_____ ХИМИЧЕСКАЯ КИНЕТИКА _____ И КАТАЛИЗ

УДК 553.611.6,544.723.213

КИНЕТИКА И МЕХАНИЗМ АДСОРБЦИИ АНИОННЫХ КРАСИТЕЛЕЙ НА МОНТМОРИЛЛОНИТЕ, МОДИФИЦИРОВАННОМ МЕТАСИЛИКАТОМ НАТРИЯ

© 2021 г. Т. В. Конькова^{*a*,*}, А. П. Рысев^{*a*}, Ю. О. Малькова^{*a*}

^а Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

*e-mail: kontat@list.ru Поступила в редакцию 26.01.2020 г. После доработки 10.04.2020 г. Принята к публикации 17.05.2020 г.

Исследован механизм адсорбции анионных красителей на монтмориллоните, модифицированном метасиликатом натрия. Кинетика адсорбции красителей аппроксимируется моделью псевдовторого порядка, а изотерма адсорбции — моделями Ленгмюра и Дубинина—Радушкевича. Значение величины средней свободной энергии адсорбции E > 8 кДж/моль для всех исследованных красителей, что свидетельствует о протекании поверхностной химической реакции между молекулами красителя и протонированными силанольными и алюминольными группами на поверхности ребер алюмосиликатных слоев минерала. Величина адсорбции красителей прямо пропорциональна увеличению температуры, массы и заряда органического аниона и обратно пропорциональна увеличению ионной силы раствора.

Ключевые слова: монтмориллонит, анионные красители, жидкофазная адсорбция, очистка сточных вод, слоистые алюмосиликаты

DOI: 10.31857/S004445372101012X

Сточные воды, содержащие примеси синтетических красителей, используемых в текстильной, кожевенной и пищевой промышленностях, являются причиной значимых экологических проблем. Красители, как правило, имеют сложную химическую структуру и плохо поддаются биологической деструкции. Они могут оказывать канцерогенное и тератогенное действие на живые организмы. Но даже нетоксичные соединения окрашивают сточные воды, препятствуя фотосинтезу и нарушая биологическое равновесие в природных водоемах [1, 2].

Оптимальным методом водоочистки, удовлетворяющим требованиям высокой эффективности и низкой стоимости, является адсорбция, а среди наиболее перспективных адсорбентов следует назвать природный слоистый алюмосиликат монтмориллонит, который является одним из самых распространенных в природе амфотерных ионообменников [3].

Катионные красители могут адсорбироваться даже на необработанном монтмориллоните благодаря отрицательному заряду поверхности граней его алюмосиликатных слоев, вызванному изоморфными гетеровалентными замещениями в О-сетке их каркаса [4, 5]. Однако адсорбция анионных красителей затруднена вследствие их электростатического отталкивания от поверхности частиц минерала [6, 7]. Анионная емкость природного монтмориллонита является пренебрежимо малой величиной.

Предварительные исследования показали, что предотвращение расслаивания частиц монтмориллонита в воде и блокирование доступа адсорбтива в его межслоевое пространство позволяют во много раз увеличить адсорбционную емкость минерала к анионам [8], обусловленную протонированными алюминольными и силанольными группами на поверхности ребер алюмосиликатных слоев, которые могут нести положительный заряд и выступать в качестве центров адсорбции анионов.

Применение в качестве блокирующих агентов молекул катионных поверхностно-активных веществ позволяет синтезировать органо-минеральные композитные адсорбенты с достаточно высокими значениями анионной емкости [9–11]. Однако эти адсорбенты нестабильны, вследствие постепенного вымывания модификатора и разрушения структуры материала. Значительно более устойчив в жидкой среде монтмориллонит, модифицированный метасиликатом натрия. После кислотной обработки и термической дегидратации монтмориллонита, обработанного концен-

Название	$\lambda_{\text{мах}}$, нм	Молекулярная масса	Заряд аниона
Азорубин	514	502.4	2-
Congo red	570	696.7	2-
Synosol blue	601	839.5	3-
Black PN	596	867.7	4-

