АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ДЕФЕКТОВ В ПОВЕРХНОСТНОМ СЛОЕ ОКСИДА ЦЕРИЯ, ДОПИРОВАННОГО АКЦЕПТОРОМ¹

© 2023 г. И. Рис*

Физический факультет, Технион IIT, Хайфа, 3200003 Израиль *e-mail: riess@technion.ac.il Поступила в редакцию 11.07.2022 г. После доработки 04.08.2022 г. Принята к публикации 30.08.2022 г.

Дана теоретическая интерпретация последних экспериментальных результатов по зависимости концентрации малых поляронов от парциального давления кислорода, $P(O_2)$ в мономолекулярном поверхностном слое допированного оксида церия. Проанализированы два разных типа экспериментальных условий. (1) Исследована полностью восстановленная поверхность $Sm_{0.2}Ce_{0.8}O_{1.9-\delta}$ и оценено взаимодействие в системе $[Ce^{3+}]_s - P(O_2)$. Экспериментальные данные объяснены возникновением металлоподобного поверхностного слоя, в первом приближении нейтрального, т.е., с пренебрежимо малым переходом заряда в объем. Поверхность становится металлоподобной потому, что внешние электроны на ионах Ce^{3+} , которые при низкой концентрации являются малыми поляронами, при высокой концентрации делокализуются. (2) Исследована поверхность $Pr_{0.1}Ce_{0.9}O_{2-\delta}$. Экспериментальные данные данные, касающиеся взаимодействия $[Pr^{3+}]_s - P(O_2)$, объяснены образованием полупроводникового отрицательно заряженного мономолекулярного поверхностного слоя, образующего двойной слой с положительно заряженным объемом. Как в случае $Sm_{0.2}Ce_{0.8}O_{1.9-\delta}$, так и $Pr_{0.1}Ce_{0.9}O_{2-\delta}$ зависимость концентрации поверхностных дефектов от $P(O_2)$ отличается от таковой в объеме.

Ключевые слова: поверхностные поляроны, двойной слой, восстановленный оксид церия, оксид церия, допированный Sm, оксид церия, допированный Pr, зависимость концентрации поверхностных дефектов от давления кислорода

DOI: 10.31857/S0424857023030118, EDN: HXGXWS

1. ВВЕДЕНИЕ

Концентрацию дефектов в мономолекулярном поверхностном слое материала трудно определить. Однако, недавние РФЭС-измерения на глубину всего 0.4 нм в применении к оксиду церия, допированному акцептором, позволили определить концентрацию дефектов в этом слое, как функцию парциального давления кислорода $P(O_2)$ [1–3]. Поскольку толщина мономолекулярного поверхностного слоя оксида церия равняется 0.34 нм, опубликованные экспериментальные данные можно отнести к концентрации дефектов в мономолекулярном слое у поверхности оксида. Сообщается о двух разных типах экспериментальных условий. В первом из них рассматривается полностью восстановленная поверхность оксида церия, допированного примесью Sm, $Sm_{0.2}Ce_{0.8}O_{1.9-\delta}$ (SDC) и $[Ce^{3+}]_{s}$. Концентрацию ионов Се³⁺ в поверхностном слое определяли, как функцию P(O₂) [2]. В этом оксиде акцепторы формируют локализованный заряд Sm³⁺. При низких *P*(O₂) ионы "хозяина" Ce⁴⁺ восстанавливаются до Ce³⁺. В другом эксперименте рассматривали оксид церия, допированный Pr_{0.1}Ce_{0.9}O_{2 - δ} (**PCO**), и [Pr³⁺]_s. Концентрацию ионов Pr³⁺ в поверхностном слое также определяли, как функцию P(O₂) [3]. В этом случае катиондопант Pr⁴⁺ в поверхностном слое восстанавливается до Pr³⁺ при относительно высоком давлении кислорода, при котором ионы "хозяина" Ce⁴⁺ не восстанавливаются. Восстановление Ce⁴⁺ до Ce³⁺ происходит при намного более низком давлении $P(O_2)$. Изменение условий эксперимента приводит к совершенно другим значениям в соотноше-

¹ По материалам доклада на 16-м Международном Совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 27.06.—03.07.2022.

