ИЗГОТОВЛЕНИЕ ГИБКОГО СУПЕРКОНДЕНСАТОРА НА ОСНОВЕ ПОЛИПИРРОЛА, ОСАЖДЕННОГО НА НЕТКАНУЮ ПЛЕНКУ ИЗ ПОЛИЭТИЛЕНА/ПОЛИПРОПИЛЕНА

© 2020 г. Ю. З. Чан^а, У. Х. Ши^а, Г. Я. Хан^{а,} *, Х. Сон^b, У. Ж. Хон^а

^аИнститут молекулярных исследований, Тайюань, провинции Шанси, КНР ^bУниверситет провинции Шанси, Тайюань, 030006 КНР *e-mail: han_gaoyis@sxu.edu.cn Поступила в редакцию 27.05.2019 г. После доработки 13.07.2019 г. Принята к публикации 08.10.2019 г.

Нетканые пленки полипропилена/полиэтилена часто используют в качестве фильтрующих мембран или диафрагм из-за их прекрасной механической прочности и химической устойчивости. В настоящей работе с использованием пленок полипропилена/полиэтилена в качестве подложек были приготовлены композитные пленки *n*-толуолсульфонат Fe/(полипропилен/полиэтилен) путем капельного нанесения *n*-толуолсульфоната железа на подложку. Затем на нетканую пленку полипропилена/полиэтилена наносили полипиррол для получения композита полипиррол/(полипропилен/полиэтилен) с помощью реакции паров пиррола с окилителем – *n*-толуолсульфонатом Fe. Подробно охарактеризовано строение композитных пленок, приготовленных в различных условиях. С использованием Н₃РО₄/поливиниловый спирт в качестве гель-электролита приготовлены гибкие симметричные электрохимические конденсаторы полипиррол/(полипропилен/полиэтилен)//полипиррол/(полипропилен/полиэтилен); исследованы их свойства. Показано, что оптимизированный электрохимический конденсатор имеет относительно высокую удельную емкость $(246.6 \text{ м} \Phi \text{ см}^{-2} \text{ при скорости развертки потенциала } 2 \text{ мB c}^{-1})$, прекрасную циклируемость (сохранение емкости на 92.5% после 20000 циклов), и замечательную гибкость (сохранение емкости на 90.0% после 2000 и на 81.3% после 3000 сгибаний). Таким образом, этот тип электрохимических конденсаторов имеет перспективы для использования в гибких электронных устройствах.

Ключевые слова: нетканые пленки, полипиррол, гибкость, электрохимический конденсатор **DOI:** 10.31857/S0424857020060031

введение

Все возрастающая потребность в персонализированных электронных устройствах стимулировала исследования в области портативных, гибких и растягиваемых электронных устройств, которые в настоящее время находятся на подъеме [1-8]. Жизненно важную роль в вышеупомянутых электронных приборах играют гибкие устройства для запасания энергии, являющиеся их важным компонентом. поэтому в область разработки гибких устройств для запасания энергии вовлечено много исследователей [9-12]. Среди всех устройств для запасания энергии наиболее перспективными считаются электрохимические конденсаторы, благодаря их высокой плотности мощности, продолжительному сроку службы при циклировании и простоте обслуживания [13–18]. К настояшему времени они с успехом используются в электромобилях, бытовой электронике, аэрокосмической промышленности и т.п. В общем и целом, гибкие электрохимические конденсаторы состоят из двух электродов, разделенных диафрагмой и погруженных в электролит: поэтому свойства электродов играют ключевую роль в определении эксплуатационных характеристик гибкого электрохимического конденсатора.

В зависимости от механизма запасания энергии, гибкие электрохимические конденсаторы можно разделить на двойнослойные конденсаторы и псевдоконденсаторы [19-22]. Запасание энергии в двойнослойных конденсаторах основано на электростатическом взаимодействии на границе раздела электролит/активный электродный материал с большой удельной плошалью поверхности, высокой пористостью и подходящим распределением пор. Во время процесса зарядаразряда образуется слой толщиной около 1 нм, который может включать и слой пространственного заряда в электроде, и диффузный слой в электролите, и плотный слой Гельмгольца. Что касается практического применения, то гибкие электрохимические двойнослойные конденсаторы способны завершить процесс заряда-разряда за секунды и выдержать 100000 циклов [23]. Запасание энергии на основе псевдоемкости зависит от быстрого необратимого фарадеевского окислительно-восстановительного процесса. Поэтому конденсатор на основе псевдоемкости сохраняет больший заряд в расчете на 1 г, чем двойнослойный конденсатор, но кинетика заряжения разряда медленная, потому что процесс запасания энергии протекает как на поверхности электродного материала, так и в его объеме [24]. Обычно для изготовления псевдоконденсатора используются такие электродные материалы, как проводящие полимеры и оксиды переходных металлов.

В настоящее время, благодаря своей хорошей проводимости, гибкости, относительной дешевизне и легкому синтезу проводящие полимеры. включая полипиррол, полианилин, политиофен и их производные, рассматриваются в качестве перспективных электродных материалов. Электрохимические свойства полипиррола, как важного проволяшего полимера, широко исследуются с применением различных методов, с целью улучшить его эксплуатационные характеристики. Например, в работе [25] были синтезированы свободностоящие пленки полипиррола по метолике полимеризации на межфазной границе масло/вода с применением ПВА или без такового. Была достигнута максимальная удельная емкость $(C_{\rm s})$ пленки 261 Ф г⁻¹ при скорости развертки потенциала 25 мB c^{-1} . С использованием системы метилоранжевый—FeCl₃ в качестве реакционного самоуничтожающегося шаблона была приготовлена гибкая полипиррольная пленка по методу химического окисления. Значение С, этой пленки достигало 576 Φ г⁻¹ при плотности тока 0.2 A г⁻¹, что указывает на то, что эксплуатационные характеристики полипиррола были существенно улучшены [26]. Далее, в качестве шаблона для приготовления наностержней из полипиррола на хлопчатобумажной ткани методом полимеризации in situ был использован комплекс FeCl₃-метилоранж. В расчете на массу полипиррола полученная ткань имеет емкость $C_{\rm s}$, равную 325 Φ г⁻¹, и плотность энергии 24.7 Вт ч кг⁻¹ при плотности тока 0.6 мА см⁻² [27]. Гидрогель на основе проводящего полимера полипиррола и полимера с перекрестными связями поливиниловый спирт-H₂SO₄ был изготовлен в качестве гибкой подложки методом полимеризации *in situ* паров пиррола. Этот активный материал показал значение C_s , равное 13.06 Ф см⁻³; у электрода хорошая гибкость, но не очень хорошие электрохимические характеристики [28]. Был изготовлен целиком твердофазный гибкий электрохимический конденсатор с применением нанопористого золота, "декорированного" полипирролом (в форме листа из нанопористого золота), в качестве электродов. Он показал значение C_s , равное 1.8 Ф см⁻², при скорости наложения потенциала 100 мВ с⁻¹, но сохранил всего лишь 78.0% от первоначальной емкости после 900 повторных сгибаний [29]. Необходимо далее улучшать его емкость и особенно циклируемость и гибкость, хотя уже было потрачено много усилий для создания гибких полипиррольных электродов.