Таблица 1. Анионные красители, адсорбция которых исследовалась в работе

трированным раствором Na₂SiO₃, в межслоевом пространстве минерала формируются кремнекислородные кластеры, родственные по химической природе T-сеткам алюмосиликатных слоев и выполняющие двоякую функцию: блокирование внутренней отрицательно заряженной поверхности минерала и предотвращение расслаивания его частиц в воде. Таким образом, доступной для адсорбтива остается лишь поверхность ребер алюмосиликатных слоев с группами Si– OH₂⁺ и Al–OH₂⁺. Монтмориллонит, модифицированный указанным способом, приобретал спо-

ванный указанным способом, приобретал способность адсорбировать хромат-оксоанионы отсутствовавшую у природного минерала [12].

Исследование возможности использования недорогого природного минерала в качестве адсорбента как катионных, так и анионных примесей в зависимости от типа поверхности алюмосиликатных слоев, доступных адсорбтиву является актуальной задачей. Целью данной работы является исследование кинетики адсорбции анионных красителей на монтмориллоните, модифицированном метасиликатом натрия, установление возможного механизма и зависимости адсорбции от внешних параметров (температура, ионная сила раствора), а также природы и свойств адсорбтива (молекулярная масса, заряд аниона).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве источника монтмориллонита в исследовании использовалась глина Таганского месторождения с содержанием целевого минерала не менее 90%. Катионообменная емкость была измерена по значению адсорбции комплексов меди с этилендиамином [13].

Навеска исходной глины с размером частиц <500 мкм помещалась в раствор метасиликата натрия с концентрацией (Na₂SiO₃) 20 мас. %, в котором перемешивалась при комнатной температуре в течение 2 ч. После отделения от раствора, осадок промывался водой до нейтрального значения рН и обрабатывался 10 мас. % раствором серной кислоты. Полученный осадок подвергался старению в течение 24 ч, после чего прокаливался при 200°С в течение 3 ч, условия синтеза адсорбента были предварительно оптимизированы [12].

Элементный анализ адсорбента проводился в центре коллективного пользования РХТУ им. Д.И. Менделеева на приборе Oxford Instruments INCA Energy analyzer.

Инфракрасная спектроскопия адсорбента была выполнена на приборе Nicolet 380 (Thermo Fisher Scientific Inc., USA) в диапазоне 4000– 400 см⁻¹. Разрешающая способность прибора 4 см⁻¹, скорость зеркала 0.6329 см/с, количество сканирований – 32.

Текстурные параметры адсорбента вычисляли на основе изотерм адсорбции азота, полученных при 77 Л на аппарате Nova 1200е (Quantachrome, США). Удельная поверхность (S_{BET}) образцов рассчитывали методом БЭТ; объем микропор V_{mi} – по уравнению Дубинина–Радушкевича; суммарный объем мезо- и микропор V_s определяли по изотерме адсорбции азота при значении относительного давления, равном 0.995.

Электрокинетический потенциал поверхности частиц адсорбента измеряли при помощи электрофореза на приборе ZetasizerNano (MAL-VERN Instruments, Великобритания).

В качестве адсорбтивов были использованы синтетические анионные азокрасители, сходные по химическому строению, но с различными значениями молекулярной массы и заряда аниона (табл. 1).

Содержание красителей в растворе определялось спектрофотометрически на приборе СФ-2000.

Кинетические данные были получены при 298 К и аппроксимированы моделью псевдопервого порядка и моделью псевдовторого порядка [14–16]. Начальная концентрация адсорбтива в растворе составляла во всех случаях 20 мг/л.

Линейная форма уравнения модели псевдопервого порядка:

$$\lg(q_e - q_t) = \lg q_e + \frac{k_1 t}{2.303}.$$
 (1)

Линейная форма уравнения модели псевдовторого порядка:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e},$$
(2)

 q_t – величина адсорбции в момент времени t, мг/г; q_e – равновесная величина адсорбции, мг/г; t – время, мин; k_1 – константа скорости псевдопервого порядка, мин⁻¹; k_2 – константа скорости псевдовторого порядка, г/(мг мин).

