.

Отрицательный электрод: $Cd^{2+} + 2e \rightleftharpoons Cd, (10)$

Положительный электрод:

$$\text{LiCoO}_2 \rightleftharpoons \text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + xe.$$
(11)

Суммарная реакция: (12)

$$x/2Cd^{2+} + LiCoO_2 \rightleftharpoons x/2Cd + Li_{1-x}CoO_2 + xLi^+.$$

Во время заряда Cd^{2+} осаждается из нейтрального водного раствора электролита на электрод Cd путем получения двух электронов. В то же время $LiCoO_2$ превращается в $Li_{1-x}LiCoO_2$ путем высвобождения ионов Li^+ в раствор электролита. Следовательно, удаленные ионы Cd^{2+} и высвобожденные ионы Li^+ сохраняют заряд всегда сба-

ЭЛЕКТРОХИМИЯ том 55 № 11 2019

лансированным. В процессе разряда электрод Cd теряет электроны и высвобождает катионы Cd²⁺ в нейтральный электролит, тогда как Li_{1-x}LiCoO₂ получает ионы Li⁺ из электролита, превращаясь в LiCoO₂. Это означает, что этой батарее не требуется раствор щелочного электролита и ртутный тяжелый металл по сравнению с никель-кадмиевой батареей и элементом Вестона соответственно. Основной причиной этого является то, что положительный электрод заменен на LiCoO₂. В зависимости от определения водных перезаряжаемых литий-ионных батарей (ARLIB) его можно классифицировать как тип ARLIB первого поколения [9, 24]. Относительно низкая концентрация ионов Cd²⁺ не вызывает чрезмерного перенапряжения электрода во время заряда; он поддерживает низкий уровень запасов мобильных ионов Cd²⁺. О высокой обратимости кадмиевого электрода сообщалось в других работах [16].

График импеданса батареи Cd//LiCoO2, измеренной до и после нескольких циклов ЦВ при напряжении холостого хода, показан на рис. 4. Данные импеданса были дополнительно проанализированы методом нелинейного наименьшего квадрата (NLLSF) [25-29] в соответствии с эквивалентной схемой, приведенной на рис. 4в. Смоделированные и экспериментальные данные импеданса показаны на рис. 4а и 4б. Формы до и после циклирования схожи с дугой в высокочастотном диапазоне и линией в низкочастотном диапазоне. Результаты расчета элементов в эквивалентной схеме приведены в табл. 1. Перехват на самой высокой частоте на оси действительной части (Z') представляет омическое сопротивление ячейки (ESR, электрическое последовательное сопротивление), в основном состоящее из сопротивления раствора (R_{sol}). Очевидно, что R_{sol} почти одинаково до и после нескольких шиклов. Однако наблюдается различие в полукруге в высокочастотной области, соответствующее емкости двойного слоя ($C_{\rm dl}$), образованной на электрохимических границах, и сопротивлению переноса заряда (R_{ct}), вызванному реакциями Фарадея положительного и отрицательного электродов. После циклирования $R_{\rm ct} = 62.23$ Ом больше, чем до ($R_{\rm ct} =$ = 11.27 Ом), что может быть вызвано низкой проводимостью побочного продукта Cd(OH)₂, образующегося при перезаряде с выделением водорода, или Cd-дендритами, осажденными во время заряда (см. рис. S3). На низких частотах линейная

Рис. 4. Диаграммы Найквиста экспериментальных данных и смоделированных данных для батареи Cd//LiCoO₂ до (а) и после (б) 50 циклов, эквивалентная схема, используемая для аппроксимации спектров импеданса (в).

часть приписывается диффузии/переносу ионов в растворе электролита, так называемой диффузии Варбурга [26]. Элемент с постоянной фазой (Q_{CPE}), предполагаемый вместо идеального конденсатора для представления двухслойной емкости, был выбран для учета неидеального поведения границы раздела металл/раствор. Это отклонение объясняется неоднородностями поверхности/границы раздела [30], в частности энергетическими [31], включая неравномерное распределение заряда на границах зерен, распределение удельного сопротивления в пленках на поверхностях электродов [32, 33], и приводит к искаженным полукругам в комплексной плоскости диаграммы Найквиста. Это выражается следующим образом [34]:

$$Q_{(CPE)} = \left(Y_{o}\left(j\omega\right)^{n}\right)^{-1},$$
(13)

где Y_0 определяется сочетанием поверхностных и объемных свойств [30–34]. Показатель *n* равен 0, 1 и –1, когда *Q* представляет собой чистый резистор, конденсатор и индуктор соответственно.