Мембраны, образованные из смеси волокон полипропилена (ПП) и полиэтилена (ПЭ), отличаются хорошей механической прочностью и химической устойчивостью; они вполне отвечают требованиям гибкости для электрохимических конденсаторов. Пористая структура пленок дает им достаточно места для "загрузки" активных материалов, а также достаточно пространства для того, чтобы компенсировать расширение и сжатие активных материалов в ходе процессов заряжения-разряда. Более того, эти активные материалы, осажденные на поверхность волокон, получают относительно большую границу раздела при контакте с электролитом, и это способствует увеличению возможностей гибкого электрохимического конденсатора. С учетом вышеизложенного, мы использовали нетканые пленки из ПП/ПЭ-волокна в качестве подложек для осаждения окислителя *п*-толуолсульфоната железа; затем приготовили гибкий композит полипиррол/(ПП/ПЭ) с помощью реакции *п*-толуолсульфоната железа с парами пиррола (схема 1). Ожидалось, что собранный таким образом гибкий электрохимический конденсатор покажет высокую емкость, прекрасную циклируемость и хорошую устойчивость по отношению к многократному изгибанию.

Схема 1. Простая схема изготовления электрохимического конденсатора полипиррол/(ПП/ПЭ)//полипиррол(ПП/ПЭ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и материалы

Реактив моногидрат *n*-толуолсульфокислоты был приобретен у компании Aladdin. Пиррол был приобретен у компании Shanghai Chemical Reagent Co. и хранился в холодильнике при -20° C. пленки из ПП/ПЭ-волокна со средней толщиной около 150 ± 0.2 мкм были приобретены у компании Taiyuan Co. Ltd. Поливиниловый спирт (PVA-124), FeCl₃ · 6H₂O и H₃PO₄ были приобретены у компании Hengxing Chemical Reagent Co. Ltd. Все остальные реактивы имели квалификацию "ч. д. а.".

Приготовление п-толуолсульфоната железа

Вначале 5.4 г FeCl₃ · 6H₂O растворяли в 5.0 мл деионизованной воды, затем 12 мл раствора аммиака медленно добавляли к раствору FeCl₃ для получения осадка Fe(OH)₃. Далее собирали красно-коричневый осадок и несколько раз промывали его водой и этанолом (всего 6 раз). Затем полученный Fe(OH)₃ переносили в стакан с этанольным раствором эквивалентной навески *n*-толуолсульфокислоты, перемешивали при 80°C, пока смесь не станет прозрачным красно-коричневым раствором. Наконец, после испарения остатков растворителя в вакууме при 70°C в течение 24 ч была получена соль железа и *n*-толуолсульфокислоты.

Приготовление пленок полипиррол/(ПП/ПЭ)

Различные количества *п*-толуолсульфоната Fe (460, 805 и 1150 мг) растворяли в смеси этанола (1.0 мл) и деионизованной воды (0.15 мл) для получения растворов *n*-толуолсульфоната Fe различной концентрации (0.4, 0.7 и 1.0 г мл⁻¹). Затем готовили соответствующий раствор пиррола в толуоле (50 мл пиррола растворяли в 274, 136 и 80 мкл толуола); обозначим их, как пиррол (1, 2 и 3). Для получения композитов пленки ПП/ПЭ вначале погружали в этанол на 20 мин для того, чтобы удалить загрязнения, и сушили при комнатной температуре. Затем раствор *п*-толуолсульфоната Fe по каплям наносили на нетканые пленки $\Pi\Pi/\Pi$ Э, и эти пленки с *n*-толуолсульфонатом Fe выдерживали при комнатной температуре для испарения растворителя и сушили при 70°С в течение 2 ч для получения композитов *п*-толуолсульфонат Fe/(ПП/ПЭ). В зависимости от концентрации раствора *n*-толуолсульфоната Fe обозначим эти пленки, как FeTC/(ПП/ПЭ) (4, 7 и 10). Затем соответствующие растворы пиррола (50 мкл растворов 1, 2 и 3) капали на обе стороны пленки $FeTC/(\Pi\Pi/\Pi\Theta)$ соответственно, (4, 7 и 10). После выдержки при 4°С в течение 9 ч получали черные композитные пленки, которые несколько раз промывали метанолом для удаления примесей,

ЭЛЕКТРОХИМИЯ том 56 № 12 2020

пока раствор не становился бесцветным. Эти композитные пленки сушили в вакууме при 70°C в течение 12 ч и получали композитные электроды полипиррол/(ПП/ПЭ) (4, 7 и 10), в соответствии с концентрацией *n*-толуолсульфонат Fe в использованном для их приготовления растворе.

