_____ ФИЗИЧЕСКАЯ ХИМИЯ _____ РАСТВОРОВ

УДК 678.1,541.68,532

ОПРЕДЕЛЕНИЕ КОНФОРМАЦИИ И РАЗМЕРОВ МАКРОМОЛЕКУЛ ПЭГ В СИСТЕМАХ ВОДА–ПЭГ–NaOH МЕТОДОМ ВИСКОЗИМЕТРИИ

© 2021 г. Э. А. Масимов^а, Б. Г. Пашаев^{а,*}, М. Р. Раджабов^а

^а Бакинский государственный университет, Баку, Азербайджанская Республика *e-mail: p.g.bakhtiyar@gmail.com Поступила в редакцию 07.12.2019 г. После доработки 30.04.2020 г. Принята к публикации 05.05.2020 г.

Исследована кинематическая вязкость систем вода-полиэтиленгликоль (ПЭГ)-NaOH при температуре 293.15 К, 0–0.05 мол. доли NaOH и концентрации ПЭГ в интервале 0–5 г/дл. Рассмотрены фракции полиэтиленгликоля различных молекулярных масс (1000, 1500, 3000, 4000 и 6000). На основании экспериментальных данных по кинематической вязкости, при данной концентрации NaOH вычислены: характерисчическая вязкость исследуемых растворов, константа Хаггинса, параметр α в уравнении Марка–Куна–Хаувинга, коэффициент набухания макромолекул полиэтиленгликоля, характеристическая вязкость в θ -растворителе, среднеквадратичное расстояние макромолекулярной цепи ПЭГ в растворе и в θ -растворителе, длина сегмента Куна в растворе и в θ -растворителе. Установлено, что макромолекулярный клубок полиэтиленгликоля проницаем для окружающей жидкости (вода–NaOH), и с увеличением концентрации NaOH объем клубка уменьшается, а гибкость увеличивается.

Ключевые слова: NaOH, полиэтиленгликоль, характеристическая вязкость, константа Хаггинса, среднеквадратичное расстояние, коэффициент набухания, сегмент Куна **DOI:** 10.31857/S0044453721010180

Существует много фракций полиэтиленгликоля (ПЭГ) с различными молекулярными массами. Все они хорошо растворимы в воде. Хорошая растворимость ПЭГ в воде обусловлена водородной связью молекулы волы с эфирными атомами кислорода. ПЭГ – своеобразный полимер. обладающий собственными свойствами в водной среде [1-7]. Эти характеристики в основном определяются конкуренцией воды и ПЭГ в образовании водородных связей между молекулами вода-вода и вода-ПЭГ [8, 9]. С ростом температуры в системе вода-ПЭГ происходят уменьшение числа водородных связей и увеличение гидрофобных взаимодействий между макромолекулярными цепями [10]. При добавлении электролита в систему вода-ПЭГ катионы электролита могут образовывать комплексы с макромолекулами ПЭГ, разрушая существующую структуру системы вода-ПЭГ [11]. Это приводит к ослаблению растворимости ПЭГ в воде. Поскольку ПЭГ обладает многими уникальными свойствами (нетоксичен, не оказывает негативного влияния на иммунную систему и т.д.), изучение его физико-химических свойств как в водных, так и в водно-электролитных системах играет важную роль в медицине, фармакологии, пищевой промышленности и т.д. [12-14]. Вискозиметрия - один из наиболее часто

используемых методов определения характеристик полимера в растворе. С помощью вискозиметра можно определить ряд величин (характеристическая вязкость, постоянная Хаггинса, коэффициент набухания, длина сегмента Куна и т.д.), характеризующих макромолекулы полимера в растворе [15, 16].

Цель настоящей работы — определить конформацию макромолекул ПЭГ и оценить их размеры в системах вода—ПЭГ—NaOH, а также изучить влияние NaOH на конформацию и размеры макромолекул.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Согласно современным представлениям, в разбавленном полимерном растворе линейная гибкая макромолекула преобразуется в форму клубка. При течении растворов в результате поступательного и вращательного движения макромолекулы создается трение между молекулами растворителя и растворенного вещества, что приводит к увеличению вязкости. Вращательные движения отдельных макромолекул обусловливают характеристическую вязкость раствора. Характерная вязкость раствора определяет энергетическую потерю во время течения, вызванную вращением молекул полимера в среде растворителя [17]. По характеристической вязкости раствора можно определить ряд величин, характеризующих конформацию и размер макромолекулы.