Адсорбционные эксперименты проводились в статических условиях при температуре 298 и 333 К, а также в присутствии фонового индифферентного электролита (NaCl) при значении ионной силы раствора I = 1 моль/л. Адсорбция рассчитывалась по формуле:

$$q = \frac{(C_0 - C_e)V}{m},\tag{3}$$

в которой q — адсорбция, моль/г; C_0 — начальная концентрация адсорбтива, моль/л; C_e — равновесная концентрация адсорбтива, моль/л; V — объем раствора, л; m — масса адсорбента, г.

Изотерма адсорбции аппроксимировалась моделями Ленгмюра, Фрейндлиха, а также более общей Дубинина—Радушкевича, в рамках которой имеется возможность вычисления свободной энергии адсорбции *E* и установления на основании ее значения, вероятного механизма адсорбции [17–19].

Линейная форма уравнения модели Ленгмюра:

$$\frac{1}{q_e} = \frac{1}{q_{\max}} + \frac{1}{K_{\rm L} q_{\max} c_e}.$$
 (4)

Энергия Гиббса адсорбции:

$$\Delta G^{\circ} = -RT \ln K_{\rm L}.$$
 (5)

Безразмерный фактор разделения для оценки степени сродства между поверхностью адсорбента и адсорбатом:

$$R_{\rm L} = \frac{1}{1 + K_{\rm I} C_0}.$$
 (6)

Линейная форма уравнения Фрейндлиха:

$$\ln q_e = \ln \beta + \frac{1}{n} \ln c_e. \tag{7}$$

Линейная форма уравнения Дубинина-Радушкевича:

$$\ln q = \ln q_e - k(RT \ln(1 + 1/C_e))^2.$$
(8)

Средняя свободная энергия адсорбции:

$$E = (-2k)^{-0.5}, (9)$$

где q_e — равновесная адсорбция, моль/г; q_{max} — предельная адсорбция, моль/г; C_e — равновесная концентрация адсорбтива, моль/л; K_L — константа уравнения Ленгмюра, л/моль; β — константа уравнения Фрейндлиха, моль/г; n — безразмерный коэффициент в уравнении Фрейндлиха; k — константа, связанная с энергией адсорбции, моль²/кДж².

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате модифицирования текстурные характеристики монтмориллонита (табл. 2) значительно уменьшились по сравнению с исходным образцом, что свидетельствует о блокировании межслоевого пространства алюмосиликата.

Образование из метасиликата натрия кремнекислородных структур, которые блокируют поры монтмориллонита, вызывает изменения в ИКспектре адсорбента (рис. 1), а также его элементном составе (табл. 3).

Таблица 2. Текстурные характеристики исходного и модифицированного монтмориллонита

Образец	$S_{\rm BET}$, м ² /г	$V_{\rm s}$, см ³ /г	$V_{\rm mi}$, см ³ /г
Исходный монтмо-	73.6	0.075	0.035
риллонит			
Модифицированный	2.8	0.013	0.001
монтмориллонит			

На ИК-спектрограмме модифицированного образца наблюдается увеличение интенсивности полосы при 1040 см⁻¹, соответствующей валентным колебаниям связи Si–O, а также полосы при 520 см⁻¹, связанной с деформационными колебаниями связей Si–O–Si. Уменьшение интенсивностей полос при 3630 и 1642 см⁻¹, обусловленных валентными и деформационными колебаниями связей O–H вызваны кислотной и термической обработкой минерала [20, 21].

Данные элементного анализа показывают, что в результате модифицирования увеличивается соотношение Si/Al, что свидетельствует об увеличении доли кремния в образце. Катионообменная емкость исходного монтмориллонита, равная по результатам измерений 82 смоль (Кат⁺)/кг, в результате модифицирования уменьшилась в 12 раз, однако суммарное содержание обменных катионов Na + Ca в образце осталось практически без изменений, что также свидетельствует о блокировании межслоевого пространства монтмориллонита образующимися кремне-кислородными кластерами. Присутствие углерода в образцах обусловлено содержащимися в природном алюмосиликате гуминовыми соединениями и карбонатами. Увеличение содержания серы в образце обусловлено использованием серной кислоты на стадии гидролиза аморфного кремнезема. Можно предположить, что сульфаты являются обменными противоионами на кислотных

Рис. 1. ИК-спектры исходного (*1*) и модифицированного (*2*) монтмориллонита.

