УДК 544.653.3

ОДНОСТАДИЙНЫЙ ПЛАЗМОЭЛЕКТРОХИМИЧЕСКИЙ СИНТЕЗ НАНОКОМПОЗИТОВ МАЛОСЛОЙНЫХ ГРАФЕНОВЫХ СТРУКТУР С ОКСИДАМИ МАРГАНЦА – ЭЛЕКТРОКАТАЛИЗАТОРОВ РЕАКЦИИ ВОССТАНОВЛЕНИЯ КИСЛОРОДА

© 2023 г. В. К. Кочергин^{а,} *, Р. А. Манжос^а, А. Г. Кривенко^а

^аИнститут проблем химической физики РАН, просп. Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия *e-mail: kocherginvk@yandex.ru Поступила в редакцию 05.07.2022 г. После доработки 28.09.2022 г. Принята к публикации 06.10.2022 г.

Методом плазмоэлектрохимического расщепления графита в одностадийном процессе синтезирован нанокомпозит, представляющий собой малослойные графеновые структуры, поверхность которых декорирована наночастицами оксидов марганца. Установлено, что данный материал обладает высокой электрокаталитической активностью в реакции восстановления кислорода благодаря присутствию марганца в степенях окисления +2 и +3, а также карбонильных (хинонных) функциональных групп на поверхности графеновых структур.

Ключевые слова: электролизная плазма, малослойные графеновые структуры, реакция восстановления кислорода, оксиды марганца, электрокатализ

DOI: 10.31857/S0424857023040096, EDN: AOHMCL

введение

Реакция восстановления кислорода (РВК) является ключевым процессом в системах преобразования и хранения энергии, таких как топливные элементы (ТЭ) и металл-воздушные аккумуляторы [1-4]. В настоящее время реальное применение в качестве катализаторов РВК в катодах ТЭ находят мелкодисперсные металлы платиновой группы, нанесенные на поверхность углеродных носителей различной морфологии, благодаря высокой электрокаталитической активности [5, 6]. Несмотря на все преимущества, такие катализаторы имеют и ряд существенных недостатков: высокие производственные затраты, постепенное истощение запасов платины, деградация характеристик и относительно медленная кинетика реакции восстановления кислорода [3, 7]. Так, константа скорости РВК примерно на пять порядков ниже, чем константа скорости реакции окисления водорода. Это требует гораздо более высокого содержания Pt в катодах ТЭ, чем в анодах, что делает актуальной задачей поиск более активных и долговечных бесплатиновых электрокатализаторов РВК [8]. Поэтому поиск и создание не содержащих благородных металлов, экономически приемлемых, высокоэффективных и стабильных катализаторов РВК является

целью огромного количества исследований и успешное решение этой задачи во многом определит будущее ТЭ.

В качестве одного из основных подходов к решению проблемы создания бесплатиновых катализаторов рассматривается использование оксидов переходных металлов, так как они наряду с высокой каталитической активностью обладают такими преимуществами, как низкая стоимость, нетоксичность и практически неисчерпаемые природные запасы [9–11]. В этом плане одними из наиболее часто исследуемых соединений являются оксиды марганца, которые могут кристаллизоваться в виде MnO, Mn₂O₃, Mn₃O₄, MnO₂ и др. [12]. Степень окисления и расположение ионов марганца в элементарной ячейке определяют структурные, электрические и магнитные свойства материалов. Наибольшее применение в составе катализаторов РВК находит Mn₃O₄ [10]. Помимо катализа РВК, благодаря полиморфизму и смешанной валентности марганца, Mn₃O₄ является основным компонентом катализаторов окисления метана и моноксида углерода [13], NO_x и летучих органических соединений [14].

Известно, что оксиды марганца, в частности Mn_3O_4 , обладают низкой электронной проводимостью, поэтому их, как правило, тем или иным

способом наносят на поверхность различных наноформ углерода, обладающих высокой электропроводностью. В качестве таких углеродных материалов рассматривают малослойные графеновые структуры (МГС), специальные виды сажи, различные варианты нанотрубок, нановолокон, фуллеренов и т.д. Использование этих наноматериалов обусловлено их уникальными характеристиками: большой величиной удельной поверхности, высокой электро- и теплопроводностью, прочностью и зачастую химической и электрохимической инертностью. По мнению большинства исследователей, нанокомпозиты на основе углеродных наноформ с оксидами марганца имеют реальные перспективы для использования в катодах ТЭ в качестве катализаторов РВК.

