_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.8;537.226

СВЧ-ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И РЕЛАКСАЦИЯ ВОДНЫХ РАСТВОРОВ 1,3-ДИОКСОЛАНА И 2,2-ДИМЕТИЛ-1,3-ДИОКСОЛАН-4-МЕТАНОЛА

© 2021 г. А. К. Лященко^{*a*,*}, И. В. Балакаева^{*a*,**}, Н. А. Смирнова^{*b*}, Е. А. Сафонова^{*b*}

^а Российская академия наук, Институт общей и неорганической химии им Н.С. Курнакова, Москва, Россия ^b Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

> *e-mail: aklyas@mail.ru **e-mail: balak11@mail.ru Поступила в редакцию 28.01.2020 г. После доработки 28.01.2020 г. Принята к публикации 17.03.2020 г.

Представлены результаты измерения СВЧ-диэлектрических свойств водных растворов 1,3-диоксолана и 2,2-диметил-1,3-диоксолан-4-метанола на семи частотах, 5–25 ГГц при температурах 288, 298, 308 К. Рассчитаны статические диэлектрические константы, времена и активационные параметры процесса диэлектрической релаксации. Установлены отличия гидратационных изменений воды и эффекты взаимодействия разных групп молекул для растворов рассматриваемых соединений. Динамика молекул воды в растворе замедляется по сравнению с чистой водой в обоих случаях. Установлено, что это замедление определяется разными молекулярными механизмами взаимодействия растворенных частиц с тетраэдрической сеткой H-связей исходной воды.

Ключевые слова: гидратация, структура воды, 1,3-диоксолан, 2,2-диметил-1,3-диоксолан-4-метанол, релаксация, диэлектрические свойства **DOI:** 10.31857/S0044453721010167

Интерес к производным полиолов связан с расширением областей их применения и хорошими возможностями синтеза из продуктов переработки возобновляемого природного сырья В числе соелинений, привлекающих повышенное внимание, 1,3-диоксолан и его производные. Диоксоланы используют при производстве термопластичных конструкционных материалов и полимерных электролитов для литиевых источников тока [1, 2]. Производные полиолов применяют в авиационных топливных системах в качестве ингибиторов образования льда, причем производные сахаров занимают основное место в поиске нетоксичных, недорогих и биодеградируюших антиобледенителей [3]. Открываются большие перспективы использования производных полиолов в качестве добавок, улучшающих экологические и эксплуатационные характеристики топлив [4]. Показано, что ряд добавок, получаемых химической модификацией полиолов (этиленгликоль, глицерин, моносахариды), существенно повышают октановое число спиртсодержащих бензинов [5]. Проблема повышения фазовой стабильности, т.е. расширения области гомогенного состояния топлива в присутствии воды, остается актуальной. Вода при этом попадает в систему из атмосферы в процессе эксплуатации или, в случае биотоплив, вносится со спиртом.

Имеется весьма ограниченная информация о фазовом поведении систем, содержащих производные полиолов. В работе [3] установлена корреляция между эффективностью влияния ряда производных полиолов на температуру кристаллизации льда из содержащих воду бензинов (экспериментальные данные) и способностью этих соединений разрушать кластеры воды (данные молекулярно-динамического моделирования). Физико-химические свойства водных растворов производных диоксолана также мало изучены. Имеются данные о предельных коэффициентах активности 1,3-диоксолана в интервале температур 275-375 К [6] и о коэффициентах уравнения Антуана для некоторых его гомологов [7]. Получены данные о растворимости в воде некоторых производных диоксолана и применении моделей локального состава для расчёта равновесий жидкость-пар, жидкость-жидкость и жидкостьжидкость-пар в нескольких бинарных системах диоксолан-вода при постоянном давлении, близком к атмосферному (температуры 18-110°С) [7, 8]. Для бинарных смесей 1,3-диоксо-

Рис. 1. Структурные формулы 1,3-диоксолана (а) и 2,2-диметил-1,3-диоксолан-4-метанола (б).

лан—вода [9], 1,3-диоксолан—метанол и тройной системы 1,3-диоксолан—вода—метанол при повышенных температурах (более 308.15 К) исследованы составы азеотропов и концентрационные зависимости коэффициентов активности компонентов [10].