Элемент, мас. %	С	Ca	Na	0	Mg	Al	Si	Ti	Fe	S
ИМ	4.88	0.89	0.3	56.73	1.53	7.86	24.21	0.22	3.39	-
MM	4.12	0.87	1.09	57.98	1.2	6.05	20.74	0.24	2.42	5.29

Таблица 3. Элементный анализ исходного (ИМ) и модифицированного монтмориллонита (ММ)

центрах модифицированного монтмориллонита: $(Si-OH_2^+)1/2SO_4^{2-}, (Al-OH_2^+)1/2SO_4^{2-}.$

Электрокинетический потенциал исходного монтмориллонита ($\xi = -23.8 \text{ мB}$) изменился в ремодифицирования и стал зультате равен +10.8 мВ. Перезарядка частиц минерала свидетельствует об изменении типа его поверхности: у исходного монтмориллонита, вследствие расслаивания его структуры в воде, более 90% наружной поверхности частиц составляет поверхность граней алюмосиликатных слоев несущей перманентный отрицательный заряд [22]. Сдвиг электрокинетического потенциала в область положительных значений говорит о том, что у модифицированного монтмориллонита наружная поверхность частиц представлена поверхностью ребер алюмосиликатных слоев, которые "сшиты" вместе образующимися кремне-кислородными кластерами. Именно на поверхности ребер расположены терминальные алюминольные и силанольные группы, которые являются единственными центрами в структуре монтмориллонита, способными нести положительный заряд.

Модифицированный монтмориллонит, в отличие от исходного, приобрел способность адсорбировать из раствора анионные красители. Во всех случаях скорость адсорбции была достаточно высока и равновесие в системе наступало в течение первых 10–20 мин (рис. 2). Кинетические данные были аппроксимированы под различные

Рис. 2. Кинетические кривые адсорбции, 20°С.

Рис. 4. Изотермы адсорбции анионных красителей при температуре 60°С.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 1 2021

Рис. 3. Изотермы адсорбции анионных красителей при температуре 20°С.

Рис. 5. Изотерма адсорбции красителя Black PN при различных значениях ионной силы раствора: 0.05 (*1*) и 1 моль/л (*2*).

модели (табл. 4). Как следует из значений коэффициента детерминации R^2 , более адекватной моделью для описания кинетики адсорбции анионных красителей на модифицированном монтмориллоните является модель псевдовторого порядка, которая предполагает, что процесс протекает по механизму хемосорбции, когда адсорбат и поверхностная группа адсорбента взаимодействуют друг с другом по реакции второго порядка.

Изотермы адсорбции анионных красителей на модифицированном монтмориллоните показывают, что величина адсорбции несколько увеличивается вместе с повышением температуры (рис. 3, 4). Вместе с тем, адсорбция уменьшается при увеличении значения ионной силы раствора, что может свидетельствовать о конкуренции за абсорбционные участки на поверхности адсорбента между анионами красителя и фонового электролита (рис. 5).

Из представленных графиков следует, что чем выше молекулярная масса красителя и заряд его аниона, тем лучше он поглощается адсорбентом. Эффект увеличения величины адсорбции более выражен в случае увеличения по абсолютной величине отрицательного заряда аниона при близкой по значению молекулярной массе (сравнение адсорбции Synosol blue и Black PN) и менее выражен, в случае увеличения молекулярной массы при одинаковом заряде аниона (сравнение адсорбции Азорубина и Конго красного).

Адсорбционные данные аппроксимированные под различные модели адсорбции представлены в табл. 5.