Изготовление гибкого электрохимического конденсатора

Гелевый электролит Н₃РО₄/поливиниловый спирт готовили, растворяя 1.0 г порошка поливинилового спирта в 10.0 мл водного раствора, содержащего 0.50 мл H₃PO₄. Полученную смесь вначале нагревали до 80°С при интенсивном перемешивании до тех пор, пока раствор не становился прозрачным; затем его охлаждали до комнатной температуры и хранили до использования. Гибкие электрохимические конденсаторы готовили следующим образом: на торцы двух электродов полипиррол(ПП/ПЭ) наносили проводящий клей для того, чтобы уменьшить контактное сопротивление между этими электродами и внешней цепью. Для улучшения проводимости электрода полипиррол/(ПП/ПЭ) на одну его сторону напыляли тонкий слой золота, используя вакуумный распылитель. Затем другие концы пленок полипиррол/(ПП/ПЭ) (без проводящей смолы, приблизительно 1.0 см²) на минуту погружали в раствор Н₃РО₄/поливиниловый спирт. После этого их сушили при комнатной температуре в течение ~5 мин. Затем две пленки полипиррол/(ПП/ПЭ), покрытые гелевым электролитом, складывали параллельно друг другу, сжимали так сильно, как только можно, и помещали в морозильник для заморозки в течение 10 мин. Наконец, гибкий электрохимический конденсатор был готов, как только его вынимали из морозильника и размораживали при комнатной температуре. Гелевый электролит здесь является не только эффективным сепаратором, но также способствует механической целостности гибкого электрохимического конденсатора.

Снятие характеристик и исследование электрохимического поведения

Морфологию композитов изучали с помощью автоэлектронного сканирующего микроскопа JSM-6701F, JEOL с рабочим напряжением 10 кВ. Инфракрасные спектры образцов записывали непосредственно с помощью инфракрасного спектрометра на основе нарушенного полного внутреннего отражения с преобразованием Фурье (Nicolet iS50R, США) в области 400–4000 см⁻¹ с разрешением 2 см⁻¹. Рентгеновские дифрактограммы получали на дифрактометре Rigaku Ultimate IV с Си K_{α} -излучением при скорости развертки

5 град мин с шагом 0.02 град. Рамановские спектры записывали с помощью конфокального рамановского спектроскопа Renishaw RM 2000. Рентгеновские фотоэлектронные спектры записывали с помощью прибора Kratos AXIS ULTRADLD с возбуждающим источником AlK_{α} .

Для исследования электрохимического поведения была использована двухэлектродная система с электрохимическим комплексом СНІ 660В (Chenhua, КНР). Циклические вольтамперограммы и гальваностатические кривые заряда—разряда снимали в интервале потенциалов 0—0.6 В при различной скорости развертки потенциала и плотности тока. Спектры гибкого электрохимического импеданса измеряли в области частот от 100 кГц до 0.01 Гц с амплитудой потенциала 5 мВ. Емкость на единицу площади (в расчете на 1 см²) $C_{\rm a}$ (мФ см⁻²) и удельную емкость (в расчете на единицу массы) $C_{\rm m}$ (Ф г⁻¹) электродов вычисляли из циклических вольтамперограмм по следующим формулам [30]:

$$C_{\rm a} = \frac{\int i dV}{S\Delta V_V},\tag{1}$$

$$C_{\rm m} = \frac{\int i dV}{m\Delta V v},\tag{2}$$

где $\int i dV$ — интегральная площадь под циклической вольтамперограммой, *S* — перекрывающаяся геометрическая площадь поверхности двух электродов устройства (около 1.0 см²), ΔV и *v* — соответственно, окно сканирования потенциала (В) и скорость развертки потенциала (В с⁻¹), а *m* — количество полипиррола на 1.0 см² поверхности электрода.

Величину *C*_а можно также получить из гальваностатических кривых заряда—разряда по формуле [31]:

$$C_{\rm a} = \frac{2i\Delta t}{S\Delta V},\tag{3}$$

где t – время разряда (с), а i – разрядный ток (А).

Удельная энергия в расчете на 1 см² E (Вт ч см⁻²) равняется:

$$E = \frac{1}{8} \frac{C_{\rm a} \Delta V^2}{3600}.$$
 (4)

где ΔV – окно сканирования потенциала (за вычетом *iR*-падения потенциала, В).

Удельная мощность P (Вт см⁻²) [32] может быть вычислена по формуле:

$$P = \frac{3600E}{\Delta t},\tag{5}$$

где Δt – время разряда (с).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структурные характеристики образцов

Из SEM-микрофотографий (рис. S1a и 1б) видно, что пленка ПП/ПЭ образована множеством волокон ПП/ПЭ с гладкой поверхностью; внутри волокон много пор, и эта пористая структура облегчает осаждение полипиррола и заполняется гелевым электролитом. После осаждения пиррола на ПП/ПЭ-пленку волокна ПП/ПЭ оказываются "упакованы" в слой полипиррола, образованный плотными частицами полипиррола, в то время как пленка композита сохраняет пористую структуру (рис. 1а, 1в и 1д). Пористость проводящего полимера увеличивает площадь границы раздела между электродом и электролитом и облегчает перенос ионов электролита. Ясно видно, что поверхность полипиррола грубая и на ней распределено много частиц (рис. S1в и г). Более того, SEM-микрофотографии поперечного сечения (рис. 16, 1г и 1е) подтверждают, что толщина слоя полипиррола увеличивается с ростом концентрации использованного раствора *п*-толуолсульфоната Fe. Например, толщина слоя полипиррола в пленках полипиррол/(ПП/ПЭ) (4, 7 и 10) составляет, соответственно, около 0.70, 1.50 и 2.89 мкм. Стоит отметить, что время диффузии ионов электролита в полипиррольной матрице растет с ростом толщины слоя полипиррола, что в свою очередь ухудшает временные характеристики.

Композиты полипиррол/(ПП/ПЭ) характеризовали также методами рентгеновского дифракционного анализа и рамановской спектроскопии (рис. S2 и S3). На рентгеновских дифрактограммах (рис. S2) видны острые пики приблизительно при 21° и 24°, которые можно приписать дифракции ПЭ [34], а дифракционные пики при 14.1°, 16.7°, 18.5° и 25.1° – дифракции ПП [33]. Существенно, что дифракционный пик полипиррола наложился на пики ПП и ПЭ, расположенные вблизи 25°. Более того, все композиты полипиррол/(ПП/ПЭ) (4, 7 и 10) имеют близкие рамановские спектры (рис. S3). На них полосы поглощения при 1581 и 1347 см⁻¹ соответствуют валентным колебаниям связей C=C и C-N пиррола, пик при 1230 см⁻¹ – деформационным колебаниям в плоскости N-H, пик при 1048 см⁻¹ – изгибным колебаниям в плоскости С-Н, а пик при 960 см^{-1} – деформационным колебаниям кольца в пирроле. Дополнительно, в спектрах с преобразованием Фурье на основе нарушенного полного внутреннего отражения видны характеристические полосы полипиррола и *n*-толуолсульфоната (рис. S4). Пики при 1538 и 1462 см⁻¹ можно приписать, соответственно, валентным колебаниям связей С-С и С-N в полипирроле, а изгибные колебания в плоскости связей С-N и С-Н дают пики при 1288 и 1374 см⁻¹. В то же время колебания скелетного бензольного кольца проявляются при 1626 см⁻¹, а колебания при 1495 см⁻¹ можно

Рис. 1. SEM-микрофотографии структур полипиррол/(ПП/ПЭ) (4) (а, б), полипиррол/(ПП/ПЭ) (7) (в, г) и полипиррол/(ПП/ПЭ) (10) (д, е). На микрофотографиях б, г и е показаны поперечные сечения структур полипиррол/(ПП/ПЭ).