На сегодняшний день предложено много способов получения подобных материалов, однако практически все включают несколько кардинально различающихся технологических стадий. Как правило, на первом этапе для синтеза Mn₃O₄ применяют высокотемпературные или гидротермальные методы. Оксиды, гидроксиды, карбонаты, нитраты и сульфаты марганца могут служить прекурсорами для получения Мп₃O₄ при температуре около 1000°С [15]. На втором этапе полученные наночастицы объединяют с проводящим материалом и наиболее распространенными способами для этого являются термическая обработка в среде подходящего органического или неорганического растворителя. Если в случае углеродного субстрата используют графен, то его предварительно получают путем восстановления оксида графена, который в свою очередь получают по методу Хаммерса [16]. Все это говорит о том, что на сегодняшний день нет простого и экологически приемлемого одностадийного синтеза таких нанокомпозитов. Хотя высокая каталитическая активность в РВК нанокомпозитов углеродных структур с оксидами марганца не вызывает сомнения, упоминаний о существовании одностадийного метода получения таких катализаторов в настоящее время в литературе обнаружить не удалось. В связи с этим, использование электрохимического подхода может стать прорывом в области получения высокоэффективных, стабильных и, не в последнюю очередь, обладающих низкой стоимостью электродных материалов для ТЭ. Электрохимический подход является привлекательным для исследователей с точки зрения разнообразия условий и режимов синтеза углеродных наноструктур: использование широкого спектра всевозможных электролитов, электродов различной геометрической формы и морфологии, широкого диапазона температур, а также многочисленные варианты наложения потенциала, включающие использование моно- или биполярных схем его подключения. Все это нередко позволяет эффективно синтезировать МГС с заданными характеристиками в рамках одностадийного только электрохимического процесса. При подаче на электрод напряжения более 15 В может возникнуть электрический разряд, порождающий образование плазменного состояния вешества на и вблизи границы раздела фаз. Взаимодействие плазмы и жидкости представляет собой очень сложную междисциплинарную область исследований, которая включает как физику плазмы, так и гидродинамику, тепломассоперенос, фотохимию, химию радикалов и стабильных веществ. Принято считать, что в электрохимических приложениях исследователи имеют дело с неравновесной плазмой, в которой температура электронов может достигать 100000 К, а температура газа может поддерживаться на уровне комнатной. Такой вид плазмы широко используется во многих областях промышленности [17]. Что касается экспериментальных работ по исследованию плазмы, создаваемой импульсным, высокочастотным или постояннотоковым электрическим разрядом на границе раствор/газовая среда (микроплазменный разряд), либо в объеме электролита вблизи границы с электродом (так называемая электролизная плазма), в мировой литературе имеются многочисленные публикации по рассмотрению различных аспектов ее возможного использования в промышленных технологиях: в водоподготовке и очистке промышленных стоков [18], для повышения прочностных и антикоррозионных характеристик поверхности изделий из металлов и сплавов [19], для синтеза наночастиц различной природы [20].

В настоящей работе плазмоэлектрохимическое расщепление графита при чередовании импульсов высокого напряжения различной полярности было впервые использовано для одностадийного получения нанокомпозита МГС с оксидами марганца и изучена его электрокаталитическая активность в PBK.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты по расшеплению графита импульсами высокого напряжения проводили в двухэлектродной стеклянной термостатируемой ячейке в водных растворах электролитов: МГС синтезировали в 1 М Na₂SO₄, нанокомпозит малослойных графеновых структур с оксидами марганца $(Mn_xO_v/M\Gamma C) - B \ 1 \ M \ Na_2SO_4 + 0.01 \ M \ MnSO_4. B$ качестве электродов использовали стержни промышленного графита ГР-280. Последовательность импульсов различной полярности напряжением (U) 300 и -150 В с временем нарастания ~0.5 мкс и длительностью 10 мс подавалась на существенно отличающиеся по размерам графитовые электроды, погруженные в раствор электролита. При этом образование электролизной плазпроисходило при достижении высокой ΜЫ

плотности тока (>20 A/см²) на электроде меньшего размера. При подаче импульсов напряжения различной полярности на графитовые электроды возникала чередующаяся анодно-катодная плазма с частотой повторения 4 Гц. Для предотвращения вскипания раствора, синтез проводили при охлаждении ячейки и перемешивании раствора. Более детальное описание основных физико-химических процессов, происходящих в результате образования электролизной плазмы, приведены в [19, 21]. По окончании процесса для очистки суспензии от следов электролита применяли многократное центрифугирование. На заключительном этапе полученную водную дисперсию подвергали ультразвуковому воздействию в течение 10-20 мин, после чего получали устойчивую суспензию МГС (~1 мг/мл) или нанокомпозита МГС с оксидами марганца (~10 мг/мл).

Электронные микрофотографии исследуемых образцов были получены на сканирующем электронном микроскопе (СЭМ) Zeiss SUPRA 25 (Carl Zeiss, Германия). Поверхностные концентрации и природу кислородсодержащих функциональных групп (КФГ) наряду с характеризацией оксидов марганца проводили методом рентгеновской фотоэлектронной спектроскопии (РФЭС). РФЭ-спектры получали с помощью Specs PHOIBOS 150 MCD (Specs, Германия) с использованием MgK_{α} -излучения (1253.6 эВ). Давление в рабочей камере спектрометра не превышало 4 × × 10⁻⁸ Па. Исследованная площадь составляла 300-700 мкм², а информационная глубина — 1— 2 нм. Спектры интерпретировали с использованием литературных данных для соответствующих оксидов и углеродных материалов. Образцы для исследования методом СЭМ и РФЭС готовили путем покапельного нанесения суспензии, предварительно обработанной в ультразвуковой ванне, на кремниевую подложку с последующим высушиванием при комнатной температуре в атмосфере воздуха. Электронно-микроскопические изображения высокого разрешения, изображения темнопольной сканирующей просвечивающей электронной микроскопии, спектры характеристического рентгеновского излучения в сканирующем режиме и спектры характеристических потерь энергии электронами (СХПЭЭ) были получены при помощи просвечивающего электронного микроскопа (ПЭМ) Titan Themis Z (Thermo Fisher Scientific, Нидерланды), оснащенного корректором сферических аберраций DCOR+ и системой из 4 широкоугольных рентгеновских детекторов Super-X. Ускоряющее напряжение источника составляло 200 кВ. Образцы для исследования методом ПЭМ готовили путем диспергирования порошка в небольшом количестве ацетона с последующим нанесением полученной суспензии на медную сетку, покрытую дырчатым углеродным