В соответствии со значениями коэффициента детерминации, модели Ленгмюра и Дубинина– Радушкевича практически в равной мере подходят для описания изотермы адсорбции. Значения стандартной свободной энергии ΔG° , вычисленные на основании значений константы уравнения Ленгмюра показывают, что процесс поглощения

Таблица 4. Кинетические параметры адсорбции при температуре 20°С

Краситель	k _i	q _{max} (теор.) × × 10 ⁶ , моль/г	q _{max} (эксп.) × × 10 ⁶ , моль/г	<i>R</i> ²
Ν	Іодель	псевдопервог	о порядка	
Азорубин	0.06	0.09	2.34	0.176
Congored	0.13	0.10	2.76	0.607
Synosol blue	0.09	1.12	3.64	0.557
Black PN	0.12	0.40	4.47	0.662
Ν	Іодель	псевдовторого	о порядка	
Азорубин	1.88	2.34	2.34	0.999
Congo red	2.48	2.77	2.76	0.999
Synosol blue	1.33	3.65	3.64	0.999
Black PN	0.82	4.50	4.47	0.999

анионного красителя модифицированным монтмориллонитом является самопроизвольным процессом. Значения величины свободной энергии адсорбции *E*, вычисленные на основании модели Дубинина—Радушкевича, расположены в диапазоне 8—16 кДж/моль, что свидетельствует о хемосорбционном механизме процесса.

Значения фактора разделения $R_L > 1$ свидетельствуют о низком термодинамическом сродстве молекул адсорбата к поверхности адсорбента. Значения R_L (табл. 6) расположенные в интервале от 0 до 1 свидетельствуют о высокой степени сродства адсорбата к поверхности адсорбента [18, 23]. Чем ближе к нулю находятся значения фактора разделения, тем более необратимый характер имеет адсорбция.

Таким образом, монтмориллонит, модифицированный метасиликатом натрия, обладает способностью адсорбировать анионные красители. Величина адсорбции увеличивается вместе с молекулярной массой красителя и зарядом его аниона, и уменьшается при увеличении ионной силы

Краситель	<i>T</i> , K	$q_{\rm max} \times 10^6,$ моль/г	$K_{\rm L} \times 10^{-6},$ л/моль	$-\Delta G^{\circ},$ кДж/моль	r ²	N	β × 10 ³ , моль/г	r ²	$q_{ m max} imes 10^{6},$ моль/г	$ k \times 10^9$	Е, кДж/моль	r ²
	Ν	Іодель Л	Іенгмюр	a		Модель Фрейндлиха			Модель Дубинина-Радушкевича			
Азорубин	293	5	7.44	38.5	0.985	0.95	51	0.983	226	7.67	8.07	0.988
	333	15	1.35	39.1	0.999	0.95	95	0.995	388	6.56	8.73	0.996
Congo red	293	9	2.68	36.0	0.927	1.15	12	0.917	140	7.08	8.40	0.932
	333	25	0.50	36.3	0.956	1.11	29	0.951	268	5.57	9.47	0.961
Synosol blue	293	11	0.02	24.5	0.997	1.52	4	0.985	114	5.17	9.84	0.991
	333	22	0.01	26.2	0.998	1.33	15	0.984	253	4.53	10.51	0.991
Black PN	293	9	0.31	30.8	0.996	3.27	0.2	0.907	35	2.24	14.93	0.931
	333	11	0.30	34.9	0.995	2.84	0.4	0.942	51	1.97	15.94	0.959

Таблица 5. Параметры адсорбционных уравнений

Краситель	<i>Т</i> , К	C_0 , моль/л × 10 ⁵								
		1	2	3	4	6	8	9	10	
Азорубин	293	0.013	0.007	0.004	0.003	0.002	0.002	0.001	0.001	
	333	0.069	0.036	0.024	0.018	0.012	0.009	0.008	0.007	
Congo red	293	0.036	0.018	0.012	0.009	0.006	0.005	0.004	0.004	
	333	0.166	0.090	0.062	0.047	0.032	0.024	0.022	0.019	
Synosol Blue	293	0.813	0.685	0.592	0.521	0.420	0.352	0.326	0.303	
	333	0.885	0.794	0.719	0.658	0.562	0.490	0.461	0.435	
Black PN	283	0.243	0.139	0.097	0.074	0.051	0.039	0.034	0.031	
	333	0.253	0.145	0.101	0.078	0.053	0.041	0.036	0.033	

