СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 541.183+543.544

СТРУКТУРА И ПОЛИМОРФИЗМ ПРОИЗВОДНЫХ ИМИДАЗОЛА

© 2021 г. И. Н. Карасева^{*a*}, М. О. Карасев^{*a*}, С. В. Курбатова^{*a*,*}

^а Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

*e-mail: curbatsv@gmail.com Поступила в редакцию 05.03.2020 г. После доработки 05.03.2020 г. Принята к публикации 24.04.2020 г.

Проведен кристаллохимический анализ структур некоторых производных имидазола, способных к полиморфным превращениям. С помощью характеристик молекулярных полиэдров Вороного– Дирихле проанализированы невалентные внутри- и межмолекулярные взаимодействия в структурах кристаллов конформационных полиморфов имидазола.

Ключевые слова: азотсодержащие гетероциклы, полиэдры Вороного–Дирихле, межмолекулярные взаимодействия, кристаллохимический анализ

DOI: 10.31857/S0044453721010118

Развитие представлений о взаимосвязи структура-свойство в течение многих лет идет как минимум в двух направлениях [1, 2]. Одно из них связано с использованием молекулярно-статистических расчетов и молекулярного моделирования, значительно усовершенствованных благодаря расширившимся возможностям вычислительной техники и баз данных о строении и свойствах веществ в различных агрегатных состояниях. Другое направление определяется существенными достижениями в экспериментальном изучении структуры веществ и взаимодействиях в конденсированных системах. При этом теоретические исследования межмолекулярных взаимодействий идут как по пути развития строгих теорий, базирующихся на использовании потенциалов межмолекулярного взаимодействия, решении уравнений для функций распределения, так и по пути использования более простых моделей, основанных на применении некоторых упрощенных представлений о структуре и полуэмпирических методах расчета [3-5].

В конечном итоге основой разнообразных подходов и методов решения проблемы установления количественных соотношений между строением и свойствами веществ оказывается применение многопараметрических уравнений, включающих определенное множество дескрипторов, характеризующих межмолекулярные взаимодействия в описываемой системе и структуру молекул компонентов системы [6]. Однако, формирование единой системы таких дескрипторов для описания взаимосвязи между структурой и свойствами соединений вне зависимости от агрегатного состояния компонентов системы наталкиваются на сложности, обусловленные особенностями каждой из таких систем, особенно конденсированных [7]. В случае растворов это необходимость учета межмолекулярных взаимодействий растворителя и растворенного вещества, способствующих протеканию ассоциативных, диссоциативных и других процессов. В случае твердых вешеств — это возможность существования различных кристаллических форм, модификаций и т.п. В то же время история знает немало примеров общих подходов к описанию разнородных систем, например, различных конденсированных состояний (в качестве примера приведем лишь способ моделирования жидкостей как системы твердых сфер, или теория масштабной частицы, примененная Пьеротти к растворам, кинетическая теория жидкости, разработанная Я.И. Френкелем и рассматривающая жидкость как динамическую систему частиц, напоминающую отчасти кристаллическое состояние, и другие [8, 9]). Значительный интерес представляет моделирование сорбционных процессов (например, в рамках проблемы "строение-хроматографическое удерживание"), при описании которых необходимо учитывать взаимодействия как на поверхности раздела фаз, так и в объеме фаз, особенно при адсорбции из растворов (например, в жидкостной хроматографии) [2]. Весьма острой эта проблема становится при изучении биологически активных соединений, для которых актуальными оказываются также взаимодействия, обусловливающие биодоступность и определяющие собственно фармакологический эффект [10].

Существенно возросло число публикаций, характеризующих влияние полиморфизма биологически активных веществ на их фармакологическое действие. Высказываются предположения о том, что полиморфизм лекарственных веществ может быть причиной фармацевтической и, как следствие, фармакокинетической и терапевтической неэквивалентности препаратов в твердой лекарственной форме, поскольку различия в растворимости полиморфных модификаций могут привести к различиям в кинетике их растворения *in vivo* и, как следствие, различиям в биодоступности лекарственных средств [11]. При этом некоторые авторы задают вопрос – чем обусловлен наблюдаемый фармакокинетический эффект конформационных полиморфных модификаций таких лекарственных средств - разницей в растворимости и скорости растворения отдельных модификаций, либо отчасти и сохранением конформационного различия этих соединений в водном растворе [12]. В целом конформационные полиморфы многие авторы рассматривают как перспективные объекты исследования взаимосвязи "структура-свойство", предполагая, что понимание взаимосвязи кристаллической структуры, био- и фармацевтических свойств может позволить оптимизировать технологический процесс получения и состав лекарственной формы с заданными свойствами, обеспечивающими оптимальную биодоступность действующего вещества [13, 14].