Рис. 1. Зависимость [Ce³⁺] от *P*(O₂) на поверхности SDC. Сплошные линии – теория. ● – Экспериментальные точки [2].

ниях зависимости $[Ce^{3+}]_s$ от $P(O_2)$ и $[Pr^{3+}]_s$ от $P(O_2)$.

2. КОНЦЕНТРАЦИЯ Се³⁺ В МОНОМОЛЕКУЛЯРНОМ ПОВЕРХНОСТНОМ СЛОЕ ВОССТАНОВЛЕННОГО Sm_{0.2}Ce_{0.8}O_{1.9 - x}

В полностью восстановленном SDC поверхностная концентрация Ce³⁺ составляет долю ~0.3 от поверхностной концентрации катионов; остальные — это ионы Ce^{4+} и Sm^{3+} (их доля ~0.2). В этом случае малые поляроны (избыточный электрон на Ce³⁺, который может перескакивать на соседний ион Ce⁴⁺) делокализуются благодаря экранированию взаимодействия электрон-фонон [4], и поверхность можно рассматривать как металлическую [5]. В то время как заряды могут переноситься от поверхности в объем, теория говорит о том, что переносится (если переносится) лишь небольшая доля металлического заряда, так что поверхность можно рассматривать как нейтральную. Высокая степень восстановления также дает высокую концентрацию кислородных ва-

кансий, $V_0^{\bullet\bullet}$. Объем CeO₂ [6] и CeO₂, допированного Gd [7] (последний подобен SDC), представляет собой восстановленную кубическую гранецентрированную фазу, обозначаемую как α -фаза. Эта α -фаза способна выдержать лишь ограниченную концентрацию кислородных вакансий V_{b, max} (~10% анионов), генерированных реакцией восстановления. При более высокой концентрации вакансий возникает новая фаза. Предполагается, что вышесказанное справедливо и для поверхностного слоя, как это имеет место в слоях, полученных эпитаксией, так что для восстановленной поверхности α -фазы принимается ограниченная концентрация вакансий, V_{s. max}.

Решение уравнений для зависимости $[Ce^{3+}]_s - P(O_2)$ при условии, что (а) кислород равновесно обменивается с окружающей средой, (б) поверхностный слой металлический, (в) поверхностный слой нейтрален и (г) при низком давлении кислорода $P(O_2)$ его хемосорбция ничтожно мала, дает [5]:

$$P(O_2)^{1/2} \frac{A_s + n_s}{2V_{s,max} - A_s - n_s} e^{2n_s d_s/kTg_s} = K_s(T), \quad (1)$$

где $A_{\rm s} = [{\rm Sm}^{3+}]_{\rm s}$ – концентрация акцепторов в поверхностном слое, $n_{\rm s} = [{\rm Ce}^{3+}]_{\rm s}$ – поверхностная концентрация электронов (которые, как уже упоминалось, делокализованы на "металлической" поверхности) в единице объема, $d_{\rm s}$ – толщина поверхностного слоя, $g_{\rm s}$ – плотность состояний в зоне проводимости на единицу площади поверхности, k – постоянная Больцмана, T – температура, $K_{\rm s}(T)$ – постоянная реакции восстановления.

Уравнение (1) дает очень слабую зависимость $n_{\rm s}$ от $P({\rm O}_2)$, грубо говоря, $n_{\rm s} \propto P({\rm O}_2)^{-0.02}$. Эта слабая зависимость сильно отличается от зависимости концентрации электронов от $P({\rm O}_2)$ в нейтральном объеме, которая описывается соотношением: $n_{\rm b} \propto P({\rm O}_2)^{-0.25}$. Рисунок 1 показывает фитинг теоретического расчета (уравнение (1)) и экспериментальных данных для поверхностного слоя. Этот фитинг дает поверхностную плотность состояний $g_{\rm s}$ [5],

$$g_{\rm s} = 1.4 \times 10^{15} \ \Im B^{-1} \,{\rm cm}^{-2},$$
 (2)

из которой можно получить эффективную массу электрона: $m_{\text{eff, s}} = 3.3m_{\text{e}}$ (где m_{e} – масса свободного электрона). Значение поверхностной концентрации акцепторов определено как $A_{\text{s}} = 0.28$, что отличается от значения для объема, $A_{\text{b}} = 0.2$ (в единицах доли катионов). Величина $A_{\text{s}} = 0.28$ согласуется с экспериментом [2]. Как показано на

Рис. 2. Фазовая диаграмма восстановленной поверхности SDC [5].