Данных о фазовом поведении систем, содержащих производные диокослана, при температурах ниже 298 К мало. Авторами работы [11] показано, что понижение температуры кристаллизации воды с ростом концентрации 2,2-диметил-1,3-диоксолан-4-метанола (ДМДМ) находится в согласии с криоскопической формулой. Это свидетельствует о близости поведения такой бинарной смеси к идеальному в исследованной области концентраций (мольная доля ДМДМ – от 0 до 0.15).

Самодостаточный интерес представляет рассмотрение гидратационных эффектов при изменении взаимодействий свойств воды от числа полярных и неполярных групп у различных молекул. Для этих целей может быть использован метод диэлектрической спектроскопии, отражающий изменения диэлектрических характеристик в области максимума дисперсии воды. Этот подход оправдан для большого числа водно-неэлектролитных систем с преимущественно гидрофильной или гидрофобной гидратацией молекул в растворе [12–22]. Эти данные используются для более детальной интерпретации полученных зависимостей в случае более сложных молекул.

В настоящей работе изучены водные растворы 1,3-диоксолана (ДО) и 2,2-диметил-1,3-диоксолан-4-метанола (ДМДМ) при 288, 298 и 308 К. Структурные формулы исследуемых диоксоланов представлены на рис. 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследована высокочастотная диэлектрическая проницаемость є' и потери є" водных растворов 2,2диметил-1,3-диоксолан-4-метанол (ДМДМ) (моляльность m = 0.5, 1.00, 1.51, 1.96, 3.00, 3.50 моль/кг воды) и 1,3-диоксолана (ДО) (моляльность m = 0.52, 1.07, 1.68, 2.36, 2.90, 3.3 моль/кг воды) на частотах f = 7, 13, 16, 18.9, 22, 25 ГГц при температурах 288, 298, 308 К. Для измерений комплексной диэлектрической проницаемости водных растворов в сантиметровом диапазоне длин волн использован метод "цилиндрического стерженька" в волноводе [23]. Аппаратура и методика измерений представлена в [21, 22]. Значения относительной погрешности є' и є" составляют $\pm 1.5-2$ и $\pm 2-2.5$ %, соответственно. Так как рассматриваемые водные растворы не являются проводящими жидкостями, то их диэлектрические потери не имеют дипольную и ионную составляющие. Поэтому для определения дипольных потерь, связанных только с гидратацией молекул, не следует учитывать потери, вносимые электропроводностью. Растворы для исследований готовились весовым методом. 1,3-диоксолан фирмы ACROS Organics со степенью чистоты >99.9% использовался без дополнительной очистки и 2,2-диметил-1,3-диоксолан-4-метанол (ДМДМ) фирмы "ACROS Organics" с содержанием основного вещества 97% подвергался дополнительной очистке на ректификационной колонке. Растворы готовились на основе бидистиллята.

МЕТОДИКА РАСЧЕТА

Комплексную диэлектрическую проницаемость (є*) определяли [24, 25] по уравнению:

$$\varepsilon^* = \varepsilon' - \iota \varepsilon'', \tag{1}$$

где є' — высокочастотная диэлектрическая проницаемость; є" — полные потери на определенной частоте. Дипольные потери в данном случае равны полным потерям.

Частотная зависимость комплексной диэлектрической проницаемости растворов при всех изученных температурах и концентрациях соли описывается уравнением Коула-Коула:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\tau\omega^{1-\alpha}},$$
(2)

где \mathcal{E}_{s} — низкочастотный предел области дисперсии, который в отсутствие добавочных низкочастотных релаксационных процессов является статической диэлектрической константой, τ наиболее вероятное время диэлектрической релаксации, α — параметр распределения времен релаксации, \mathcal{E}_{∞} — высокочастотный предел для рассматриваемой области дисперсии. Так же как и в других работах [21, 15, 16] для растворов было принято \mathcal{E}_{∞} = 5, так, как было показано [17, 18], что эта величина не сильно меняется с концентрацией.