Когда n = 0.5, Q также описывает диффузию Варбурга.

Электрохимические характеристики батареи Cd//LiCoO₂ при различных плотностях тока от 0.4 до 1.8 В представлены на рис. 5. Обратимая емкость батареи составляет 122.3 мА ч г⁻¹ при 0.2 А г⁻¹ на основе положительного электрода LiCoO₂, что аналогично ранее сообщенным значениям для водных растворов электролитов [35, 36]. В этом случае среднее напряжение разряда/заряда составляет 1.2 и 1.6 В, соответственно, что соответствует результатам ЦВ. При увеличении плотности тока заряда/разряда от 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 до 3.0 A r^{-1} разрядная емкость умень-шается с 118.5, 111.5, 103.6, 100.1, 92.9, 823 до 69.4 мА ч г⁻¹ соответственно. Это означает, что аккумулятор Cd//LiCoO2 можно быстро заряжать и разряжать, а также он может удовлетворить требования к быстрому заряду, предъявляемые к источнику питания и потребностям портативных и мобильных устройств. Кроме того,

Рис. 5. Кривые заряда — разряда батареи Cd//LiCoO₂ при различных плотностях тока на основе положительного электрода LiCoO₂ (а) и циклическое поведение батареи при 700 мА r^{-1} на основе LiCoO₂ (б).

эта высокоскоростная способность сравнима с возможностями батарей Zn//LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ и Zn//Na_{0.95}MnO₂ [5, 37]. Основной причиной этого является быстрая окислительно-восстановительная кинетика Cd²⁺/Cd (см. Также кинетические данные, представленные ранее [25]), что согласуется с результатами ЦВ (см. рис. S2a). Что касается отрицательного Cd-электрода, теоретическая емкость составляет 477 мА ч г⁻¹. Используя примерно четверть этого в нынешней системе батарей, практическая емкость металлического Cd составит около 119 мА ч г⁻¹. Учитывая, что емкость $LiCoO_2$ (122 мА ч Γ^{-1}) и среднее напряжение разряда (1.2 В), дальнейшая расчетная удельная энергия составит 72 Вт ч кг⁻¹ на основе двух электродов. Это значение конкурирует с никель-кадмиевыми батареями.

Циклическая характеристика полностью заряженной батареи Cd//LiCoO2 на основе емкости LiCoO₂ 107 мА ч r^{-1} при плотности тока 700 мА r^{-1} (рис. 5б) показывает кулоновскую эффективность около 100% за исключением начальных циклов, такое поведение также наблюдается с литий-ионными батареями. Ячейка показывает отличную обратимость заряда/разряда. После 100 полных циклов сохранение емкости составляет 75.8% по сравнению с первыми циклами. Возможные причины этого: в случае положительного электрода LiCoO₂ на устойчивость к циклированию и высокую скорость влияет размер наночастиц. В частности, нанокристаллический LiCoO₂ обладает превосходной скоростью по сравнению с объемным LiCoO₂. С другой стороны, небольшой размер нанокристаллов LiCoO₂ приводит к более низкой стабильности циклирования по сравнению с объемным LiCoO₂ [38]. Тем не менее, наблюдаемая стабильность, очевидно, обусловлена устойчивой комбинацией объемного и нанокристаллического материала в LiCoO₂ положительном электроде (см. рис. 1а). Что касается отрицательного Cd-электрода, образование кадмиевых дендритов было продемонстрировано на рис. S3. Другая причина — расщепление воды, которое уже начинается вокруг потенциала осаждения кадмия согласно диаграмме Пурбе [36, 39]. Во время расщепления воды образуется Cd(OH)₂, истощающий запас ионов кадмия, что приводит к низким числам циклов.