Интересными объектами для установления подобной взаимосвязи являются азотистые ароматические гетероциклы, имеющие широкое практическое применение в самых разнообразных областях науки и техники [15]. Азолы, как известно, составляют значительную долю фармакологически активных соединений. Присутствие в молекулах азотистых гетероциклов одного или нескольких гетероатомов, наличие конденсированных или моноароматических систем и разнообразных функциональных групп способствует возможности реализации данными соединениями широкого диапазона межмолекулярных взаимодействий, определяемых не только их строением и химической природой, но и агрегатным состоянием, что делает их перспективными моделями при решении указанной проблемы [16]. Исследованию разнообразных свойств азотистых ароматических гетероциклов посвящен ряд публикаций и монографий, содержащих характеристики различных производных индола,

имидазола, триазолов и их производных в индивидуальном состоянии или в растворе [16–20].

Целью нашей работы явился кристаллохимический анализ структур некоторых производных имидазола и их полиморфных модификаций. Для выявления особенностей этих соединений нами использован метод кристаллохимического анализа невалентных взаимодействий в структурах кристаллов, базирующийся на применении характеристик молекулярных полиэдров Вороного–Дирихле (ПВД), развиваемый проф. В.Н. Сережкиным и его школой. Важнейшие принципы и основные понятия метода молекулярных ПВД достаточно подробно изложены в соответствующих публикациях [21, 22].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами исследования явились имидазолы состава $C_a H_b N_c$ (*a*, *b*, *c* – стехиометрические индексы), выбранные из базы данных [23] и удовлетворяющие следующим требованиям: существует не менее двух полиморфных модификаций вешества; для них определены координаты всех атомов, включая атомы водорода; статистическое размещение каких-либо атомов отсутствует. Названия соответствующих соединений представлены в табл. 1. Там же приведены следующие характеристики полиэдров Вороного-Дирихле: *k* – общее число межмолекулярных или межатомных контактов; d_{min}, d_{max} – минимальное и максимальное расстояния между атомами соприкасающихся молекул соответственно (Å); S - площадьграни ПВД ($Å^2$); V – объем пирамиды, основанием которой служит грань ПВЛ. а высотой – перпендикуляр, опущенный к этой грани из ядра атома (Å³).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для соединений, брутто-формулы которых можно представить в виде $C_a H_b N_c$, теоретически возможны шесть типов взаимодействий – гомоатомные (C/C, H/H, N/N) и гетероатомные (C/H, C/N, N/H). При этом однозначно разделить валентные и невалентные, а также внутри- и межмолекулярные взаимодействия удается с использованием понятия ранга граней. Под рангом граней понимают минимальное число связей, соединяющих два атома, ПВД которых обладают общей гранью [24]. При этом все грани с рангом 0 интерпретируют как межмолекулярные невалентные взаимодействия, с рангом 1 – как химические связи, а с рангом больше 1 – как внутримолекулярные невалентные контакты.