Значения є' и є'' представлены в табл. 1, 2. На рис. 2 приведены диаграммы Коула–Коула водных растворов ДО и для температур 288 и 298 К. Частотные зависимости є'' от є' хорошо описываются полуокружностями. Небольшие значения параметра времен релаксации α в табл. 3 указывают на применимость модели Коула–Коула для

СВЧ-ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

т,	7.5	ГГц	10 ГГц		13 ГГц		16 ГГц		18.9 ГГц		22 ГГц		25 ГГц	
моль/кг	ε'	ϵ_d''	ε'	ϵ_d''	ε'	ϵ_d''	ε'	ϵ_d''	ε'	ϵ''_d	ε'	ϵ_d''	ε'	ε''
288 K														
Вода	65.8	31.5	57.2	36.1	47.7	38.3	39.7	38.4	33.5	37.3	28.3	35.4	24.3	33.4
0.52	62.2	31.1	54.2	35.3	44.3	36.1	37.6	36.2	31.7	36.0	27.8	34.0	22.7	31.6
1.07	60.2	30.5	51.5	34.3	42.1	35.5	36.1	36.1	29.7	34.1	25.8	32.0	21.1	30.0
1.68	56.0	29.7	48.5	33.3	39.7	33.8	33.5	34.2	27.7	32.2	24.0	30.3	19.8	27.9
2.36	52.5	28.8	46.4	32.1	37.1	32.5	31.3	32.7	26.5	30.7	22.7	29.0	19.2	26.4
2.9	50.6	28.2	44.3	31.4	35.9	31.2	29.8	31.5	25.1	29.2	21.8	27.5	18.0	24.4
3.32	49.3	27.9	42.7	30.8	34.5	30.4	29.0	30.3	24.4	29.3	21.1	26.8	17.7	24.4
298 K														
Вода	68.7	24.8	62.9	30.0	55.5	34.0	48.5	36.1	42.3	36.7	36.9	36.4	32.4	35.5
0.52	65.8	24.6	60.3	30.0	52.7	33.5	45.8	35.0	39.7	35.4	34.7	34.8	30.9	34.1
1.07	62.2	24.4	57.4	28.9	49.9	32.7	43.6	34.1	37.6	33.7	32.3	33.4	29.1	32.5
1.68	60.5	24.6	54.7	28.6	46.9	31.7	40.9	32.7	35.5	32.4	30.2	31.7	27.2	31.5
2.36	58.3	24.2	52.2	28.3	44.5	30.5	38.5	31.9	33.4	30.9	28.2	30.1	25.4	29.8
2.9	55.9	23.7	50.8	27.9	42.4	29.6	36.9	31.0	32.0	29.7	27.0	29.0	24.2	28.1
3.32	54.3	23.5	49.7	27.5	41.1	28.9	35.7	30.3	30.8	28.7	26.3	28.3	23.5	27.5
ľ	I			1			308 K		1	1			1	1
Вода	69.0	19.5	65.0	24.3	59.7	28.8	54.2	31.9	49.1	33.8	43.9	34.7	39.5	35.0
0.52	67.4	19.4	63.1	24.3	57.4	28.4	52.2	31.1	46.7	32.8	41.8	33.6	37.8	33.7
1.07	64.6	19.9	60.7	24.2	54.8	28.2	49.0	31.0	44.2	31.8	39.5	32.7	36.1	32.7
1.68	62.5	19.9	58.5	23.7	52.0	27.2	46.9	30.6	42.4	30.8	37.2	31.4	34.3	30.6
2.36	60.2	19.9	56.6	23.7	49.4	26.2	44.4	29.6	39.9	29.6	34.9	30.0	31.3	30.2
2.9	58.1	19.9	54.4	23.7	47.7	26.1	42.7	28.9	38.2	28.8	33.5	28.9	30.2	28.9
3.32	57.2	19.6	53.5	23.2	46.5	25.5	41.2	28.3	37.0	28.1	32.2	28.0	29.3	28.1

Таблица 1. Диэлектрическая проницаемость и дипольные потери водных растворов 1,3-диоксолана (DO)

расчета параметров диэлектрической релаксации растворов.

Время диэлектрической релаксации τ находили графически (рис. 3) с использованием метода, в котором анализируется частотная зависимость функции:

$$f = [(\varepsilon_s - \varepsilon')^2 + (\varepsilon_d'')^2] / [(\varepsilon' - \varepsilon_{\infty})^2 + (\varepsilon_d'')^2] = V/U.$$
(3)

Данная функция в логарифмическом масштабе соответствует прямой линии, а точка пересечения функции f с осью абсцисс отвечает частоте максимума дипольных потерь ω_0 . При этом $\tau = 1/\omega_0$. Изменение угла наклона для данной зависимости определяется величиной α .