связать с изгибными колебаниями связи С–Н в бензольном кольце [35, 36]. Колебания, относя-

циеся к группе $-SO_3^-$, проявляются при 1158 и 1031 см⁻¹. Рентгеновские фотоэлектронные спектры композита полипиррол/(ПП/ПЭ) (рис. 2а) выявили сосуществование в этих композитах элементов С, N, O и S. В спектрах C1s (рис. 26) проявляются три фундаментальные группы С–С (284.7 эВ), С–N (286.3 эВ) и С–S (287.0 эВ) [37], а в рентгеновских фотоэлектронных спектрах N1s (рис. 2в) – три пика -N= (399.7 эВ), N–H (400.1 эВ) и $-N^+$ (402.0 эВ) [38]. Присутствие S в образцах указывает на то, что матрица полипиррола успешно допирована TOS⁻ в ходе процесса полимеризации.

Емкостные свойства гибких электрохимических конденсаторов

Емкостные свойства структур полипиррол/(ПП/ПЭ)//полипиррол(ПП/ПЭ) (4, 7 и 10) были подробно изучены в двухэлектродной системе. Все циклические вольтамперограммы (рис. 3) не содержат обычных окислительно-восстановительных пиков тока в области потенциалов 0–0.6 В, свидетельствуя о том, что эти электродные материалы заряжаются и разряжаются с псевдопостоянной скоростью в пределах всей исследованной области циклической вольтамперометрии [39, 40]. Причиной такого поведения может быть то, что один из электродов окисляется, в то время как другой восстанавливается, что

Рис. 2. Рентгеновские фотоэлектронные спектры полипиррола в структуре полипиррол/(ПП/ПЭ): (а) полный спектр, (б) C1*s*-спектр, (в) N1*s*-спектр.

Рис. 3. Циклические вольтамперограммы электродов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ), снятые при различной скорости развертки потенциала. (а), (б) и (в) сняты на электродах полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10). Кривые a - d относятся к скорости развертки потенциала, соответственно, 10, 20, 50, 80 и 100 мВ с⁻¹. (г) Зависимость величины C_a от скорости развертки потенциала, кривые a, δ и e относятся к электродам, соответственно, полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10).

Материалы электродов		Сохранение емкости, %				
гибких электрохимических конденсаторов	Емкость, мФ см ⁻²	число циклов	число изгибаний	Удельная энергия	Удельная мощность	Ссылка
Полипиррол-оксид гра-	108.0	84.9%, 10000	93.4%, 2000	2.6 мкВт ч см ⁻²	0.03 MBt cm^{-2}	[39]
фена/полипропиленфу-						
марат/полипиррол-оксид						
графена						
Полипиррол/Аи	1.8	Тесты не	78.0%, 900	0.94 мВт ч см ⁻²	7.32 мВт см ⁻¹	[40]
H	(7.0	ВЫПОЛНЯЛИСЬ	T			E 4 1 3
Полипиррол@углерод-	67.0	/4%, 1000	Гесты не	10.65 Вт ч кг ⁻¹	22.4 мкВт см ⁻²	[41]
ные нанотруоки@уретан	74.0	Taatu ua	ВЫПОЛНЯЛИСЬ	7 5 - ²	Toottu	[42]
полипиррол—метил-	/4.0		90.070, 200	/.5 мкВт ч см ²		[42]
оранж/хлопчатобумаж-		выполнялись			выполнялись	
ТіО ₂ @МпО ₂ @полипиррол	78.2	80.3%, 20000	87.5%, 1	2 12 MBT H CM ⁻³	0.04 BT cm^{-3}	[43]
(триметилфосфат)//угле-				2.12 MD1 10M	0.0 T DI CM	. ,
ролные нанотрубки						
(Полианалин)/оксил гра-	25.7	53.1%, 1000	Тесты не	2 52 MBT U CM ⁻²	Тесты не	[44]
фена		2211/0, 1000	выполнялись	2.52 MD1 4 CM	выполнялись	[]
Полипиррол@углерод-	69.0	Тесты не	Тесты не	0.47 мВт ч см ⁻³	Тесты не	[45]
ные нанотрубки@урета-		выполнялись	выполнялись		выполнялись	
новая ткань						
Полипиррол/углеродные	54.0	85.0%, 5000	Тесты не	2.72 мВт ч см ⁻³	2.9 мВт см ⁻²	[46]
волокна			выполнялись			
Бумага/углеродные нано-	123.0	97.8%, 3000	93.0%, 200	4.2 мк Вт ч см $^{-2}$	$4 \text{ MBt } \text{cm}^{-2}$	[47]
трубки/MnO ₂						
Полипиррол/(ПП/ПЭ)	246.6	92.5%, 20000	81.3%, 3000	3.54 мВт ч см ⁻²	$0.075 \text{ MBt cm}^{-2}$	Настоя-
						щая
						работа

Таблица 1. Сравнение емкостных свойств различных гибких электродных материалов

приводит к взаимной компенсации положительного и отрицательного пиков тока на электродах в ходе такого тестирования [8]. Более того, циклические вольтамперограммы структуры полипиррол/($\Pi\Pi/\Pi\Theta$)//полипиррол/($\Pi\Pi/\Pi\Theta$) (4, 7 и 10) при низкой скорости развертки потенциала имеют прямоугольную форму, но с ростом скорости развертки потенциала отклоняются от этой формы. Количество полипиррола, нанесенного на ПП/ПЭ, также имеет значение для формы циклических вольтамперограмм: например, гибкий электрохимический конденсатор полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (10) демонстрирует явное отклонение из-за наиболее толстого слоя полипиррола, образовавшегося на пористой структуре. С ростом толщины слоя полипиррола ионам электролита все труднее диффундировать внутрь полимерной матрицы из-за высокого диффузионного сопротивления, а это ухудшает скоростные характеристики суперконденсаторов [41]. Помимо этого, гибкий электрохимический конденсатор показывает большую интегральную площадь поверхности, ограничиваемую циклическими вольтамперограммами, что означа-