Для определения характеристической вязкости ([η]) сначала находят приведенную вязкость (η_{np}) [17]:

$$\eta_{\rm np} = \frac{\nu_{\rm p-p} - \nu_{\rm p-n}}{\nu_{\rm p-n}c},\tag{1}$$

где v_{p-p} и v_{p-n} — кинематические вязкости раствора и растворителя, *с* — концентрация полимера в растворе. Зависимость приводимой вязкости от концентрации в разбавленном полимерном растворе описывается уравнением Хаггинса:

$$\eta_{\rm np} = [\eta] + K_{\rm H}[\eta]^2 c, \qquad (2)$$

где $[\eta] = \lim_{c \to 0} (\eta_{np})$ — характерная вязкость, $K_{\rm H}$ — константа Хаггинса, которая характеризует интенсивность взаимодействия частиц системы [17–19]. На основе выражения (2) из зависимости $\eta_{np} \sim c$ определяются характеристическая вязкость и константа Хаггинса.

Как известно, характеристическая вязкость ($[\eta]$) полимерных растворов связана с молекулярной массой полимера (M) и описывается уравнением Марка—Куна—Хаувинга [17—19]:

$$[\eta] = KM^{\alpha}, \tag{3}$$

где K — постоянная, зависящая от свойств растворенного вещества и растворителя, α — параметр характеризующий конформацию макромолекул в растворе и определяющийся углом наклона прямой зависимости $\ln[\eta] \sim \ln M$:

$$\ln[\eta] = \ln K + \alpha \ln M. \tag{4}$$

Для определения размеров невозмущенных, т.е. находящихся в равновесии полимерных макромолекул, обычно используется значение характеристической вязкости θ -растворителя. В θ -растворителе всевозможные взаимодействия между всеми частицами компенсируют друг друга, образуется термодинамический баланс, и молекула полимера остается в невозмущенном состоянии. Естественно, что на практике очень трудно выбрать необходимые условия (давление, температуру и т.д.) для получения такого растворителя, хотя теория растворов полимеров создавалась именно по θ -растворителям [18, 19]. В одной из таких теорий – теории Флори [18] – характеристическая вязкость растворов полимеров в θ -растворителе ($[\eta]_{\theta}$) определяется следующим выражением:

$$[\eta]_{\theta} = K_{\theta} M^{1/2}.$$
 (5)

Здесь K_{θ} – коэффициент Флори, M – молекулярная масса полимера. Как видно из выражения (5), для определения $[\eta]_{\theta}$ необходимо знать значение K_{θ} . Отметим, что при отсутствии θ -растворителя невозможно определить величину $[\eta]_{\theta}$ из практики. Однако, между характеристической вязкостью растворов $[\eta]_{\theta}$, измеренной в "хороших" растворителях (не в θ -растворителях), и константой K_{θ} существует большое число эмпирических выражений [18, 19], одно из них – формула Стокмайера–Фиксмана [20]:

$$\frac{[\eta]}{\sqrt{M}} = K_{\theta} + 0.51 B \Phi \sqrt{M}.$$
 (6)

Здесь *B* – параметр дальнодействия, выраженный в литрах. Измерив характеристическую вязкость ([η]), на основе выражения (6) можно определить зависимость $\frac{[\eta]}{\sqrt{M}} = f(\sqrt{M})$. Из экстраполяции

 $\sqrt{M} \to 0$ определяется параметр K_{θ} , а затем с помощью выражения (5) можно найти $[\eta]_{\theta}$.