СТРУКТУРА И ПОЛИМОРФИЗМ ПРОИЗВОДНЫХ ИМИДАЗОЛА

N⁰	Doutoonno	RefCode	Внутримолекулярные контакты с РГ ≥ 2					Межмолекулярные взаимодействия				
	Бещество		μ	d _{min} , Å	d _{max} , Å	<i>S</i> , Å ²	<i>V</i> , Å ³	k	d _{min} , Å	d _{max} , Å	<i>S</i> , Å ²	<i>V</i> , Å ³
Ι	Имидазол	IMAZOL06	20	2.126	2.743	14.0	5.7	108	1.808	3.923	118.7	56.7
II		IMAZOL14	20	2.006	2.463	18.1	6.9	104	1.981	4.127	117.3	58.2
III		IMAZOL25	20	1.984	2.433	14.9	5.6	99	2.041	3.737	111.4	53.7
IV	4-Фенилимидазол	NENJOF	66	1.982	2.952	62.3	24.9	192	1.923	5.207	230.1	122.3
V		NENJOF03	76	1.972	3.087	60.7	24.6	184	2.001	4.497	228.5	118.6
VI	4,5-Дифенилимидазол	OCUSUA	118	1.957	4.427	118.1	49.2	264	1.988	4.635	319.5	170.1
VII		OCUSUA03	131	1.965	5.012	110.6	45.9	277	1.987	4.969	309.5	162.1
VIII	2,4,5-Трифенил-ими-	NORDII	154	1.947	3.087	157.6	63.4	376	2.371	4.707	401.5	213.6
IX	дазол	NORDII01	176	1.983	3.827	144.1	59.1	390	2.01	4.841	415.2	220.1
Х	N,N'-Дициклогексил-	BORVAG	432	1.599	4.346	462.5	176.1	302	2.283	4.651	435.1	211.9
XI	2,4,5-триметил-ими- дазол-1-карбосамидин	BORVAG01	430	1.599	4.166	441.8	167.0	304	2.174	4.079	430.0	207.2

Таблица 1. Характеристики внутримолекулярных невалентных взаимодействий

Обозначения: RefCode — буквенный код под которым кристаллоструктурные и библиографические данные о веществе зафиксированы в базе данных Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre, Cambridge, 2020); k — общее число межмолекулярных контактов; μ — общее число внутримолекулярных контактов; d_{\min} , Å, d_{\max} , Å — характеризует кратчайшее и самое длинное расстояние между атомами ПВД которых имеют общую грань; S, Å² — площадь грани ПВД; V, Å³ — объем пирамиды, основанием которой служит грань ПВД, а высотой — перперпендикуляр, опущенный к этой грани из ядра атома.

Из данных, представленных в табл. 1, следует, что полиморфные модификации одного и того же вещества различаются в первую очередь количеством невалентных внутримолекулярных контактов. При этом для полиморфов имидазола величина k (общее число контактов) принимает одинаковые значения для всех трех модификаций, что, по-видимому, связано с относительной простотой строения молекулы в отсутствие заместителей, и, таким образом, ограниченной возможностью реализации большого числа внутримолекулярных взаимодействий.

В то же время некоторые параметры полиморфов имидазола оказываются различными, например, общая площадь граней ПВД атомов, характеризующая внутримолекулярные невалентные взаимодействия, для полиморфа II примерно на 4 Å² больше, чем для полиморфа I. Усложнение молекулы путем введения одного, двух или трех заместителей в имидазольное ядро приводит к закономерному росту числа внутримолекулярных невалентных взаимодействий, что, в первую очередь, обусловлено увеличением числа возможных конформаций, которые могут быть реализованы за счет вращения заместителей по σ -связям. Так, число внутримолекулярных невалентных контактов для незамещенного имидазола равно 20, в то время как для одного из полиморфов 2,4,5-трифенилимидазола обсуждаемый параметр равен 176, а для полиморфов N,N'-дициклогексил-2,4,5-триметилимидазол-1-карбосамидина эта величина возрастает примерно втрое. Аналогичные изменения наблюдаются и для величин *S* и *V*, также характеризующих внутримолекулярные невалентные взаимодействия.

В табл. 2 представлены значения парциальных вкладов межмолекулярных и внутримолекулярных невалентных контактов в кристаллах полиморфов имидазола и его производных. Парциальный вклад представляет собой отношение сумм площадей граней, отвечающих взаимодействиям А/Z, к суммарной площади граней, соответствующих внутримолекулярным (Д#) и межмолекулярным (Δ) взаимодействиям. Из таблицы следует. что для полиморфов I-III незамешенного имидазола основной вклад в невалентные внутримолекулярные взаимодействия вносят контакты Н/Н, соответствующие слабым ван-дер-ваальсовым взаимодействиям. Причем на их долю приходится более 60% всех подобных взаимодействий. На втором месте по значимости располагаются контакты N/H, составляющие примерно