ЭЛЕКТРОХИМИЯ том 56 № 12 2020

ет большую емкость в расчете на единицу поверхности. Вычисленные значения емкости Са для конденсатора полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10) равняются, соответственно, 157.4, 246.6 и 295.1 мФ см⁻² при скорости развертки потенциала 2 мВ с⁻¹ (рис. 3г). Однако, значения C_a уменьшаются до, соответственно, 23.4, 27.0 и 24.8 м Φ см⁻² при скорости развертки потенциала 150 мB c^{-1} . Согласно результатам циклической вольтамперометрии, ясно, что у гибкого электрохимического конденсатора полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (10) больше величина C_a , но хуже скоростные характеристики, чем у других, в то время как конденсатор полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4) демонстрирует лучшие скоростные характеристики, но меньшую $C_{\rm a}$, чем у других образцов. Если принимать во внимание как значение C_a , так и скоростные характеристики, то для дальнейшего детального изучения следует выбрать композит полипиррол/(ПП/ПЭ) (7), так как его величина C_{a} намного выше, чем у ранее предложенных проводящих полимеров (табл. 1): таких как полипир-

Рис. 4. Гальваностатические кривые заряда–разряда электродов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ), снятые при различных плотностях тока. (а), (б) и (в) сняты на электродах полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10). Кривые a-d относятся к плотностям тока, соответственно, 0.5, 1.0, 2.0, 4.0 и 8.0 мА см⁻². (г) Зависимость величины C_a от плотности тока, кривые a, δ и e относятся к электродам, соответственно, полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ)//полипирол/(ПП/ПЭ)//полипирол/(ПП/ПЭ))/

рол—оксид графена/полипропиленфумарат/полипиррол—оксид графена (108.0 мФ см⁻², 165.1 Ф г⁻¹) [42], полипиррол/Аи (1.8 мФ см⁻², 270.0 Ф г⁻¹, емкость может сохраняться на 78.0% после 2000 циклов) [40], полипиррол@углеродные нанотрубки@ пряжа из уретанового эластичного волокна (67 мФ см⁻²) [43], полипиррол—метилоранж/хлопчатобумажная ткань (74.0 мФ см⁻², его емкость C_a сохраняется на 78.0% после 2000 циклов) [44].

На рис. 4 приведены гальваностатические кривые заряда—разряда гибкого электрохимического конденсатора при плотностях тока 0.5, 1.0, 2.0, 4.0 и 8.0 мА см⁻². при низких плотностях тока имеется достаточно времени для того, чтобы ионы электролита успели продиффундировать. это делает *iR*-падение на гальваностатических кривых заряда—разряда ничтожно малым, так что кривые приобретают типичную форму симметричного треугольника. Отсюда видно, что электрод имеет хорошую проводимость, а внутреннее сопротивление гибкого электрохимического конденсатора мало. С ростом плотности тока iR-падение растет, показывая большую потерю энергии на внутреннем сопротивлении. Более того, с ростом использованной концентрации *п*-толуолсульфоната Fe гибкий электрохимический конденсатор демонстрирует рост внутреннего сопротивления при той же плотности тока из-за толстого слоя полипиррола, осажденного на волокно. Наивысшие значения C_a и C_m для композитов полипиррол/(ПП/ПЭ) (4, 7 и 10), вычисленные по гальваностатическим разрядным кривым (рис. 4г и S5). равняются, соответственно, приблизительно 165.3, 283.5 и 295.2 мФ см⁻² при плотности тока 0.5 мА см⁻², и 156.6, 127.1 и 117.2 Ф г⁻¹ при 2 мВ с⁻¹.

Рис. 5. Диаграммы Рагоне (а), годографы импеданса (б) и графики зависимости степени сохранения емкости от числа циклов при скорости развертки потенциала 100 мВ с⁻¹ (в) для электродов полипиррол/($(\Pi\Pi/\Pi\Theta)$)/полипиррол/($(\Pi\Pi/\Pi\Theta)$). кривые *a*, *б* и *в* относятся к электродам, соответственно, полипиррол/($(\Pi\Pi/\Pi\Theta)$)/полипиррол/($(\Pi\Pi/\Pi\Theta)$) (4, 7 и 10).

Спектры

Из графиков зависимости C_a и C_m , вычисленных из гальваностатических кривых заряда-разряда, от плотности разрядного тока (рис. 4г) ясно видно, что с ростом плотности тока значение C_a для гибкого электрохимического конденсатора постепенно уменьшается. Это происходит потому, что конечное время диффузии накладывает ограничение на движение ионов в полимерной матрице, так что реакция между ионами и активным материалом может протекать исключительно на поверхности электрода. Результаты, полученные методом гальваностатических кривых зарядаразряда, согласуются с данными циклической вольтамперометрии. Дополнительно, была подробно исследована роль слоя золота (рис. S6). После того, как композитный электрод был покрыт слоем золота, проводимость пленки полипиррол/(ПП/ПЭ) (7) выросла с 3.25 до 4.46 См см⁻¹, а соответствующее емкостное поведение существенно улучшилось.

Для того чтобы обеспечить электрохимические характеристики конденсаторов, мы вычисляли их удельную энергию и удельную мощность из гальваностатических кривых заряда-разряда, отложенных в виде диаграммы Рагоне (рис. 5а). Оказалось, что у гибкого электрохимического конденсатора полипиррол/($\Pi\Pi/\Pi\Theta$)//полипиррол/($\Pi\Pi/\Pi\Theta$) (7) максимальная удельная мощность в расчете на 1 см² и относительно большая удельная энергия. Последняя может достигать 3.54 мВт ч см⁻² при удельной мощности 0.075 мВт см⁻² или удельная энергия $1.20 \text{ мBt} \, \text{ч} \, \text{сm}^{-2}$ при удельной мощности $0.99 \, \text{мBt} \, \text{сm}^{-2}$. В настоящей работе достигнута намного более высокая удельная энергия, чем сообщалось ранее при использовании полипиррола в качестве активного материала (табл. 1) [45-48].