ЭЛЕКТРОХИМИЯ том 59 № 4 2023

слоем Formvar. Рентгенофазовый анализ (**РФА**) был проведен с использованием дифрактометра Aeris (Malvern PANalytical B.V., Нидерланды) с Cu K_{α} -излучением ($\lambda = 1.5406$ Å). Термогравиметрический анализ (**ТГА**) проводили с помощью Perkin Elmer Pyris 1 (TA Instrument, CША). Образец нагревали в атмосфере воздуха от 25 до 800°C со скоростью нагрева 10°C/мин.

Электрокаталитическую активность исследуемых образцов в РВК оценивали методом вращающегося дискового электрода (ВДЭ). Электрохимические измерения проводили в стандартной трехэлектродной ячейке на установке с вращающимся дисковым электродом ВЭД-06 (Volta, Pocсия) с использованием потеншиостата IPC Pro-L (Институт физической химии и электрохимии им. А.Н. Фрумкина, Россия). Рабочим электродом служил диск диаметром 3 мм из СУ, запрессованный в тефлон, вспомогательным электродом была платиновая проволока, в качестве электрода сравнения использовался хлоридсеребряный электрод, относительно которого приведены все величины потенциалов (Е). 7 мкл суспензии МГС (1 мг/мл) или $\text{Mn}_{r}\text{O}_{\nu}/\text{M\GammaC}$ (4 мг/мл) с добавлением полимера Nafion в количестве 0.01 мас. %, выступающего в качестве связующего, наносили на поверхность рабочего электрода, предварительно отполированного на 1 мкм порошке Al₂O₃, а затем высушивали при комнатной температуре в течение ~2 ч. Измерения проводили в насыщенном О₂ 0.1 М растворе КОН со скоростью развертки потенциала v = 10 мB/c и частотах вращения электрода 900-6400 об./мин. Во всех случаях анализировались кривые, полученные вычитанием фоновых кривых, измеренных в продутом аргоном растворе. Число электронов *n*, участвующих в электродной реакции, определяли в ходе анализа вольт-амперных кривых с использованием уравнения Коутецкого-Левича [22]:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d},$$
 (1)

$$j_{\rm k} = n F k c^0, \tag{2}$$

$$j_{\rm d} = 0.62 n F D^{2/3} \omega^{1/2} \upsilon^{-1/6} c^0, \qquad (3)$$

где $j_k u j_d$ – плотности кинетического и предельного диффузионного тока соответственно, $[j] = MA/cm^2$; k – константа скорости PBK, [k] = cm/c; ω – угловая скорость вращения электрода, $[\omega] = pad/c$; F – число Фарадея, F = 96485 Кл/моль; D – коэффициент диффузии кислорода в растворе 0.1 М КОН, $D = 1.9 \times 10^{-5}$ см²/c; υ – кинематическая вязкость раствора 0.1 М КОН, $\upsilon = 0.01$ см²/c; c^0 – объемная концентрация растворенного кислорода, $c^0 = 1.2 \times 10^{-3}$ М в растворе 0.1 М КОН [23, 24].

Рис. 1. СЭМ- (а, б) и ПЭМ-изображения (в, г) образцов МГС (а) и $Mn_xO_v/M\Gamma C$ (б-г).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Процесс плазмоэлектрохимического расшепления графита проводили в режиме чередующихся анодно-катодных импульсов [25], в результате чего получали МГС и нанокомпозит Mn_xO_y/МГС. На рис. 1 приведены СЭМ- и ПЭМ-изображения образца Mn_xO_y/MГС, а также образца МГС, полученного при таких же условиях и параметрах синтеза в растворе без добавления соли марганца. Из СЭМ-изображений видно, что в обоих случаях образцы представляют собой частично агломерированные, тонкие графеноподобные структуры с характерными латеральными размерами частиц от 0.05 до 0.5 мкм, при этом в случае $Mn_rO_{\nu}/M\Gamma C$ поверхность покрыта наночастицами оксида марганца, которые имеют игольчатую форму и представляют собой сплошной рыхлый осадок, в котором трудно различить отдельные оксидные наночастицы. Из анализа ПЭМ-изображений было установлено, что в обоих случаях МГС имеют толщину порядка 2-5 нм, причем графеновые слои зачастую собраны в пакеты толщиной от 4 до

15 слоев, которые могут подвергаться значительной деформации. Мп-содержащие фазы в $Mn_xO_y/M\Gamma C$ присутствуют в виде объемных хлопьевидных структур (рис. 1), что также подтверждается изображениями темнопольной сканирующей просвечивающей электронной микроскопии, которые показывают, что структура некоторых наночастиц близка к таковой для Mn_3O_4 . Карта пространственного распределения элементов указывает на то, что марганец и кислород распределяются на поверхности равномерно, что говорит об образовании наночастиц оксидов марганца, а не металлической фазы Mn.