	Природа соседних атомов А/Z											
N⁰	C/C		N/N		H/H		C/H		C/N		N/H	
	Δ	$\Delta^{\#}$	Δ	$\Delta^{\#}$	Δ	$\Delta^{\#}$	Δ	$\Delta^{\#}$	Δ	$\Delta^{\#}$	Δ	$\Delta^{\#}$
Ι	0.6	3.8	0.6	_	50.2	61.2	21.2	2.2	1.6	0.3	25.2	32.6
II	0.5	3.1	0.5	_	50.5	63.7	20.0	2.7	0.9	0.4	27.1	30.1
III	_	4.5	_	_	44.6	63.2	22.4	2.8	_	_	32.8	29.5
IV	0.6	1.6	0.6	_	51.3	70.0	34.0	16.1	1.7	0.5	11.8	11.8
V	0.3	0.9	0.3	_	48.0	71.2	35.7	16.1	_	1.9	15.7	9.9
VI	0.6	1.4	0.6	_	53.6	53.1	36.0	36.8	0.5	0.4	9.4	8.4
VII	1.5	1.2	1.5	_	54.2	57.1	34.2	34.4	1.3	0.8	8.9	6.5
VIII	2.0	1.3	2.0	_	53.3	59.3	38.5	26.3	2.9	0.8	2.8	12.3
IX	3.1	2.0	3.1	_	53.3	62.9	36.8	27.7	1.3	0.9	5.5	6.6
Х	0.3	1.1	_	_	89.7	67.2	3.3	18.4	0.4	0.3	6.3	13.0
XI	0.6	1.2	0.3	_	88.0	68.1	3.4	18.4	0.3	0.3	7.5	12.1

Таблица 2. Парциальные вклады межмолекулярных (Δ) и внутримолекулярных (Δ #) невалентных контактов в кристаллах полиморфов **I**—**XI** в зависимости от природы соседних атомов A/Z

Примечание. Значения ∆ округлены с точностью до одной десятой. Прочерки означают отсутствие соответствующего типа невалентных взаимодействий в структуре кристаллов.

30% от общего числа внутримолекулярных невалентных взаимодействий.

Поскольку в обсуждаемых молекулах условно можно выделить атомы азота двух типов — протонированные и непротонированные — первые будем называть атомами азота пиррольного, а вторые — пиридинового типа. Заметим, что из двух атомов азота молекулы имидазола основное участие во внутримолекулярных взаимодействиях принимает азот пиридинового типа, что связано с отсутствием экранирования его неподеленной электронной пары атомом водорода, как в случае с атомом азота пиррольного типа.

На рис. 1 представлены ПВД обсуждаемых атомов азота в структуре полиморфа I, из которого следует, что во внутримолекулярных невалентных взаимодействиях N/H принимают участие атомы водорода, находящиеся в положениях 2 и 5 в случае пиррольного атома азота, и в положениях 2 и 4 в случае пиридинового атома азота. При этом граням N/H ПВД отвечает ранг, равный 2.

На долю внутримолекулярных невалентных взаимодействий с участием атомов углерода (С/С, С/N и С/Н) в сумме приходится менее 10%, при этом у полиморфа III внутримолекулярные невалентные взаимодействия С/N вообще не реализуются.

Общей особенностью полиморфов имидазола является отсутствие внутримолекулярных контактов типа N/N, что, вероятно, связано с плоским строением молекулы имидазола, в которой атомы азота относительно удалены друг от друга, в результате чего огранка их ПВД реализуется без участия общих граней.

Введение в молекулу имидазола фенильных радикалов приводит к количественным изменениям в невалентных внутримолекулярных взаимодействиях. Несмотря на возможность сопряжения между ароматическими фенильным радикалом и имидазольным кольцом, молекулы фенилимидазолов в кристаллическом поле не являются плоскими. Фенильные радикалы повернуты друг относительно друга, а также относительно имидазольного кольца, что благоприятно сказывается на реализации С/Н-взаимодействий. Значения соответствующих углов Θ между фенильным радикалом и имидазольным кольцом в исследованных структурах приведены в табл. 3, из которой следует, что полиморфы 4-фенилимидазола с точки зрения конформации различаются значениями углов между двумя ароматическими фрагментами молекулы. Таким образом, среди полиморфов рассматриваемых фенилимидазолов вполне выраженным оказывается конформационный полиморфизм, обусловленный свобод-

Рис. 1. ПВД атомов азота пиррольного типа $N(1)C_2H/C_5NH_7$ (а) и пиридинового типа $N(2)C_2/CH_9$ (б) в структуре полиморфа I (белыми кружками обозначены атомы C, большими черными кружками – атомы N, маленькими черными – атомы H).