рол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10). Все спектры импеданса на рис. 5в имеют прямолинейный участок в низкочастотной области и полуокружность в высокочастотной. Ось абсцисс пересекается с этой полуокружностью в высокочастотной области, и отсекаемый отрезок дает внутреннее сопротивление (включая сопротивление активного материала и токоотвода, сопротивление контакта и электролита). Ясно видно, что это внутреннее сопротивление конденсатора полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4,7 и 10) постепенно возрастает, что можно объяснить использованием высокой концентрации п-толуолсульфоната железа, которая привела к росту массы и толшины полипиррола. Однако этот рост массы и толщины полипиррола не повышает проводимости и не способствует эффективной диффузии ионов электролита в полипиррольной матрице. Далее, конденсатор полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) имеет высокий наклон в низкочастотной области, показывающий. что емкостная характеристика конденсатора хорошая. Это согласуется с результатами методов циклической вольтамперометрии и гальваностатических кривых заряда-разряда. Устойчивость по отношению к циклированию -

электрохимического

(рис. 5б) отражают внутреннее последователь-

ное сопротивление конденсатора

1067

импеданса

полипир-

устоичивость по отношению к циклированию – важный параметр, позволяющий предсказать срок службы конденсатора при его практическом применении. Поэтому мы построили график зависимости величины C_a от числа циклов заряда – разряда (рис. 5в). Видно, что значение емкости C_a электрохимического конденсатора полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) может сохраняться на 92.5% от своей первоначальной величины после 20000 циклов (рис. 5в); это луч-

Рис. 6. (а–в) Фотографии электрохимических конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) при различных углах сгибания, (г) циклические вольтамперограммы и (д) изменения величин C_a электрохимических конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) при различных углах сгибания, (е) зависимости величин C_a электрохимических конденсаторов полипиррол/(ПП/ПЭ) (7) при различных углах сгибания, (е) зависимости величин C_a электрохимических конденсаторов полипиррол/(ПП/ПЭ)/(полипиррол/(ПП/ПЭ))/полипиррол/(ПП/ПЭ) (7) при различных углах сгибания, (е) зависимости величин C_a электрохимических конденсаторов полипиррол/(ПП/ПЭ)/(полипиррол/(ПП/ПЭ))/(полипиррол/(ПП/ПЭ)) (7) от числа циклов сгибания–разгибания (врезка: циклические вольтамперограммы, снятые на 1-м, 1000-ном, 2000-ном и 3000-ном циклах сгибания–разгибания), скорость развертки потенциалаtе: 20 мВ с⁻¹.

ше, чем сообщалось ранее (76.0 и 91.0%, соответственно, после 200 и 4000 циклов) [49, 50]. В то же время гибкие электрохимические конденсаторы полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4 и 10) могут сохранять, соответственно, 96.4 и 90.7% от первоначальной величины своей емкости после 20000 циклов. Удивительным образом, во время первых 1500 циклов значения C_a для конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (4, 7 и 10) возрастают с 35.5, 49.8 и 53.0 мФ см⁻² до, соответственно, 44.2, 55.0 и

57.6 м Φ см⁻². Это явление указывает на то, что существует какой-то процесс внутренней активации фарадеевской окислительно-восстановительной реакции полипиррола [51]. С ростом числа циклов значение C_a снижается из-за непрерывно продолжающегося структурного повреждения, вызванного набуханием и сжатием — результатом протекания процессов допирования/дедопирования.

Дополнительно мы измеряли гибкость приготовленных элементов (рис. 6). Из рис. 6а—6в можно видеть, насколько успешно устройство может выдерживать различные деформации. Так, при различных углах изгиба форма циклических вольтамперограмм и величина емкости устройства остаются почти неизменными (рис. 6г и 6д), что указывает на то, что это устройство проявляет прекрасную гибкость. Для того, чтобы исследовать характеристики устройства в условиях практического применения, мы провели его тестирование при повторяющемся изгибании (рис. 6е). При угле изгиба 90° величина емкости остается в пределах 90% от первоначальной после 2000 изгибных циклов, а после 3000 изгибных циклов -81.3% от первоначальной величины. Уменьшение емкости после повторяющегося изгибания связано главным образом с разрушением структуры композита полипиррол/(ПП/ПЭ); кроме того, напряжение изгибания может вызвать отслаивание полипиррола от ПП/ПЭ-волокна или образование трещин в слое полипиррола и таким образом ухудшить электрохимическое поведение электрода полипиррол/(ПП/ПЭ).

При практическом применении необходимо рассмотреть последовательное и параллельное соединение гибких электрохимических конденсаторов. В ходе испытаний было показано, что при последовательном соединении двух, трех и четырех гибких электрохимических конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) рабочая область потенциалов достигает, соответственно, 1.2, 1.8 и 2.4 В (рис. 7а). При последова-

-10 - 0 0.2 0.4 0.6 0 50 100 150 200 250 300 Напряжение, В Время, с

Рис. 7. Циклические вольтамперограммы электрохимических конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7), соединенных последовательно (а) и параллельно (в), гальваностатические кривые заряда–разряда при последовательном (б) и параллельном соединении (г). Скорости развертки потенциала при снятии циклических вольтамперограмм 20 мВ с⁻¹; плотность тока при снятии гальваностатических кривых заряда–разряда 2.0 мА см⁻². Кривые *a*, *б*, *в* и *с* сняты, соответственно, на одном, двух, трех и четырех гибких электрохимических конденсаторах, соединенных последовательно или параллельно.