На рис. 2 приведены С 1s РФЭ-спектры высокого разрешения исследуемых образцов. Отнесение пиков деконволюции С 1s спектров проводили в соответствии с [26, 27]. Основными линиями, присутствующими в С 1s РФЭ-спектрах, являются линии, относящиеся к атомам углерода в состоянии sp^2 (284.6 ± 0.2 эВ) и sp^3 -гибридизации (285.7 ± 0.2 эВ). При этом в роли КФГ на поверхности МГС выступают гидроксильные/эпок-

Рис. 2. С 1*s* РФЭ-спектры высокого разрешения МГС (а) и $Mn_xO_v/M\Gamma C$ (б).

сидные (С–ОН/С–О–С, 286.6 эВ), карбонильные (С=О, 287.7 эВ) и карбоксильные (СООН, 288.8 эВ) группы. В табл. 1 представлен элементный состав поверхности, полученный методом РФЭС, для $Mn_xO_y/M\Gamma C$ и МГС. Видно, что оба образца содержат в основном углерод и кислород, а главное различие между ними заключается в наличии марганца в $Mn_xO_y/M\Gamma C$.

Результаты РФА для Мп_гО_и/МГС свидетельствуют об образовании MnO и Mn₃O₄ на поверхности МГС. На рентгенограмме (рис. 3) наблюдаются четко определяемые пики при 32.4°, 36.1° и 59.6°, отвечающие плоскостям (103), (211) и (224) Mn₃O₄ (PDF-карта № 00-024-0734) соответственно, а также при 34.9°, 40.5° и 58.6°, отвечающие плоскостям (111), (200) и (220) MnO (PDF-карта № 04-005-4310) соответственно. Кроме того, пик при 26.3° относится к дифракционному сигналу кристалла графита и соответствует плоскости (002), согласно карте PDF № 00-056-0159. Исходя из закона Брэгга–Вульфа ($n\lambda = 2d\sin\theta$, где $n - \pi - \pi$ рядок дифракционного максимума, λ – длина волны, d – межплоскостное расстояние, θ – угол скольжения), расчетное межплоскостное расстояние близко к величине 0.34 нм, характерной для графеновых структур.

В работе была предпринята попытка установления степени окисления Mn в наночастицах Mn_xO_y на поверхности MГС из анализа РФЭспектра. На рис. 4а приведен спектр высокого разрешения Mn 2*p*, на котором присутствуют два основных пика при 641.8 ($2p_{3/2}$) и 653.5 эВ ($2p_{1/2}$) с энергией спин-орбитального расщепления 11.7 эВ,

которая характерна для оксидов марганца [28] и подтверждает результаты РФА. Однако интерпретация РФЭ-спектров оксидов и оксогидроксидов марганца, с точки зрения фактической степени окисления. является сложной задачей из-за малого влияния степени окисления марганца на сдвиг энергии связи основного пика $2p_{3/2}$. Тем не менее положение пика $2p_{3/2}$ (641.8 эВ) характерно для образования Mn₃O₄ [29-32], что также согласуется с результатами РФА. Мn₃O₄ может представлять собой MnO-Mn₂O₃ (т.е., Mn⁺²/Mn⁺³) или 2MnO-MnO₂ (т.е., Mn⁺²/Mn⁺⁴). В отличие от соединений Mn⁺², четкое различие между соединениями Mn⁺³ и Mn⁺⁴ с помощью РФЭС провести трудно, тем более, когда два или более типов оксидных частиц присутствуют одновременно в образце [33]. Разложение пика 2р_{3/2} с использованием смешанных функций Гаусса-Лоренца также не дает точного ответа об образовании Mn⁺³ или Mn⁺⁴. Таким образом, результаты РФЭСанализа частично подтверждают данные РФА, однако не позволяют определить степень окисления марганца на поверхности МГС. По этой причине был проведен анализ с использованием

Таблица 1. Концентрация элементов на поверхности $M\Gamma C$ и $Mn_x O_v / M\Gamma C$ (по данным $P\Phi \Theta C$)

Образец	С, ат. %	О, ат. %	S, ат. %	Мп, ат. %
МГС	83.1	15.7	1.2	_
$Mn_xO_y/M\Gamma C$	78.0	19.9	1.0	1.1

Рис. 3. Рентгенограмма нанокомпозита $Mn_xO_v/M\Gamma C$.

Рис. 4. Мп 2*p* РФЭ-спектр высокого разрешения нанокомпозита $Mn_xO_y/M\Gamma C$ (а); спектры СХПЭЭ с различных областей образца $Mn_xO_y/M\Gamma C$ (*1*, *2*), а также спектры Mn_2O_3 (*3*) и MnO (*4*), приведенные в [34] (б); ТГА-кривая для $Mn_xO_y/M\Gamma C$ (в).