Так как в первом приближении зависимость lnt от обратной температуры является линейной в указанном интервале температур, для вычисления активационных параметров процесса релаксации (энтальпии $\Delta H_{\varepsilon}^{++}$, энергии Гиббса $\Delta G_{\varepsilon}^{++}$ и энтропии $\Delta S_{\varepsilon}^{++}$) были применены соотношения теории абсолютных скоростей реакций. Рассчитанные пара-

метры $\varepsilon_{\rm s}$, τ , α , $\Delta H_{\varepsilon}^{++}$, $\Delta G_{\varepsilon}^{++}$ и $T\Delta S_{\varepsilon}^{++}$ представлены в табл. 3. Значения τ не зависят от частоты в пределах погрешности эксперимента (±5%).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

С использованием полученных диэлектрических данных были рассмотрены действия молекул ДО и ДМДМ на воду в области концентраций и температур, где присутствует тетраэдрическая структура воды в растворе. Соответственно, гидрационный эффект рассматривается через изменения структурно-кинетических свойств исходной сетки H-связей при гидрофильной и гидрофобной гидратации полярных и неполярных групп молекул неэлектролитов.

В случае молекул ДО и ДМДМ наблюдаются как сходные изменения ряда диэлектрических параметров, так и принципиальные отличия. В частности, в начальной области концентраций сходным образом изменяются величины ε_s . Они увеличиваются при переходе от воды к раствору

	· /				1	,		· · · · · ·						
<i>m</i> ,	7.5	ГГц	10 ГГц		13 ГГц		16 ГГц		18.9 ГГц		22 ГГц		25 ГГц	
моль/кг	ε'	ε''	ε'	ϵ''_d	ε'	$\varepsilon_d^{"}$	ε'	ϵ''_d	ε'	ϵ''_d	ε'	ϵ''_d	ε'	ϵ''_d
288 K														
Вода	65.8	31.5	57.2	36.1	47.7	38.3	39.7	38.4	33.5	37.2	28.3	35.4	24.3	33.4
0.50	59.4	32.4	51.4	35.9	41.8	36.5	36.5	37.2	28.1	33.2	24.1	31.7	20.7	29.5
1.00	52.9	32.9	45.1	34.8	35.9	34.3	28.8	31.7	24.2	29.6	20.3	27.8	17.8	26.1
1.51	46.9	32.5	38.9	33.4	30.5	31.2	24.2	29.1	20.6	26.2	17.8	24.8	15.5	22.7
1.96	40.5	31.6	33.7	30.7	25.4	27.6	20.4	25.7	17.6	23.1	15.3	21.1	13.3	19.4
3.00	28.5	26.9	23.1	25.1	18.2	21.6	14.6	19.3	12.9	17.0	11.6	15.4	10.3	14.0
3.50	23.5	24.3	19.3	21.9	15.0	16.2	12.3	18.0	11.2	14.4	10.2	12.8	9.4	11.8
ľ					1	298	K	I	1					
Вода	68.7	24.8	62.8	30.0	55.5	34.0	48.5	36.1	42.5	36.7	36.9	36.4	32.4	35.5
0.50	63.8	26.5	57.8	30.7	49.6/48.7	33.3/33.1	43.5	35.0	36.8	34.0	32.0	33.9	27.9	32.9
1.00	58.4	27.2	52.0	30.5	44.1/44.2	33.0/33.1	38.0	33.3	32.2	32.2	26.4	30.0	23.9	29.9
1.51	53.9	28.1	46.6	30.4	38.5/38.5	31.2/31.5	32.5	31.4	27.0	28.1	23.6	27.9	20.6	26.8
1.96	48.1	28.4	41.5	29.8	33.3/33.0	29.4/29.3	27.8	28.4	24.1	26.7	20.0	25.0	17.5	23.6
3.00	35.8	27.0	30.4	25.9	23.8	24.2	19.8	22.6	17.7	20.5	14.4	18.7	13.5	17.1
3.50	29.6	24.9	25.2	23.5	19.7	21.0	16.4	19.4	14.9	17.2	12.3	15.6	11.8	14.3
ľ					1	308	K	I	1					
Вода	69.0	19.5	65.0	24.3	59.7	28.8	54.2	31.9	48.9	33.8	43.9	34.7	39.5	35.0
0.50	65.5	21.3	61.1	25.5	54.9	29.5	51.5	31.4	43.4	32.8	39.0	33.4	35.1	33.2
1.00	61.9	23.2	57.0	26.6	49.8	29.8	46.0	31.5	39.0	31.6	34.4	31.4	30.7	31.5
1.51	57.6	23.8	52.4	27.2	45.1	29.3	40.7	30.5	34.4	29.9	30.0	29.1	26.8	28.9
1.96	52.6	25.0	47.3	27.4	39.8/39.7	28.5/28.3	35.4	29.2	29.7	27.8	25.8	27.0	22.7	26.0
3.00	41.2	25.4	37.4	26.3	29.7	25.1	24.5	24.3	22.0	22.7	18.6	21.4	16.4	20.0
3.50	35.9	24.6	31.6	24.6	25.0	22.7	20.4	21.3	18.3	19.6	15.7	18.3	13.8	16.9