Таблица 6. Значения фактора разделения R₁ для различных красителей

раствора. Высокая скорость адсорбции и корреляция кинетических данных с уравнением псевдовторого порядка позволяют предположить хемосорбционный механизм процесса. Значения средней свободной энергии *E*, вычисленной по уравнению Дубинина—Радушкевича, также свидетельствуют о хемосорбции. С учетом изменений в структуре материала в результате модифицирования можно предположить, что центрами хемосорбции являются протонированные терминальные алюминольные и силанольные группы на поверхности ребер алюмосиликатных слоев, так как это единственные химически активные структурные группы монтмориллонита, способные нести положительный заряд.

СПИСОК ЛИТЕРАТУРЫ

- 1. Elahi M.F. // J. Innov. Dev. Strategy. 2011. V. 5. P. 9.
- B. de Campos Ventura-Camargo, Marin-Morales M.A. // TLIST. 2013. V. 2. P. 85.
- Bergayaa F., Lagaly G., Vayer M. Cation and anion exchange. In: Bergaya F., Theng B.K.G., Lagaly G. (Eds.) Handbook of clay science. V. 1. Elsevier Ltd., 2006. P. 979–1001.
- 4. *Ali Fil B., Özmetin C., Korkmaz M. //* Bull. Korean Chem. Soc. 2012. V. 33. P. 3184.
- Sharma P., Borah D.J., Das P. et al. // J. Desalination and water treat. 2015. V. 57. P. 8372.
- Bendaho D., Ainad T., Djillali D. // J. Environ. Anal. Chem. 2015. V. 2.
- https://doi.org/10.4172/2380-2391.1000130 7. Silva M.M.F., Oliveira M.M., Mirella C. Avelino, et al. //
- Chem. Engineering J. 2012. V. 203. P. 259.
- 8. *Конькова Т.В., Рысев А.П., Мищенко Е.В.* // Перспективные материалы. 2020. № 1. С. 13.

- Akl M.A., Youssef A.M., Al-Awadhi M.M. // J. Anal. Bioanal. Tech. 2013. V. 4. https://doi.org/10.4172/2155-9872.1000174
- Ozcan A.S., Erdem B., Ozcan A. // J. Colloid. Interface Sci. 2004. V. 280. P. 44.
- Muir B., Andrunik D., Hyla J. et al. // Appl. Clay Sci. 2017. V. 136. P. 8.
- 12. *Конькова Т.В., Рысев А.П.* // Коллоидн. журнал. 2020. Т. 82. № 2. С. 1.
- 13. *Ammann L., Bergaya F., Lagaly G. //* Clay Miner. 2005. V. 40. P. 441.
- Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. P. 451.
- Крижановская О.О., Синяева Л.А., Карпов С.И. и др. // Сорбционные и хроматограф. проц. 2014. Т. 14. № 5. С. 784.
- Лебедева О.В., Сипкина Е.И., Пожидаев Ю.Н. // Физикохимия поверхности и защита материалов. 2017. Т. 53. № 1. С. 75.
- 17. Шумилова М.А., Петров В.Г. // Теоретическая и прикладная экология. 2017. № 4. С. 32.
- Sarkara B., Xia Y., Megharaja M. et al. // J. of Hazar. Mater. 2010. V. 183. P. 87.
- Зимон А.Д. Коллоидная химия: общий курс. Изд. 6-е. М.: КРАСАНД, 2015. С. 342.
- 20. *Theophanides T.* (Ed.) Infrared spectroscopy materials science, engineering and technology. Rijeka, Croatia: InTech., 2012. P. 524.
- 21. *Temuujin J., Jadamba Ts., Burma G. et al.* // Ceramics Int. 2004. V. 30. P. 251.
- 22. *Mukherjee S.* (ed.) The science of clays applications in industry, engineering and environment. Kolkata: Springer, 2013. P. 351.
- 23. Erdemoglu M., Erdemoglu S., SayIlkan F. et al. // Appl. Clay Sci. 2004. V. 27. P. 41.