спектроскопии характеристических потерь энергии электронами. На рис. 46 приведены СХПЭЭспектры, которые показывают, что валентное состояние Mn соответствует таковому и для Mn_3O_4 (кривая *I*), и для MnO (кривая *2*) [34]. На рис. 46 также приведены спектры Mn_2O_3 (кривая *3*) и MnO (кривая *4*), полученные в высокоцитируемой работе [34]. Для частиц Mn_3O_4 линия Mn-L₃ четко состоит из двух основных пиков, примерно соответствующих вкладу Mn^{+2} и Mn^{+3} . Положение, интенсивность и соотношение пиков Mn-L₃ и Mn-L₂ свидетельствуют об образовании Mn₃O₄ именно в виде MnO–Mn₂O₃ (т.е., Mn⁺²/Mn⁺³). Из спектров СХПЭЭ также видно, что помимо оксида Mn₃O₄ в образце присутствует MnO. Таким образом, на основании результатов РФА, РФЭС и СХПЭЭ можно заключить, что на поверхности МГС находится 2 типа оксидных частиц: MnO – которые являются малоактивными в PBK, а также Mn₃O₄ – в свою очередь обладающие высокой

Рис. 5. РВК в насыщенном O₂ растворе 0.1 М КОН при v = 10 мВ/с и частоте вращения электрода 2000 об./мин (а); соответствующие n(E)-кривые (б).

каталитической активностью в PBK [10]. По результатам ТГА, суммарное массовое содержание оксидов составило около 40 мас. % (рис. 4в). При этом следует отметить, что установить соотношение MnO/Mn_3O_4 в композите на данный момент не представляется возможным.

На основании сравнения электронно-микроскопических изображений, а также РФЭ-спектров С 1s для МГС и Mn_xO_v/МГС можно предположить, что процесс расшепления графита существенно не изменяется при добавлении в раствор солей марганца. Качественное описание такого расщепления при воздействии электролизной плазмы приведено в [25]. Было также показано, что важным обстоятельством, сопутствующим электрохимическому расщеплению графитового электрода, является атака его поверхности активными интермедиатами, в основном ОН- и Н-радикалами, образующимися при окислении и восстановлении воды соответственно, что приводит к функционализации поверхности МГС кислородсодержащими функциональными группами, см. напр. [25]. По этой причине проведем качественное рассмотрение только процесса декорирования поверхности МГС оксидами марганца. На электроде с малой площадью контактируемой с электролитом поверхности, где происходит генерация электролизной плазмы, при катодном импульсе потенциала наряду с выделением водорода может происходить осаждение на поверхности графита металлических частиц марганца [35]. При этом важно отметить, что в приэлектродном слое могут находиться ионы Mn^{2+} , к моменту окончания импульса не претерпевшие восстановления до металлического марганца [36]. При смене полярности импульса электрод становится анодом и происходит ряд характерных анодных реакций: выделение кислорода, а также окисление металлических частиц Mn и ионов Mn^{2+} с образованием сложного оксида Mn_3O_4 [37–40], в котором могут участвовать активные радикалы • OH, являющиеся интермедиатами реакции выделения кислорода, а также образующиеся в результате диссоциации водяного пара в электрическом разряде [41].

Активность синтезированных катализаторов в PBK исследовали методом вращающегося дискового электрода в насыщенном O_2 растворе 0.1 M KOH. На рис. 5а приведены вольт-амперные зависимости для МГС, $Mn_xO_y/MГС$, а также для исходного СУ. Из рисунка видно, что электрокаталитическая активность $Mn_xO_y/MГС$ выше, чем для МГС и исходного СУ, которая проявляется в уменьшении перенапряжения PBK и в увеличении общего тока реакции, где значительный рост наблюдается в интервале потенциалов от -200 до -300 мВ, что, несомненно, важно при использовании катализаторов такого типа в катодах топливных элементов. Потенциалы полуволны первой волны восстановления кислорода для исходно-

го СУ, МГС и $Mn_xO_y/MГС$ составляют —310, —270 и —220 мВ соответственно. Анализ экспериментальных данных по уравнению Коутецкого—Левича показал, что общее количество электронов, участвующих в РВК на $Mn_xO_y/MГС$, составляет около 3.8 в интервале *E* от —300 до —500 мВ, что свидетельствует о заметной электрокаталитической активности данного образца.