рис. 2, значения $V_{s, max}$ при четырех температурах дают границу α -фазы на восстановленной поверхности. Граница растворимости на рис. 2 взята для восстановленной α -фазы в объеме [5].

3. КОНЦЕНТРАЦИЯ Pr^{3+} В МОНОМОЛЕКУЛЯРНОМ ПОВЕРХНОСТНОМ СЛОЕ $Pr_{0,1}Ce_{0,9}O_{2-\delta}$

В РСО поверхностная концентрация малых поляронов, т.е., электронов на Pr³⁺, равняется доле катионов 0–0.1: эти электроны способны перескакивать лишь на ограниченное число соседних ионов Pr^{4+} , а не на гораздо большее число соседних ионов Се⁴⁺. Как результат, поверхность, как и объем, проявляет полупроводниковые свойства. Благодаря различию энергий межатомного взаимодействия на поверхности и в объеме, следует ожидать переноса заряда с поверхности в объем. Результаты, полученные для отрицательно заряженной поверхности, согласуются с экспериментом [8]. В этом случае пространственный заряд в объеме положителен. Этот пространственный заряд описывается уравнением Пуассона. Поскольку оксид в целом нейтрален, поверхностный заряд по величине равняется объемному пространственному заряду. Поскольку для аналитического решения уравнения для зависимости [Pr³⁺]_s- $P(O_2)$ требуется лишь знание интегрального пространственного заряда, нет нужды детально решать уравнение распределения пространственного заряда, следовательно, не требуется проводить двойное интегрирование уравнения Пуассона. Решение уравнений для зависимости [Pr³⁺]_с- $P(O_2)$ при условиях, что (а) кислород равновесно обменивается с окружающей средой, (б) взаимодействие Pr-Pr ничтожно мало, (в) поверхностный слой заряжен отрицательно, образуя двойной слой с положительно заряженным объемом, и (г) хемосорбция кислорода ничтожно мала (из-

ЭЛЕКТРОХИМИЯ том 59 № 3 2023

за того, что в РФЭС-измерениях применяется сверхвысокий вакуум) дает [8]:

$$P_{\rm s}^4 = e^{f_{\rm s}\delta_{\rm s}/kT}K_{\rm s}(T)(P_{0,{\rm s}}-P_{\rm s})^2 P({\rm O}_2)^{-1/2}, \qquad (3)$$

где $P_{\rm s} = [{\rm Pr}^{3+}]_{\rm s}$ в обозначениях Крегера–Винка равняется $\left[{\rm Pr}_{\rm Ce} \right]_{\rm s}$. $P_{0,{\rm s}}$ – полная концентрация ионов Pr на поверхности, в то время как в состояниях ионизации 4+ или 3+ находится номинально 10% катионов, $K_{\rm s}(T)$ – константа, пропорциональная константе реакции восстановления для стехиометрической поверхности, $\delta_{\rm s}$ – отклонение от стехиометрии в поверхностном слое, и $f_{\rm s}\delta_{\rm s}$ –

изменение энтальпии восстановления ΔH_s^0 с ростом нестехиометрии поверхности, как это было показано для объема [9]:

$$\Delta H_s^0(\delta_s) = \Delta H_s^0(0) + f_s \delta_s. \tag{4}$$

На рис. 3 показан фитинг теории (уравнение (2)) и экспериментальных результатов [3]. Он дает $f_s = 0$ и долю катионов $P_{0,s} = 0.105$, что близко к номинальному значению 0.1. Исчезновение f_s указывает на то, что энтальпия поверхностного восстановления не чувствительна к изменениям стехиометрии в интервале $0 < \delta_s < 0.05$ при температуре эксперимента 450°С. Это может быть вызвано более низкой энергией реакции поверхностных дефектов и повышенным дефектообразованием из-за разупорядочения, не зависящего от нарушений стехиометрии. Предельное уравнение для высокого давления кислорода ($P_s \ll P_{0,s}$) таково: $P_s = [\Pr^{3+}]_s \propto P(O_2)^{-1/8}$.