Таблица 2. Диэлектрическая проницаемость и дипольные потери водных растворов 2,2-диметил-1,3-диоксолан-4-метанол (DMDM)

Примечание: второе указанное значение є' и є' при 298 и 308 К соответствуют параллельным измерениям.

Таблица 3. Диэлектрические свойства водных растворов 1,3-диоксолана (DO)

<i>m</i> ,	288 K			298 K				308 K		$\Delta H_{\epsilon}^{++},$	$\Delta G_{\varepsilon}^{++}$,	$T\Delta S_{\varepsilon}^{++},$
моль/кг	$\epsilon_{\rm S}$	τ, пс	α	$\epsilon_{\rm S}$	τ, пс	α	$\epsilon_{\rm S}$	τ, пс	α	кДж/моль	кДж/моль	кДж/моль
Вода	82.1	11.0	0.00	78.4	8.3	0.00	74.9	6.5	0.00	17.2	9.8	7.4
0.52	78.9	11.3	0.00	76.3	8.6	0.01	73.8	6.7	0.02	16.5	9.8	6.7
1.07	77.3	11.7	0.01	73.2	8.8	0.00	71.7	7.0	0.02	16.3	9.9	6.4
1.68	74.0	12.2	0.01	71.5	9.2	0.01	69.6	7.2	0.03	17.1	10.0	7.1
2.36	71.1	12.5	0.01	70.1	9.6	0.03	68.0	7.6	0.04	16.0	10.1	5.9
2.9	69.0	12.8	0.01	68.4	9.9	0.04	66.9	7.8	0.06	15.6	10.2	5.4
3.32	68.4	13.2	0.03	67.1	10.1	0.04	66.1	8.0	0.07	15.7	10.2	5.5

при всех температурах (табл. 4). Одинаковый знак концентрационных изменений наблюдается также для изменения времени релаксации т. Как и в случае многих других неэлектролитов величины т растут при переходе от воды к раствору, что свидетельствует о пониженной подвижности молекул воды. При этом, молекулы неэлектролитов релаксируют на других частотах. В то же время,

Рис. 2. Диаграммы Коула–Коула водных растворов 1,3-диоксолана (а) и 2,2-диметил-1,3-диоксолан-4-метанола (б): I – 288 K, II – 298 K, III – 308 K. Цифры на диаграммах – частоты, на которых проведены измерения ε' и ε'_{d} .

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 1 2021

Рис. 3. Графическое определение наиболее вероятного времени дипольной релаксации в растворах 1,3-диоксолана (а) ($\tau = 1/\omega_0$) при 288 K (1), 298 K (II) и 308 K (III). \bigcirc вода, ■ 0.1 m (моль/кг H₂O) ▲ 0.26 m, ● 0.52 m, \square 1.09 m, \triangle 1.70 m, × 2.37 m и ,2-диметил-1,3-диоксолан-4-метанола (б) ($\tau = 1/\omega_0$) при 288 K (I), 298 K (II) и 308 K (III). \bigcirc вода, ■ 0.52 m (моль/кг H₂O), ▲ 1.07 m, ● 1.68 m, \square 2.36 m, \triangle 2.90 m, × 3.32 m.

эффект изменения т для ДО по своим значениям в 2.5–3 раза меньше, чем для ДМДМ (рис. 4).