Что касается механизма, то следует отметить, что PBK является сложным многостадийным процессом, который в щелочной среде может приводить к образованию двух стабильных продуктов — гидропероксид-иона и/или гидроксидиона:

$$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-, \qquad (4)$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-.$$
 (5)

Наиболее общая схема параллельно-последовательных реакций может быть представлена следующим образом [42]:

На основании полученных в работе результатов мы предполагаем, что на $Mn_xO_y/M\Gamma C$ первая волна отвечает параллельному протеканию реакций (4) и (5), причем преимущественно протекает полное восстановление кислорода до ионов OH⁻, а также в малой степени неполное двухэлектрон-

ное восстановление до ионов НО₂. При этом гидропероксид-ионы могут далее восстанавливаться до воды (реакция 6) [43] или диспропорционировать (реакция 7) на наночастицах Mn₃O₄. Согласно современным представлениям, в нашем случае активными центрами каталитического восстановления кислорода могут быть карбонильные (хинонные) группы [44, 45] и наночастицы Mn₃O₄ на поверхности углеродной подложки. Однако количественно определить вклад каждого их этих компонентов в каталитическую активность композита представляется затруднительным. При этом мы можем полагать, что при перекрывании диффузионных радиусов более активного катализатора, в нашем случае Mn_3O_4 , активность КФГ будет подавлена, т.е. при достаточно высокой поверхностной концентрации Mn₃O₄ на таких центрах РВК практически не протекает, см. напр. [46]. Из этого следует, что наиболее реалистичным представляется предположение об усилении каталитической активности оксидов марганца при их нахождении на поверхности МГС, функционализированной карбонильными группами.

И хотя точный механизм работы активного центра электрокатализа PBK установить сложно, не вызывает сомнений, что высокая каталитическая активность обусловлена присутствием оксидных наночастиц марганца, а именно Mn₃O₄.

ЗАКЛЮЧЕНИЕ

Предложен новый способ одностадийного синтеза бесплатиновых катализаторов PBK путем плазмоэлектрохимического расщепления графита в электролите на основе 1 M Na₂SO₄ с добавлением сульфата марганца. Показано, что катализатор представляет собой малослойные графеновые структуры толщиной 4—15 графеновых слоев, декорированные наночастицами оксидов марганца Mn_3O_4 и MnO. Выявлено, что полученный нанокомпозит обладает высокой электрокаталитической активностью в PBK, которая выражается в снижении перенапряжения PBK и протекании электродной реакции преимущественно по четырехэлектронному пути.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по теме Государственного задания АААА-А19-119061890019-5 с использованием оборудования Центра коллективного пользования ИПХФ РАН и Научного центра РАН в Черноголовке.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Yang, Z., Nie, H.G., Chen, X., Chen, X.H., and Huang, S.M., Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction, *J. Power Sources*, 2013, vol. 236, p. 238.

https://doi.org/10.1016/j.jpowsour.2013.02.057

2. Jaouen, F., Proietti, E., Lefevre, M., Chenitz, R., Dodelet, J.P., Wu, G., Chung, H.T., Johnston, C.M., and Zelenay, P., Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells, *Energy Environ. Sci.*, 2011, vol. 4, no. 1, p. 114.

https://doi.org/10.1039/c0ee00011f

 Shao, M.H., Chang, Q.W., Dodelet, J.P., and Chenitz, R., Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, *Chem. Rev.*, 2016, vol. 116, no. 6, p. 3594.

https://doi.org/10.1021/acs.chemrev.5b00462

4. Do, M.N., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.M., and Koifman, O.I., Electrochemical behavior of a number of bispyridyl-substituted porphyrins and their electrocatalytic activity in molecular oxygen reduction reaction, *J. Porphyrins Phthalo*- *cyanines*, 2016, vol. 20, p. 615. https://doi.org/10.1142/s1088424616500437

 Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, *Russ. Chem. Rev.*, 2015, vol. 84, no. 2, p. 159.

https://doi.org/10.1070/rcr4438

 Shao, Q., Li, F.M., Chen, Y., and Huang, X.Q., The Advanced Designs of High-Performance Platinum-Based Electrocatalysts: Recent Progresses and Challenges, *Adv. Mater. Interfaces*, 2018, vol. 5, no. 16, p. 1800486.

https://doi.org/10.1002/admi.201800486

- Wang, D.L., Xin, H.L.L., Hovden, R., Wang, H.S., Yu, Y.C., Muller, D.A., DiSalvo, F.J., and Abruna, H.D., Structurally ordered intermetallic platinum-cobalt coreshell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, *Nat. Mater.*, 2013, vol. 12, no. 1, p. 81. https://doi.org/10.1038/nmat3458
- 8. Liu, G., Li, X.G., Ganesan, P., and Popov, B.N., Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells, *Electrochim. Acta*, 2010, vol. 55, p. 2853.

https://doi.org/10.1016/j.electacta.2009.12.055

- Liang, Y.Y., Li, Y.G., Wang, H.L., Zhou, J.G., Wang, J., Regier, T., and Dai, H.J., Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, *Nat. Mater.*, 2011, vol. 10, no. 10, p. 780. https://doi.org/10.1038/nmat3087
- Bikkarolla, S.K., Yu, F.J., Zhou, W.Z., Joseph, P., Cumpson, P., and Papakonstantinou, P., A three-dimensional Mn₃O₄ network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media, *J. Mater. Chem. A*, 2014, vol. 2, no. 35, p. 14493. https://doi.org/10.1039/c4ta02279c
- Zhang, M.M., Li, R., Chang, X.X., Xue, C., and Gou, X.L., Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction, *J. Power Sources*, 2015, vol. 290, p. 25. https://doi.org/10.1016/j.jpowsour.2015.04.178
- 12. Lee, J.A., *New concise inorganic chemistry*, N.Y.: Van Nostrand Reinhold Co., 1977. 505 p.
- Stobbe, E.R., de Boer, B.A., and Geus, J.W., The reduction and oxidation behaviour of manganese oxides, *Catal. Today*, 1999, vol. 47, no. 1–4, p. 161. https://doi.org/10.1016/s0920-5861(98)00296-x
- Zwinkels, M.F.M., Jaras, S.G., Menon, P.G., and Griffin, T.A., Catalytic materials for high-temperature combustion, *Catal. Rev. Sci. Eng.*, 1993, vol. 35, no. 3, p. 319.
 https://doi.org/10.1080/01614040208012010