На рис. 3 также показано, что концентрация ионов Pr^{3+} в нейтральном объеме, как функция $P(O_2)$, отличается от случая поверхности: она дается уравнением

$$P_{\rm b}^3 = 2e^{f_{\rm b}\delta_{\rm b}}K_{\rm b}(T)(P_{0,{\rm b}} - P_{\rm b})^2 P({\rm O}_2)^{-1/2}, \qquad (5)$$

Рис. 3. Зависимость $[Pr^{3+}] = [Pr'_{Ce}]$ от $P(O_2)$ в РСО. Сплошные линии – поверхность, пунктир – объем. \blacksquare – экспериментальные точки при 450°C [3].

где $P_{\rm b} = [\Pr^{3+}]_{\rm b} = \left[\Pr'_{\rm Ce}\right]_{\rm b}$, а нижним индексом "b" обозначены параметры нейтрального объема, т.е., лежащего за пределами области пространственного заряда. Уравнение (5) применяется при $f_{\rm b} = -6 \ {}^{3}\text{B}/\delta_{\rm b}$ и $P_{0,\,\rm b} = 0.103$. Предельное уравнение для высокого давления кислорода таково: $[\Pr^{3+}]_{\rm b} \propto P(O_2)^{-1/6}$ [3].

Различие между поверхностью и объемом состоит прежде всего в асимптотическом поведении на предельно высоких $P(O_2)$: $[\Pr^{3+}]_s \propto P(O_2)^{-1/8}$ для поверхностного слоя, в сравнении с формулой $[\Pr^{3+}]_b \propto P(O_2)^{-1/6}$ для объема. К тому же концентрация восстановленных ионов \Pr^{3+} у поверхности сохраняется при более высоких $P(O_2)$, чем в объеме. Это объясняется более слабыми связями в поверхностном слое, обеспечивая потерю кислорода, поэтому-то концентрация восстановленных ионов \Pr^{3+} у поверхности и сохраняется при более высоких $P(O_2)$, чем в объеме.

В экспериментах работы [3] давление кислорода в поверхностном слое контролировали электрохимическим методом; оно достигало 10^{-5} атм. Давление кислорода в газовой фазе задавалось условиями РФЭС-измерений, а они проводились в сверхвысоком вакууме. Это показывает, что поверхность не находится в равновесии с окружающей средой. Она находится в равновесии только с объемом.

В отличие от случая SDC, в PCO концентрация допанта на поверхности и в объеме одинакова (~10% катионов). Это может быть результатом метода, примененного при создании слоя PCO, – импульсного лазерного осаждения на подложке при 750°C, с последующим тестированием при 450°C [3]. О применении отжига не сообщалось. В случае SDC допированный оксид также готовили методом импульсного лазерного осаждения на подложку, на этот раз при 650°C, но затем следовал отжиг при 650°C в течение 1 ч [2]. Очевидно, отжиг приводил к различию концентраций в объеме и на поверхности.

4. ЗАКЛЮЧЕНИЕ

Зависимости от давления кислорода концентраций дефектов – Ce³⁺ в Sm_{0.2}Ce_{0.8}O_{1.9-δ} (SDC) и Pr^{3+} в $Pr_{0,1}Ce_{0,9}O_{2-\delta}(PCO)$ – в мономолекулярном поверхностном слое и в объеме сильно различаются. Поверхность SDC становится сильно восстановленной при относительно высоких $P(O_2)$, при которых объем SDC восстановлен не очень сильно. На сильно восстановленной поверхности SDC экспериментальная зависимость $[Ce^{3+}]_{s} - P(O_{2})$ [2] объясняется тем, что "металлизированная" поверхность приблизительно нейтральна. Избыточный электрон на $Ce^{3+} = Ce'_{Ce}$, сгенерированный восстановлением катиона-хозяина Се4+, делокализуется при высокой концентрации на восстановленной поверхности. Из-за металлизации поверхности зависимость $[Ce^{3+}]_s - P(O_2)$ очень слабая.