ным вращением фенильных групп относительно имидазольного фрагмента по σ-связям C–C.

В соответствии с полученными данными (табл. 1) число граней молекулярных ПВД лежит в диапазоне значений от 99 до 390. В отличие от внутримолекулярных невалентных взаимодействий для трех полиморфов незамещенного имидазола число контактов в случае межмолекулярных взаимодействий для этих полиморфов становится различным. При этом наибольший вклад в межмолекулярные взаимодействия вносят контакты H/H, величина которых колеблется от 44.6%, для полиморфа III, до 89.7% для полиморфа X.

Практически для всех структур характерны невалентные взаимодействия с участием атомов водорода Н/Н, С/Н и N/Н, в сумме на них приходится от 94.6 до 99.8% величины *S*. Этот факт, повидимому, отражает специфику рассматриваемых структур, для которых атомы водорода, составляющие от 41 до 58% общего числа атомов, располагаются на поверхности молекул.

Вклад Н/Н-взаимодействий в огранку молекулярных ПВД при переходе от незамещенных имидазолов к их фенилпроизводным практически не меняется, оставаясь на уровне 50–55%. В то же время вклад контактов Н/Н в межмолекулярные взаимодействия в случае полиморфов N,N'-дициклогексил-2,4,5-триметилимидазол-1-карбоксамидина достигает практически 90%, что, прежде всего, связано с числом атомов водорода в молекуле (32 атома). Еще одна причина столь высокого значения $\Delta_{H/H}$ заключается в том, что 31 атом Н связан с *sp*³-гибридными атомами углерода, входящими в состав трех метильных групп и

двух циклогексильных фрагментов, в результате чего подавляющее большинство атомов, теоретически способных участвовать в образовании межмолекулярных контактов, практически полностью экранировано атомами водорода. Например, для полиморфа **XI** количество реализующихся межмолекулярных С/Н-взаимодействий равно 19. Однако, из этих 19 контактов только 5 приходится на контакт типа H····C^{sp³}. Остальные 14 С/Н-контактов отвечают межмолекулярным взаимодействиям, реализующимся за счет участия атомов

Таблица 3. Значения углов между фенильным радикалом и имидазольным кольцом в структурах фенилимидазолов

Полиморф	Название	Θ, град		
IV	4-Фенилимидазол	20.0		
V		39		
VI	VI 4,5-Дифенилимидазол			
VII		39.8 32.0	41.8	
VIII	2,4,5-Трифенилимидазол	24	55.5 7	
		21	.4	
IX		20.2 33.7 47.3	33.2 18.9 43.7	

		-			~ ~		
Полиморф	d(N-H), Å	Ω(N–H), %	$d(N \cdots H), Å$	$\Omega(N \cdots H), \%$	$d(N \cdots N), Å$	Угол N–H…N, $^{\circ}$	Размерность
Ι	1.045	33.6	1.808	22.4	2.849	173.3	1D
II	0.880	35.7	1.981	21.1	2.853	170.3	1D
III	0.860	35.7	2.041	20.0	2.854	157.3	1D
IV	0.899 0.897	35.2 35.5	1.923 1.954	21.5 21.7	2.814 2.851	170.8 178.8	1D
V	0.851	36.2	2.001	21.8	2.846	171.4	1D
VI	0.893	35.1	1.988	19.7	2.875	172.1	1D
VII	0.867 0.864	36.3 35.8	2.042 1.987	20.1 20.3	2.886 2.850	164.2 178.7	1D 1D
VIII	_	_	_	_	_	—	_
IX	0.881	36.2	2.045	17.9	2.879	157.9	1D
X	$\begin{array}{c} 0.881 \\ 0.880 \end{array}$	33.9 34.1	2.283 2.341	17.8 17.1	3.102 3.114	154.7 146.8	0D
XI	0.880	33.9	2.174	18.1	2.981	152.4	0D

Таблица 4. Параметры водородных связей N-H…N в структурах полиморфов I-XI

Обозначения: *d*(A–X) – межъядерное расстояние (Å); Ω(N–H), – величина телесного угла, отвечающего соответствующим граням в молекулярных ПВД (%); 1 D – цепочки; 0 D – островные группировки.