https://doi.org/10.1080/01614949308013910

- Vazquez-Olmos, A., Rodon, R., Rodriguez-Gattorno, G., Mata-Zamora, M.E., Morales-Leal, F., Fernandez-Osorio, A.L., and Saniger, J.M., One-step synthesis of Mn₃O₄ nanoparticles: Structural and magnetic study, *J. Colloid Interface Sci.*, 2005, vol. 291, no. 1, p. 175. https://doi.org/10.1016/j.jcis.2005.05.005
- 16. Hummers, Jr W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Amer. Chem. Soc., 1958, vol. 80,

ЭЛЕКТРОХИМИЯ том 59 № 4 2023

no. 6, p. 1339.

https://doi.org/10.1021/ja01539a017

- Liu, C.J., Vissokov, G.P., and Jang, B.W.L., Catalyst preparation using plasma technologies, *Catal. Today*, 2002, vol. 72, p. 173. https://doi.org/10.1016/s0920-5861(01)00491-6
- Yui, H., Someya, Y., Kusama, Y., Kanno, K., and Banno, M., Atmospheric discharge plasma in aqueous solution: Importance of the generation of water vapor bubbles for plasma onset and physicochemical evolution, *J. Appl. Phys.*, 2018, vol. 124, p. 103301. https://doi.org/10.1063/1.5040314
- Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Plasma electrolytic saturation of steels with nitrogen and carbon, *Surf. Coat. Technol.*, 2016, vol. 307, p. 1194. https://doi.org/10.1016/j.surfcoat.2016.06.027
- Morishita, T., Ueno, T., Panomsuwan, G., Hieda, J., Yoshida, A., Bratescu, M.A., and Saito, N., Fastest Formation Routes of Nanocarbons in Solution Plasma Processes, *Sci. Rep.*, 2016, vol. 6, p. 1. https://doi.org/10.1038/srep36880
- 21. Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses, *Instrum. Sci. Technol.*, 2019, vol. 47, no. 5, p. 535.

https://doi.org/10.1080/10739149.2019.1607750

- 22. Bard, A.J. and Faulkner, L.R., *Fundamentals and applications: Electrochemical methods*, N.Y.: Wiley, 2001. 864 p.
- Qu, L.T., Liu, Y., Baek, J.B., and Dai, L.M., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, *ACS Nano*, 2010, vol. 4, no. 3, p. 1321. https://doi.org/10.1021/nn901850u
- Jurmann, G. and Tammeveski, K., Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution, *J. Electroanal. Chem.*, 2006, vol. 597, no. 2, p. 119.

https://doi.org/10.1016/j.jelechem.2006.09.002

- 25. Kotkin, A.S., Kochergin, V.K., Kabachkov, E.N., Shulga, Y.M., Lobach, A.S., Manzhos, R.A., and Krivenko, A.G., One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides, *Mater. Today Energy*, 2020, vol. 17, p. 100459. https://doi.org/10.1016/j.mtener.2020.100459
- Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, *Carbon*, 2007, vol. 45, no. 7, p. 1558. https://doi.org/10.1016/j.carbon.2007.02.034
- 27. Gardner, S.D., Singamsetty, C.S.K., Booth, G.L., He, G.R., and Pittman, C.U., Surface characterization of carbon-fibers using angle-resolved XPS and ISS, *Carbon*, 1995, vol. 33, no. 5, p. 587. https://doi.org/10.1016/0008-6223(94)00144-0
- 28. Tan, B.J., Klabunde, K.J., and Sherwood, P.M.A., XPS studies of solvated metal atom dispersed catalysts—

evidence for layered cobalt manganese particles on alumina and silica, *J. Amer. Chem. Soc.*, 1991, vol. 113, no. 3, p. 855.