4. ВЫВОДЫ

В заключение, водная перезаряжаемая литийионная батарея была собрана с использованием металлического Cd в качестве отрицательного электрода, наночастиц LiCoO₂ в качестве положительного электрода и водного раствора нейтрального электролита с 0.5 M Li₂SO₄ и 10 мM Cd(Ac)₂. Среднее напряжение разряда составляет 1.2 B, а удельная емкость разряда составляет 107 мA ч г⁻¹ на основе LiCoO₂ при плотности тока 700 мA г⁻¹.

После 100 циклов сохранение емкости составляет 75.8% по сравнению с первыми циклами между 0.4 и 1.8 В. Расчетная удельная энергия составляет 72 Вт ч кг⁻¹, исходя из практической мощности двух электродов. Результаты показывают, что положительный ртутный электрод нормального элемента Вестона может быть заменен электродом LiCoO₂. Щелочной электролит не нужен по сравнению с никель-кадмиевыми батареями. Следовательно, эта система батарей может быть хорошим кандидатом в качестве источника питания для портативных устройств и для крупномасштабного накопления энергии.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Подготовку настоящего сообщения поддержали различными способами Китайский стипендиальный совет, Фонд Александра фон Гумбольдта, Немецкая служба академических обменов, Фонды химической промышленности и Немецкий исследовательский фонд. Благодарности заслуживают Л. Мертенс и М. Меринг за результаты рентгеновских исследований и С. Шульце за результаты СЭМ.

ФИНАНСИРОВАНИЕ РАБОТЫ

Дополнительную поддержку оказал исследовательский грант № 26455158 Санкт-Петербургского государственного университета.

СПИСОК ЛИТЕРАТУРЫ

- Wang, X.W., Wang, F.X., Wang, L., Li, M., Wang, Y., Chen, B., Zhu, Y., Fu, L., Zha, L., Zhang, L., Wu, Y.P., and Huang, W., *Adv. Mater.*, 2016, vol. 28, p. 4904.
- Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., and Bruce, P.G., *Angew. Chem. Int. Ed.*, 2012, vol. 51, p. 9994.
- 3. Wang, X.W., Li, M.X., Wang, Y.F., Chen, B.W., Zhu, Y.S., and Wu, Y.P., *J. Mater. Chem.*, 2015, vol. A 3, p. 8280.
- Holze, R., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, Volume 9: Electrochemistry, Subvolume B: Ionic Conductivities of Liquid Systems, Part 2: Deep Eutectic Solvents and Electrolyte Solutions, W. Martienssen, M.D. Lechner, Eds., Springer-Verlag, Berlin, 2016.
- Wang, F.X., Liu, Y., Wang, X.W., Chang, Z., Wu, Y.P., and Holze, R., *ChemElectroChem.*, 2015, vol. 2, p. 1024.
- Wang, F.X., Yu, F., Wang, X., Chang, Z., Fu, L.J., Zhu, Y.S., Wen, Z.B., Wu, Y.P., and Huang, W., ACS Appl. Mater. Interfaces., 2016, vol. 8, p. 9022.
- 7. E. Weston, Voltaic cell, US Patent 494827, April 4th, 1893.
- 8. Bard, A.J., Inzelt, G., and Scholz, F., *Electrochemical Dictionary*, 2nd ed., Heidelberg: Springer-Verlag, 2012.
- 9. Liu, Y., Wen, Z.B., Wu, X.W., Wang, X.W., Wu, Y.P., and Holze, R., *Chem. Commun.*, 2014, vol. 50, p. 13714.
- Gao, P., Wang, Y., Zhang, Q., Chen, Y., Bao, D., Wang, L.Q., Sun, Y.Z., Li, G.B., and Zhang, M.L., *J. Mater. Chem.*, 2012 vol. 22, p. 13922.
- 11. Zhang, J.X., Yu, J.X., and Cha, C., *Int. J. Electrochem. Sci.*, 2012, vol. 7, p. 10233.
- 12. Pan, J.Q., Yang, M., Jia, X., and Sun, Y.Z., *J. Electrochem. Soc.*, 2013, vol. 160, p. A1146.
- 13. Zeng, Y.K., Zhao, T.S., Zhou, X.L., Wei, L., and Jiang, H.R., *J. Power Sources*, 2016, vol. 330, p. 55.