Фитинг теоретических расчетов и экспериментальных данных для SDC дает представление о ряде параметров [5]. (1) Концентрация акцептора Sm³⁺ на поверхности (доля катионов 0.28) выше, чем в объеме (0.2) (что подтверждается экспериментально). Следующие параметры доступны для экспериментального определения: (2) поверхность металлизирована, (3) поверхность нейтральна, (4) плотность электронных состояний на единицу энергии и в единице площади поверхности равняется $g_s = 1.4 \times 10^{15}$ эВ⁻¹ см⁻², (5) эффективная масса электрона равняется $m_{\rm eff, s} = 3.3 m_{\rm e}$, (6) восстановленная поверхность представляет собой кубическую гранецентрированную α-фазу с предельно высокой концентрацией вакансий V_{s. max}, (7) хотя диаграмма восстановленной α-фазы и похожа на диаграмму объема, но реализуется она при гораздо более высоком давлении кислорода, чем в объеме.

В случае РСО при рассматриваемых относительно высоких $P(O_2)$ катионы "хозяина" Ce⁴⁺ устойчивы, в то время как ионы допанта Pr⁴⁺ восстанавливаются до Pr³⁺. Экспериментальные соотношения для поверхности [3] объясняются [8] полупроводниковым характером поверхности и объема и переносом заряда с поверхности в объем с образованием двойного слоя, в котором поверх-

ность заряжена отрицательно. Для теоретического расчета требуется только частное решение уравнения Пуассона лля пространственного заряда в объеме. Соотношение для зависимости $[\Pr^{3+}]_{s} - P(O_{2})$ на поверхности отличается от такового $[\Pr^{3+}]_{h} - P(O_{2})$ в объеме; пределы для высоких $P(O_2)$ также различны. Ионы Pr^{3+} на поверхности сохраняются при более высоких $P(O_2)$, чем в объеме, благодаря более низкой энергии образования, чем в объеме [3]. При описанных условиях эксперимента энтальпия восстановления поверхности РСО не чувствительна к отклонениям от стехиометрии, в отличие от энтальпии восстановления объема, которая при отклонениях от стехиометрии снижается.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана институтом Технион, грант № 2023320.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет, что у него нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Oswald, S., Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2013. March 15.

- 2. Chueh, W.C., McDaniel, A.H., Grass, M.E., Hao, Y., Jabeen, N., Liu, Z., S. Haile, M., McCarty, K.F., Bluhm, H., and El Gabaly, F., Highly Enhanced Concentration and Stability of Reactive Ce³⁺ on Doped CeO₂ Surface Revealed in Operando, Chem. Mater., 2012, vol. 24, p. 1876.
- 3. Lu, O., Vardar, G., Jansen, M., Bishop, S.R., Waluvo, I., Tuller, H.L., and Yildiz, B., Surface Defect Chemistry and Electronic Structure of Pr_{0.1}Ce_{0.9}O_{2-δ} Revealed in Operando, Chem. Mater., 2018, vol. 30, p. 2600.
- 4. Devreese, J.T. and Peeters, F.M., Electron-phonon interaction in two-dimensional systems: polaron effects and screening, in: Phys. Two-Dimensional Electron Gas, Springer USA, 1987, p. 131–182.
- 5. Riess, I., Analysis of point defect concentrations in highly reduced, monomolecular surface layer of doped ceria, Solid State Ionics, 2021, vol. 373, p. 115791.
- 6. Ricken, M., Nölting, J., and Riess, I., Specific Heat and Phase Diagram of Non Stoichiometric Ceria (CeO₂₋₈), J. Solid State Chem., 1984, vol. 54, p. 89.
- 7. Stelzer, N., Nölting, J., and Riess, I., Phase Diagram of Nonstoichiometric 10 mol. % Gd₂O₃ Doped Cerium Oxide Determined from Specific Heat Measurements, J. Solid State Chem., 1995, vol. 117, p. 392.
- 8. Riess, I., Analysis of the unique dependence on oxygen pressure of Pr³⁺ concentration in the surface of Pr doped ceria, Solid State Ionics, 2022, vol. 380, p. 115899.
- 9. Chatzichristodoulou, C. and Hendriksen, P.V., Analysis of the unique dependence on oxygen pressure of Pr^{3+} concentration in the surface of Pr doped ceria, J. Electrochem. Soc., 2010, vol. 157, p. B481.

123