https://doi.org/10.1021/ja00003a019

- 29. An, G.M., Yu, P., Xiao, M.J., Liu, Z.M., Miao, Z.J., Ding, K.L., and Mao, L.Q., Low-temperature synthesis of Mn₃O₄ nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors, *Nanotechnology*, 2008, vol. 19, no. 27, p. 7. https://doi.org/10.1088/0957-4484/19/27/275709
- Apte, S.K., Naik, S.D., Sonawane, R.S., Kale, B.B., Pavaskar, N., Mandale, A.B., and Das, B.K., Nanosize Mn₃O₄ (Hausmannite) by microwave irradiation method, *Mater. Res. Bull.*, 2006, vol. 41, no. 3, p. 647. https://doi.org/10.1016/j.materresbull.2005.08.028
- Dicastro, V. and Polzonetti, G., XPS study of MnO oxidation, J. Electron. Spectrosc. Relat. Phenom., 1989, vol. 48, nos. 1–2, p. 117. https://doi.org/10.1016/0368-2048(89)80009-x
- 32. Murray, J.W., Dillard, J.G., Giovanoli, R., Moers, H., and Stumm, W., Oxidation of Mn(II)—initial mineralogy, oxidation-state and aging, *Geochim. Cosmochim. Acta*, 1985, vol. 49, no. 2, p. 463. https://doi.org/10.1016/0016-7037(85)90038-9
- 33. Ardizzone, S., Bianchi, C.L., and Tirelli, D., Mn₃O₄ and gamma-MnOOH powders, preparation, phase composition and XPS characterisation, *Colloids Surf. A Physicochem. Eng. Asp.*, 1998, vol. 134, no. 3, p. 305. https://doi.org/10.1016/s0927-7757(97)00219-7
- Laffont, L. and Gibot, P., High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn₃O₄ nanoparticles, *Mater. Charact.*, 2010, vol. 61, no. 11, p. 1268. https://doi.org/10.1016/j.matchar.2010.09.001
- Zhang, X., Zhang, X., Liu, Z., Tao, C., and Quan, X., Pulse current electrodeposition of manganese metal from sulfate solution, *J. Environ. Chem. Eng.*, 2019, vol. 7, p. 103010. https://doi.org/10.1016/j.jece.2019.103010
- Wei, Q., Ren, X., Du, J., Wei, S., and Hu, S., Study of the electrodeposition conditions of metallic manganese in an electrolytic membrane reactor, *Miner. Eng.*, 2010, vol. 23, p. 578.
 - https://doi.org/10.1016/j.mineng.2010.01.009
- Peng, T., Xu, L., and Chen, H., Preparation and characterization of high specific surface area Mn₃O₄ from electrolytic manganese residue, *Cent. Eur. J. Chem.*, 2010, vol. 8, no. 5, p. 1059. https://doi.org/10.2478/s11532-010-0081-4
- 38. Yousefi, T., Golikand, A.N., Mashhadizadeh, M.H., and Aghazadeh, M., Hausmannite nanorods prepared

by electrodeposition from nitrate medium via electrogeneration of base, *J. Taiwan Inst. Chem. Eng.*, 2012, vol. 43, no. 4, p. 614. https://doi.org/10.1016/i.jtice.2012.01.003

- 39. Koza, J.A., Schroen, I.P., Willmering, M.M., and Switzer, J.A., Electrochemical synthesis and nonvolatile resistance switching of Mn₃O₄ thin films, *Chem. Mater.*, 2014, vol. 26, no. 15, p. 4425. https://doi.org/10.1021/cm5014027
- Zhou, X., Meng, T., Yi, F., Shu, D., Li, Z., Zeng, Q., Gao, A., and Zhu, Z., Supramolecular assisted fabrication of Mn₃O₄ anchored nitrogen-doped reduced graphene oxide and its distinctive electrochemical activation process during supercapacitive study, *Electrochim. Acta*, 2021, vol. 370, p. 137739. https://doi.org/10.1016/j.electacta.2021.137739
- 41. Engel, A. von, *Ionized Gases* 2nd ed., Oxford: Clarendon Press, 1965. 325 p.
- 42. Тарасевич, М.Р., Хрущева, Е.И., Филиновский, В.Ю. *Вращающийся дисковый электрод с кольцом*. М.: *Наука*, 1987. 248 с. [Tarasevich, M.R., Khrushcheva, E.I., and Filinovsky, V.Yu., *Rotating Ring Disk Electrode* (in Russian), Moscow: Nauka, 1987. 248 p.]
- 43. Bonnefont, A., Ryabova, A.S., Schott, T., Kerangueven, G., Istomin, S.Y., Antipov, E.V., and Savinova, E.R., Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides, *Curr. Opin. Electrochem.*, 2019, vol. 14, p. 23. https://doi.org/10.1016/j.coelec.2018.09.010
- Zhang, H., Lv, K., Fang, B., Forster, M.C., Dervisoglu, R., Andreas, L.B., Zhang, K., and Chen, S.L., Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogendoped carbons, *Electrochim. Acta*, 2018, vol. 292, p. 942.

https://doi.org/10.1016/j.electacta.2018.09.175

- 45. Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko, A.G., One-step synthesis of nitrogendoped few-layer graphene structures decorated with Mn_{1.5}Co_{1.5}O₄ nanoparticles for highly efficient electrocatalysis of oxygen reduction reaction, *Mendeleev Commun.*, 2022, vol. 32, no. 3, p. 1. https://doi.org/10.1016/j.mencom.2022.07.020
- 46. Ward, K.R., Lawrence, N.S., Hartshorne, R.S., and Compton, R.G., The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite, *Phys. Chem. Chem. Phys.*, 2012, vol. 14, no. 20, p. 7264. https://doi.org/10.1039/c2cp40412e