водорода и sp²-гибридных атомов углерода имидазольного цикла.

Вторым существенным вкладом в межмолекулярные взаимодействия незамещенных имидазолов является вклад N/H, включающий две составляющие — водородные связи средней силы N–H…N и слабые водородные связи С–H…N. В еще меньшей степени реализуются межмолекулярные контакты C/H, представленные двумя вкладами — С–H…C и N–H…C. У полиморфов имидазола вклады C/C, N/N и C/N крайне малы и, как правило не превышают 1%. В случае полиморфа III межмолекулярные контакты типа C/C, N/N и C/N вообще не реализуются.

Отметим, что полиморфы **I**—**III** различаются взаимной упаковкой молекул. Так, углы между плоскостями молекул имидазола у полиморфов **I** и **II** равны 60.1 и 60.6° соответственно, в то время как для полиморфа **III** эта величина равна 73.4°. Изменение угла между плоскостями молекул имидазола обусловливает качественное и количественное изменение характера межмолекулярных взаимодействий, в частности, его возрастание приводит к исчезновению межмолекулярных контактов N/N у полиморфа **III**.

Введение в молекулу имидазола фенильных радикалов приводит к росту вклада $\Delta_{C/H}$ примерно с 20% для незамещенного имидазола до 37—39% для 2,4,5-трифенилимидазола. В то же время значимость контактов $\Delta_{N/H}$ для фенилимидазолов

уменьшается с ростом числа фенильных радикалов. Вклад $\Delta_{N/H}$, как было указано выше, включает водородные связи двух типов: N–H…N и C–H…N.

Водородная связь $N-H\cdots N$ характеризуется большей энергией по сравнению с энергией связи $C-H\cdots N$. В табл. 4 приведены параметры водородных связей $N-H\cdots N$ в структурах полиморфов I-XI, из которой следует, что наиболее чувствительным параметром к полиморфным превращениям является угол $N-H\cdots N$. Для имидазола и фенилимидазолов величина угла $N-H\cdots N$ лежит в диапазоне 157.3–178.8°.

В случае полиморфов X и XI углы N-H···N принимают значения в диапазоне 146.8-154.7°. Такое различие по сравнению с полиморфами І-VII и IX связано с разной природой атомов, участвующих в образовании водородных связей. У полиморфов **I–VII** и **IX** в образовании водородных связей принимают участие атомы азота гетероциклической системы и атомы водорода, связанные с одним из атомов N имидазольной системы. В то же время полиморф VIII вообще не образует водородных связей, а у полиморфов X и XI водородные связи образуются за счет атомов N гетероцикла и атомов Н, принадлежащих аминогруппам. Согласно классификации Штайнера [25] водородные связи в обсуждаемых структурах относятся к средним по силе.

Рис. 2. Водородные связи в полиморфах I (а), V (б) и X (в). Белыми кружками обозначены атомы C, большими черными кружками – атомы N, а маленькими черными – атомы H.

Полиморфы **I–VII** и **IX** за счет водородных связей образуют бесконечные цепи, что иллюстрируют представленные на рис. 2 примеры.

На рис. 3 изображены соответствующие структуры полиморфов VIII и IX, которые отличаются способом упаковки молекул 2,4,5-трифенилимидазолов. В ромбическом полиморфе VIII молекулы упаковываются в виде стопок, керном которых является имидазольное ядро. Структура образована за счет стэкинг-взаимодействий между четырьмя ароматическими системами. При этом имидазольные фрагменты располагаются друг над другом с небольшим смещением, а фенильные радикалы обрамляют образующиеся имидазольные столбики. Благодаря такому способу упаковки водородные связи не реализуются вовсе. В случае моноклинного полиморфа IX наблюдается паркетный способ упаковки молекул, благодаря которому имидазольные ядра располагаются под углом 74° по отношению друг к другу. Такое расположение молекул благоприятно складывается на образовании водородных связей.

Таким образом, из полученных кристаллоструктурных данных для производных имидазола следует, что каждый полиморф характеризуется определенным сочетанием типов межмолекулярных нева-

Рис. 3. Структуры полиморфов **VIII** (а, в, д) и **IX** (б, г, е); а, б – проекция на плоскость (100), в, г – проекция на плоскость (010), д, е – на плоскость (001). Для упрощения атомы водорода на рис. б, г, е не показаны.