Из данных активационных параметров процесса диэлектрической релаксации (табл. 3, 4) следует, что рост τ в двух рассматриваемых случаях свидетельствует о разных молекулярных меха-

<i>т</i> , моль/кг		288 K		298 K				308 K		$\Delta H_{\varepsilon}^{++}$,	$\Delta G_{\epsilon}^{++},$	$T\Delta S_{\rm s}^{++},$
	$\epsilon_{\rm S}$	τ, пс	α	$\epsilon_{\rm S}$	τ, пс	α	$\epsilon_{\rm S}$	τ, пс	α	кДж/моль	кДж/моль	кДж/моль
Вода	82.1	11.0	0.00	78.4	8.3	0.00	74.9	6.5	0.00	17.2	9.8	7.4
0.50	80.5	12.7	0.04	76.0	9.3	0.02	73.6	7.2	0.03	18.5	10.1	8.7
1.00	78.7	14.8	0.06	73.8	10.7	0.04	72.6	8.3	0.06	19.1	10.4	9.4
1.51	76.8	17.3	0.08	72.2	12.3	0.07	70.6	9.4	0.08	20.1	10.7	9.4
1.96	74.5	20.3	0.11	69.4	14.0	0.07	68.4	10.9	0.09	20.5	11.1	9.4
3.00	69.6	29.4	0.14	66.2	20.4	0.14	64.4	15.2	0.13	21.8	12.0	9.8
3.50	68.8	37.3	0.16	64.1	25.4	0.16	62.4	18.4	0.16	23.6	12.5	11.1

Таблица 4. Диэлектрические свойства водных растворов 2,2-диметил-1,3-диоксолан-4-метанол (DMDM)

Рис. 4. Концентрационные зависимости статической диэлектрической константы ε_s (а), времени τ (б) и энтальпии активации ΔH_{ϵ}^{++} (в) диэлектрической релаксации водных растворов 1,3-диоксолана (пунктир) и 2,2-диметил-1,3-диоксолан-4-метанол (сплошная линия). \bullet – 288 K, \blacksquare – 298 K, \blacktriangle – 308 K.

низмах. Для растворов ДО величины ΔH_{ϵ}^{++} и $T\Delta S_{\epsilon}$ падают при переходе от воды к раствору. Соответствующее уменьшение связанности и структурировании исходной сетки Н-связей отвечает случаю типичной гидрофильной гидратации молекул [14]. Сходные нарушающие эффекты наблюдаются в растворах формамида [15] и для ряда других систем (рис. 5). Они обуславливают локальные несоответствия связей исходной структуры воды и гидратной оболочки (в том числе и при образовании более сильных Н-связей в растворе). Рост величины $\Delta H_{\varepsilon}^{++}$ и $T\Delta S_{\varepsilon}$ при $\tau > 0$ говорит о гидрофобной гидратации неполярных групп молекулы ДМДМ. Соответственно, эта молекула оказывает структурирующее влияние на воду. Подобные характерные изменения наблю-

большим числом неполярных групп [13]. Таким образом, различие поведения двух рассматриваемых систем обусловлено видом превалирующей гидратации молекул неэлектролитов. В то же время следует отметить, что наблюдаемые изменения в случае ДМДМ носят несколько более сложный характер. При переходе от ДО к ДМДМ можно рассматривать не только рост числа неполярных групп, но также появление в молекуле и добавочное влияние полярной ОН-группы (гидрофильная гидратация). В то же время, ее деструктурирующее влияние на воду практически не сказывается. В таком случае для ОН-группы возможно и структурирующее действие на воду и однонаправленные изменения под действием неполярных и полярных групп, приводящие к уве-

даются для водных растворов многих молекул с

личению изменения величины τ и ΔH_{ϵ}^{++} в одну сторону.

Как видно из рис. 5, увеличение $\Delta H_{\varepsilon}^{++}$ в случае ДМДМ больше чем для ряда других систем. Оно приближается к росту $\Delta H_{\varepsilon}^{++}$ для растворов формамида и мочевины [15], где также не обнаружено

Рис. 5. Концентрационные зависимости статической энтальпии активации ΔH_{ϵ}^{++} диэлектрической релаксации водных растворов): \bullet – 1,3-диоксолана, \blacksquare – 2,2-диметил-1,3-диоксолан-4-метанол, \blacktriangle – формамид, + – ацетон, \varkappa – мочевина.