- 14. Solucorp Industries Ltd., as published in: Business Wire 2006-10-19
- 15. Randhawa, N.S., Gharami, K., and Kumar, M., Hydrometallurgy, 2016, vol. 16, p. 191.
- Liu, Y., Gao, S., Holze, R., and Shukla, A.K., J. Electrochem. Soc., 2017, vol. 164, p. A3858.
- Tang, W., Tian, S., Liu, L.L., Li, L., Zhang, H.P., Yue, Y.B., Bai, Y., Wu, Y.P., and Zhu, K., *Electrochem. Commun.*, 2011, vol. 13, p. 205.
- Tegart, W.J.M.G., *The Electrolytic and Chemical Polishing of Metals in Research and Industry*, London: Pergamon Press, 1959.
- 19. Xiao, X.L., Yang, L.M., Zhao, H., Hu, Z.B., and Li, Y.D., *Nano Res.*, 2012, vol. 5, p. 27.
- Wang, G.J., Qu, Q.T., Wang, B., Shi, Y., Tian, S., Wu, Y.P., and Holze, R., *Electrochim. Acta*, 2009, vol. 54, p. 1199.
- Chang, Z., Wang, X.J., Yang, Y.Q., Gao, J., Li, M.X., Liu, L.L., and Wu, Y.P., *J. Mater. Chem.*, 2014, vol. A 2, p. 19444.
- Andrei, P., Zheng, J.P., Hendrickson, M., and Plichtac, E.J., *J. Electrochem. Soc.*, 2012, vol. 159, p. A770.
- Trahan, M.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abrahama, K.M., *J. Electrochem. Soc.*, 2013, vol. 160, p. A259.
- 24. Chang, Z., Yang, Y.Q., Li, M.X., Wang, X.W., and Wu, Y.P., *J. Mater. Chem.*, 2014, vol. A 2, p. 10739.
- Liu, Y., Wiek, A., Dzhagan, V., and Holze, R., J. Electrochem. Soc., 2016, vol. 163, p. A1247.
- Yan, J., Fan, Z.J., Wei, T., Qian, W.Z., Zhang, M.L., and Wei, F., *Carbon*, 2010, vol. 48, p. 3825.
- 27. Lasia A., *Electrochemical Impedance Spectroscopy and its Applications*, New York: Springer, 2014.
- 28. Holze, R., Bull. Electrochem., 1994, vol. 10, p. 56.
- 29. Barsoukov, E. and Macdonald, J.R., *Impedance Spectroscopy*, Hoboken: WILEY INTERSCIENCE, 2005.
- Shi, J. and Sun, W., Corr. Sci. Prot. Technol., 2011, vol. 23, p. 387.
- Córdoba-Torres, P., Mesquita, T.J., and Nogueira, R.P., J. Phys. Chem., 2015, vol. C 119, p. 4135.
- Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., and Musiani, M., J. Electrochem. Soc., 2010, vol. 157, p. C452.
- Musiani, M., Orazem, M.E., Pébère, N., Tribollet, B., and Vivier, V., *J. Electrochem. Soc.*, 2011, vol. 158, p. C424.
- 34. Burashnikova, M.M., Kazarinov, I.A., and Zotova, I.V., J. Power Sources, 2012, vol. 207, p. 19.
- 35. Wang, X.J., Qu, Q.T., Hou, Y.Y., Wang, F.X., and Wu, Y.P., *Chem. Commun.*, 2013, vol. 49, p. 6179.
- 36. Ruffo, R., Wessells, C., Huggins, R.A., and Cui, Y., *Electrochem. Commun.*, 2009, vol. 11, p. 247.
- Zhang, B.H., Liu, Y., Wu, X.W., Yang, Y.Q., Chang, Z., Wen, Z.B., Wu, Y.P., *Chem. Commun.*, 2014, vol. 50, p. 1209.
- Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H.S., and Honma, I., *Am. J. Chem. Soc.*, 2007, vol. 129, p. 7444.
- Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions, Houston: National Association of Corrosion Engineers, TX 1974.