тельном соединении четырех гибких электрохимических конденсаторов и их заряжении в течение 60 с они обеспечивают работу светоизлучающего диода в течение 120 с (рис. S7). Однако, следует отметить, что и *iR*-падение потенциала также увеличивается пропорционально числу последовательно соединенных электрохимических конденсаторов. Все же внутреннее сопротивление электрохимического конденсатора необходимо уменьшать (рис. 7б). Подобным же образом, при параллельном соединении двух, трех и четырех гибких электрохимических конденсаторов полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) их ток возрастает пропорционально числу параллельно соединенных электрохимических конденсаторов; но их рабочая область потенциалов сокращается до 0.6 В. С ростом числа соединяемых

Тока, мА

Тока, мА

едовапоследовательном и параллельном соединении электрохимических конденсаторов разность потенциалов, токовый отклик и сопротивление подчиняются известным законам теории электричества. тырех поли-(7) их ЗАКЛЮЧЕНИЕ

> Гибкие электрохимические конденсаторы изготовлены с использованием композитов полипиррол/(ПП/ПЭ) в качестве электродов и гелевого электролита H₃PO₄/поливиниловый спирт. Полу-

> гибких электрохимических конденсаторов, по-

мимо увеличения времени заряжения и разряда

на гальваностатических кривых заряжения-раз-

ряда, уменьшается *iR*-падение потенциала. Вышеприведенные результаты показывают, что при

ченные результаты показывают, что полипиррол, приготовленный полимеризацией пиррола на пропитанном *п*-толуолсульфонатом Fe ПП/ПЭволокне, показывает относительно высокую емкость и прекрасную циклируемость. Оптимизированный композит полипиррол/(ПП/ПЭ) (7) дает высокую удельную емкость 246.6 мФ см⁻² при плотности тока 2 мВ с⁻¹. Гибкий электрохимический конденсатор полипиррол/(ПП/ПЭ)//полипиррол/(ПП/ПЭ) (7) достигает удельной энергии 3.54 мВт ч см⁻² при удельной мощности 0.075 мВт см⁻², и прекрасной устойчивости при циклировании (сохраняет свою емкость на 92.5% после 20000 циклов заряда-разряда). Более того, этот гибкий электрохимический конденсатор проявляет прекрасную стойкость по отношению к изгибанию. Предложенный метод дает новую стратегию в приготовлении новых материалов для гибких электрохимических конденсаторов.

БЛАГОДАРНОСТИ

Авторы благодарны Центру научного оборудования Университета провинции Шанси за предоставление испытательного стенда.

ФИНАНСИРОВАНИЕ РАБОТЫ

Настоящая работа поддержана Национальным фондом естественных наук КНР (проекты № 21574076, U1510121, 21501113, 61804091, 21602127 и 61504076) и Фондом провинции Шанси "1331 проект" центральной инновационной исследовательской группы (проект TD701704) и Центром инженерных исследований (проект PT201807).

ВКЛАД АВТОРОВ

Ю.З. Чан и У.Х. Ши руководили проектом; У.Х. Ши проводил эксперименты и написал статью при участии Ю.З. Чана и Г.Я. Хана. Все авторы участвовали в обсуждениях.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang, B.J., Fang, X., and Sun, H., Fabricating continuous supercapacitor fibers with high performances by Integrating all building materials and steps into one process, *Adv. Mater.*, 2015, vol. 27, p. 7854.
- 2. Lyu, S.Y., Chang, H.J., and Fu, F., Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable

supercapacitors with excellent foldability and tailorability, J. Power Sources., 2016, vol. 327, p. 438.

- Yun, T.G., Hwang, B.I., and Kim, D., Polypyrrole-MnO₂-coated textile- based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, *ACS Appl. Mater. Inter.*, 2015, vol. 7, p. 9228.
- 4. Yuksel, R., Coskun, S., Kalay, Y.E., and Unalan, H.E., Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors, *J. Power Sources*. 2016, vol. 328, p. 167.
- 5. Mohamed, S.T., Soufeena, P.P., and Niveditha, C.V., Electrochemical Investigation of Activated Carbon Electrode Supercapacitors, *Russ. J. Electrochem.*, 2018, vol. 54, p. 302.
- 6. He, S.S., Chen, P.N., and Qiu, L.B., A mechanically actuating carbon-nanotube fiber in response to water and moisture, *Angew Chem Int Ed.*, 2015, vol. 54, p. 14880.
- 7. Fan, L. and Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors, *Electro-chem Commun.*, 2006, vol. 8, p. 937.
- Chang, Y.H., Han, G.Y., and Xiao, Y.M., Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/carbon fibers, *Electrochim. Acta.*, 2017, vol. 257, p. 335.
- 9. Volfkovich, Yu.M., Sosenkin, V.E., and Evseev, A.K., The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties, *Russ. J. Electrochem.*, 2017, vol. 53, p. 1334.
- Reddy, K.R., Lee, K.P., Gopalan, A.I., and Showkat, A.M., Facile synthesis of hollow spheres of sulfonated polyanilines, *Polym. J.*, 2006, vol. 38, p. 349.
- Yuan, L.Y., Yao, and Hu, B., lypyrrole-coated paper for flexible solid-state energy storage, *J. Energy Environ. Sci.*, 2013, vol. 6, p. 470.
- 12. Ramadoss, A., Saravanakumar, B., and Kim, S.J., Thermally reduced grapheme oxide-coated fabrics for flexible supercapacitors and self-powered systems, *Nano Energy.*, 2015, vol. 15, p. 587.
- 13. Chen, P.C., Shen, G.Z., and Shi, Y., Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single walled carbon nanotube hybrid thin-film electrodes, *ACS Nano.* 2010, vol. 4, p. 4403.
- Reddy, K.R., Sin, B.C., and Ryu, K.S., Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties, *Synth. Met.*, 2009, vol. 159, p. 595.
- 15. Nateghi, M.R., Negahbanfard, H., and Kavoosi, S., Study of life time and energy conversion efficiency in bi-layer and tri-layer polymer actuators, *Russ. J. Electrochem.*, 2014, vol. 50, p. 274.
- Huang, Y., Li, H.F., and Wang, Z.F., Nanostructured polypyrrole as a flexible electrode material of supercapacitor, *Nano Energy.*, 2016, vol. 22, p. 422.