дестабилизирующее влияние полярных групп молекул. Таким образом, разные гидратационые изменения воды в растворах неэлектролитов могут быть охарактеризованы из СВЧ диэлектрических данных в интервале температур. Они непосредственно связаны с изменениями исходной сетки H-связей. Соответственно, можно определить, каким образом эти процессы могут направленно влиять на другие термодинамические свойства водных растворов, а также на гомогенные и гетерогенные равновесия в них.

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

Настоящая работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 19-03-00033).

СПИСОК ЛИТЕРАТУРЫ

- 1. Яновская А.А., Юфит С.С., Кучеров В.Ф. Химия ацеталей. М.: Наука, 1975. 275 с.
- Балашов А.Л. и др. // Журн. прикл. химии. 1998. Т. 71. № 4. С. 569.

- 3. Trohalaki S., Pachter R., Cummings J.R. // Energy & Fuels. 1999. V. 13. P. 992.
- 4. Патент США, 2003; US 2003/0163949 А1
- 5. Патент на изобретение № 2365617 "Октаноповышающая добавка к бензинам". Заявка № 2008121078, зарегистрировано 27.08.2009. Варфоломеев С.Д., Никифоров Г.А., Вольева В.Б., Макаров Г.Г., Трусов Л.И.
- Ondo D., Dohnal V. // Fluid Phase Equilib. 2007. V. 262. P. 121.
- 7. *Балашов А.Л. и др. //* Журн. прикл. химии. 1998. Т. 71. № 10. С. 1616.
- Chopade S.P. et al. // J. Chem. Eng. Data. 2003. V. 48. P. 44.
- Wu H.S., Sandler S.I. // J. Chem. Eng. Data. 1989. V. 34. P. 209.
- 10. Kurihara K. et al. // Ibid. 2003. V. 48. P. 102.
- 11. Яковлева М.А., Приходько И.В., Пукинский И.Б., Смирнова Н.А. // Вестн. СПбГУ. Серия 4: Физика. Химия. 2011. Вып. 2. С. 112.
- 12. Lyashchenko A.K. // Adv. Chem. Phys. 1994. V. 87. P. 379.
- 13. Lyashchenko A.K., Novskova T.A., Lileev A.S., Kharkin V.S. // J. Mol. Liquids 2001. V. 93. P. 29.
- 14. Loginova D.V., Lileev A.S., Lyashchenko A.K., Aladko L.S. // J. Non-Cryst. Sol. 2005. V. 351. P. 2882.
- 15. Логинова Д.В., Лилеев А.С., Лященко А.К. и др. // Журн. неорган. химии. 2003. Т. 48. № 10. С. 1686.
- 16. Loginova D.V., Lileev A.S., Lyashchenko A.K., Kharkin V.S. // Mendeleev Commun. 2003. № 2. P. 68.
- 17. Lyashchenko A.K., Zasetsky A.Yu. // J. Mol. Liquids. 1998. V. 77. P. 61.
- Лященко А.К., Харькин В.С., Лилеев А.С. и др. // Журн. физ. химии. 2000. Т. 74. С. 619.
- Логинова Д.В., Лилеев А.С., Лященко А.К., Харькин В.С. // Журн. неорган. химии. 2003. Т. 48. № 2. С. 335.
- 20. Лященко А.К., Балакаева И.В., Тимофеева Л.М., Лилеев А.С. // Там же. 2020. В печати.
- 21. Lyashchenko A.K., Lileev A.S. // J. Chem. Eng. Data. 2010. V. 55. P. 2008.
- Лященко А.К., Лилеев А.С., Каратаева И.М. Современные проблемы общей и неорганической химии. М., 2009. С. 316.
- Брандт А.А. Исследование диэлектриков на сверхвысоких частотах, М.: Изд-во физико-матем. литер., 1963. 402 с.
- 24. *Hasted J.B.* Aqueous Dielectrics. Chapman and Hall. London, 1973.
- 25. *Barthel J., Buchner R., Munsterer M.* Electrolyte Data Collection. Part 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions. Chemistry Data Ser. Dechema. Frankfurt am Main. 1995. V. 12. Part 2.