лентных контактов. Будут ли изменяться подобные контакты при взаимодействии с растворителем? Оптимизм в возможности получения ответа на этот вопрос вселяют результаты исследований, опубликованные многими авторами в качестве этапов решения проблемы установления связи между типом кристаллической структуры вещества и характером взаимодействия с растворителем [11, 26, 27].

Работа выполнена при поддержке Министерства образования и науки Российской Федерации в рамках государственного задания по гранту № FSSS-2020-0016.

том 95

2021

№ 1

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ

СПИСОК ЛИТЕРАТУРЫ

- Katritzky A., Lobanov V., Karelson M. // Chem. Soc. Rev. 1995. V. 24. № 4. P. 279.
- 2. Kaliszan R. // Chem. Rev. 2007. V. 107. P. 3212.
- 3. *Минкин В.И., Симкин Б.Я., Миняев Р.М.* Теория строения молекул. Ростов-на-Дону: Феникс, 1997. 560 с.
- 4. Буряк А.К. // Успехи химии. 2002. Т. 71. № 8. С. 788.
- 5. Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высш. школа, 1986. 360 с.
- Katritzsky A.R., Maran U., Labanov V.S., Karelson M. // J. Chem. Inf. & Comput. Sci. 2000. V. 40. P. 1.
- 7. Зоркий П.М. // Рос. хим. журн. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2001. Т. XLV. № 2. С. 3.
- 8. Белоусов В.П., Панов М.Ю. Термодинамика водных растворов неэлектролитов. Л.: Химия, 1983. 264 с.
- 9. *Смирнова Н.А.* Молекулярные теории растворов. Л.: Химия, 1987. 336 с.
- 10. *Радченко Е.В., Палюлин В.А., Зефиров Н.С. //* Рос. хим. журн. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2006. Т. L. № 2. С. 76.
- 11. Банару А.М., Зоркий П.М., Ободовская А.Е. // Кристаллография. 2007. Т. 52. № 4. С. 661.
- Gu C.H., Young V., Grant D.J.W. // J. Pharm. Sci. 2001. V. 90. P. 1878.
- 13. *Price S.L.* // Chem. Soc. Rev. 2014. V. 43. № 7. P. 2098.

- 14. Rogalski M., Doman'ska U., Czyrny D., Dyczko D. // Chemical Physics. 2002. V. 285. P. 355.
- Aromi G., Darrios L.A., Roubeaou O., Gamez P. // Coord. Chem. Rev. 2011. V. 255. P. 485.
- Polyakova Y., Jin L.M., Row K.H. // J. Liq. Chromatogr. & Rel. Technol. 2006. V. 29. P. 533.
- 17. *Doman'ska U., Pobudkowska A. et al.* // J. Chem. Eng. Data. 2004. V. 49. № 4. P. 1082.
- Li X., Du C., Zhao H. // J. Chem. Thermodynamics. 2017. V. 104. P. 189.
- 19. Ланин С.Н., Рычкова С.А., Виноградов А.Е. и др. // Изв. АН. Сер. хим. 2016. Т. 1. С. 110.
- 20. Савченкова А.С., Курбатова С.В., Буряк А.К. // Журн. физ. химии. 2015. Т. 89. № 9. С. 1450.
- 21. Сережкин В.Н., Сережкина Л.Б., Шевченко А.П., Пушкин Д.В.// Журн. физ. химии. 2005. Т. 79. № 6. С. 1058.
- Сережкин В.Н., Пушкин Д.В., Сережкина Л.Б. // Кристаллография. 2010. Т. 55. № 4. С. 597.
- 23. Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre, Cambridge, 2020).
- 24. Шевченко А.П., Сережкин В.Н. // Журн. физ. химии. 2004. Т. 78. № 10. С. 1817.
- 25. Steiner T. // Angew. Chem. 2002. B. 41. № 1. P. 48.
- Gu C.H., Young V., Grant D.J.W. // J. Pharm. Sci. 2001. V. 90. P. 1878.
- Богданов Н.Ю., Горчаков К.А., Пучнин В.С. и др. // Кристаллография. 2011. Т. 56. № 4. С. 653.