- 17. Deng, J., Zhang, Y., and Zhao, Y., A shape-meory supercapacitor fiber, *Angew. Chem. Int. Ed.*, 2015, vol. 127, p. 15639.
- Zhou, H.H., Han, G.Y., and Xiao, Y.M., Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors, *J. Power Sources.*, 2014, vol. 263, p. 259.
- Bandyopadhyay, P., Kuila, T., and Balamurugan, J., Facile synthesis of novel sulfonated polyaniline functionalized grapheme using m-aminoben zene sulfonic acid for asymmetric supercapacitor application, *Chem. Eng. J.*, 2017, vol. 308, p. 1174.
- Fan, Y.M., Song, W.L., Li, X.G., and Fan, L.Z., Assembly oΦ rraphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors, *Carbon*. 2017, vol. 111, p. 658.
- Lee, H., Kim, H., and Cho, M.S., Fabrication of polypyrrole (полипиррол)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications, *Electrochim. Acta.*, 2011, vol. 56, p. 7460.
- Tamm, J., Johanson, U., Marandi, M., Tamm, T., and Tamm, L., Study of the Properties of Electrodeposited Polypyrrole Films, *Russ. J. Electrochem.*, 2004, vol. 40, p. 344.
- Meng, Q.F., Cai, K.F., Chen, Y.X., and Chen, L.D., Research progress on conducting polymer based supercapacitor electrode materials, *Nano Energy.*, 2017, vol. 36, p. 268.
- Humpolicek, P., Kasparkova, V., Saha, P., and Stejskal, J., Biocompatibility of polyaniline, *Synth Met.*, 2012, vol. 162, p. 722.
- 25. Yang, Q., Hou, Z., and Huang, T., Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications, *J. Appl. Polym. Sci.*, 2015, vol. 132, p. 2.
- Li, M. and Yang, L., Intrinsic flexible polypyrrole film with excellent electrochemical performance. J Mater Sci Mater Electronics, J. Mater. Sci. Mater. Electronics., 2015, vol. 26, p. 4875.
- Xu, J., Wang, D.X., and Fan, L.L., Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template, *Organic Electronics.*, 2015, vol. 26, p. 292.
- Zang, L.M., Liu, Q.F., and Qiu, J.H., Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical гибкость based on polypyrrole hydrogel, ACS Appl. Mater. Inter., 2017, vol. 39, p. 33941.
- Meng, F. and Ding, Y., Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities, *Adv Mater.*, 2011, vol. 23, p. 4098.
- Fan, Z.J., Yan, J., and Wei, T., Asymmetric supercapacitors based on graphene/MnO₂ and activated carbon nanofiber electrodes with high power and energy density, *Adv. Funct Mater.*, 2011, vol. 21, p. 2366.
- 31. Zhang, L. and Shi, G.Q., Preparation of highly conductive graphene hydrogels for fabricating supercapac-

ЭЛЕКТРОХИМИЯ том 56 № 12 2020

itors with high rate capability, J. Phys. Chem C., 2011, vol. 115, p. 17206.

- Zhou, W., Han, G.Y., and Xiao, Y.M., Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance, *Electrochim Acta.*, 2015, vol. 176, p. 594.
- Hwang, Y.T., Kang, S.Y., and Kim, D.H., The influence of consolidation temperature on in-plane and interlaminar mechanical properties of self-reinforced polypropylene composite, *Compos. Struct.*, 2018, vol. 11, p. 098.
- 34. Miao, W.j., Wang, Z.B., and li, Z.L., Epitaxial crystallization of precisely chlorine-substituted polyethylene induced by carbon nanotube and graphene, *Polymer.*, 2016, vol. 94, p. 53.
- 35. Yang, C., Zhang, L.L., and Hu, N.T., Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density, *J. Power Sources.*, 2016, vol. 302, p. 39.
- Liu, X., Qian, T., and Xu, N., Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites, *Carbon.*, 2015, vol. 92, p. 348.
- Zhou, H.H., Han, G.Y., and Xiao, Y.M., Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors, *J. Power Sources.*, 2014, vol. 263, p. 259.
- Tabaciarova, J., Micusík, M., Fedorko, P., and Omastova, M., Study of polypyrrole aging by XPS, FTIR and conductivity measurements, *Polym. Degrad. Stab.*, 2015, vol. 120, p. 392.
- 39. Zhou, W., Han, G.Y., and Xiao, Y.M., Polypyrrole doped with dodecylbenzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-per-formance, *Electrochim Acta.*, 2015, vol. 176, p. 594.
- Jin, M., Han, G.Y., and Chang, Y.Z., Flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor, *Electrochim Acta.*, 2011, vol. 56, p. 9838.
- Wang, N., Han, G.Y., and Xiao, Y.M., Polypyrrole/graphene oxide deposited on two metalized surfaces of porous polypropylene films as all-in-one flexible supercapacitors, *Electrochim Acta.*, 2018, vol. 270, p. 490.
- 42. Wang, S.L., Liu, N.S., and Su, J., Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs, *ACS Nan.*, 2017, vol. 11, p. 2066.
- Sun, J.F., Huang, Y., and Fu, C.X., Highperformance stretchable yarn supercapacitor based оп полипиррол@CNTs@urethane elastic fiber core spun yarn, *Nano Energy.*, 2016, vol. 27, p. 230.
- 44. Wei, C.Z., Xu, Q., and Chen, Z.Q., An all solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes, *Carbohydr Polym.*, 2017, vol. 169, p. 50.

- Zhu, Q.C., Liu, K., and Zhou, J.Q., Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment, *Chem. Eng. J.*, 2017, vol. 321, p. 554.
- Wei, H.G., Zhu, J.H., and Wu, S.J., Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage, *Polymer.*, 2013, vol. 54, p. 1820.
- Sun, J.F., Huang, Y., and Fu, C.X., High performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn, *Nano Energy.*, 2016, vol. 27, p. 230.
- 48. Yuan, W., Han, G.Y., and Xiao, Y.M., Flexible electrochemical capacitors based on polypyrrole/carbon fibers

via chemical polymerization of pyrrole vapor, *Appl. Surf. Sci.*, 2016, vol. 377, p. 274.

- 49. Dong, L.B., Xu, C.J., and Li, Y., Breathable and wearable energy storage based on highly flexible paper electrodes, *Adv. Mater.*, 2016, vol. 28, p. 9313.
- Deepa, M., Agnihotry, S.A., Gupta, D., and Chandra, R., Ion-pairing effects and ion-solvent-polymer interactions in LiN(CFSO)-PC-PMMA electrolytes: a FTIR study, *Electrochim Acta*. 2004, vol. 49, p. 373.
- Rakhi, R.B., Chen, W., Cha, D., and Alshareef, H.N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance, *Nano Lett.*, 2012, vol. 12, p. 2559.