Размеры полимерного клубка обычно характеризуются среднеквадратичным расстоянием между концами макромолекулярной цепи. Мы можем найти среднеквадратичное расстояние между концами макромолекулярной цепи ($\langle h \rangle$) и ($\langle h_0 \rangle$) в любом растворителе из уравнения Флори–Фокса [18, 19]:

$$[\eta] = \Phi \frac{\langle h \rangle^3}{M}, \quad [\eta]_{\theta} = \Phi \frac{\langle h_{\theta} \rangle^3}{M}.$$
(7)

Здесь Φ — коэффицент Флори. Флори экспериментальным путем определил, что значение этого коэффицента равно $\Phi = 2.1 \times 10^{23}$ моль⁻¹ [21]. Размеры полимерного клубка также могут быть охарактеризованы гидродинамическим радиусом R_h (R_h — радиус сферы, через которую молекулы растворителя не могут проникнуть) и среднеквадратичным радиусом инерции (R_g). Гидродинамический радиус и среднеквадратичный радиус инерции для любого растворителя (R_h , R_g) и θ -растворителя ($R_{h\theta}$, $R_{g\theta}$) можно определить по следующим выражениям [21]:

$$R_{h} = \left(\frac{3M[\eta]}{10\pi N_{A}}\right)^{1/3}, \quad R_{h\theta} = \left(\frac{3M[\eta]_{\theta}}{10\pi N_{A}}\right)^{1/3}, \quad (8)$$
$$R_{g} = \frac{\langle h \rangle}{\sqrt{6}}, \quad R_{g\theta} = \frac{\langle h_{\theta} \rangle}{\sqrt{6}}.$$

С другой стороны, конформация макромолекул в растворе характеризуется такими параметрами как коэффициент набухания (β) и длина сегмента Куна (*A*). Полимерная макромолекула в "хорошем" растворителе набухает, объем клубка

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 1 2021

X	PEQ-1000	PEQ-1500	PEQ-3000	PEQ-4000	PEQ-6000			
	[η], дл/г							
0	0.0341	0.0471	0.0675	0.0837	0.1343			
0.01	0.0339	0.0451	0.0645	0.0822	0.1251			
0.02	0.0306	0.0417	0.0592	0.0769	0.1057			
0.03	0.0315	0.0395	0.0561	0.0751	0.1051			
0.04	0.0294	0.0391	0.0565	0.0697	0.0987			
0.05	0.0281	0.0373	0.0538	0.0668	0.0882			
	$K_{\rm H}$							
0	5.269	3.627	1.998	1.433	1.117			
0.01	5.403	3.771	2.097	1.488	1.134			
0.02	6.552	4.516	2.325	1.568	1.286			
0.03	5.969	4.688	2.206	1.457	1.456			
0.04	6.262	4.377	2.352	1.717	1.326			
0.05	6.541	4.611	2.494	1.778	1.424			

Таблица 1. Зависимость характеристической вязкости ([η], дл/г) и постоянной Хаггинса (K_H) систем вода—ПЭГ— NaOH от концентрации NaOH (*x*) для ПЭГ с разной молекулярной массой (T = 293.15 K)

в β раз увеличивается и характеристическая вязкость определяется следующим выражением [18]:

$$\beta = \left(\frac{[\eta]}{[\eta]_{\theta}}\right)^{1/3} = \frac{\langle h \rangle}{\langle h_{\theta} \rangle}.$$
(9)

Гибкость макромолекулы определяется длиной сегмента Куна, которая в любом растворителе (A) и в θ -растворителе (A_{θ}) определяется соответственно следующими выражениями:

$$A = \frac{\langle h \rangle^2}{L} = \frac{\langle h \rangle^2}{nl_0}, \quad A_{\theta} = \frac{\langle h_{\theta} \rangle^2}{L} = \frac{\langle h_{\theta} \rangle^2}{nl_0}, \quad (10)$$

где L — длина полностью развернутой макромолекулы, n — степень полимеризации макромолекул, l_0 — контурная длина мономера в ангстремах. В работе [16] для мономера полиэтиленгликоля (-CH₂-CH₂-O-)значение параметра l_0 = 2.36 Å.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования и методы. Исследована кинематическая вязкость систем вода-ПЭГ-NaOH при температуре 293.15 К, 0–0.05 мол. доли NaOH и концентрации полиэтиленгликоля в интервале 0–5 г/дл. Рассмотрены фракции полиэтиленгликоля (ПЭГ) с молекулярной массой 1000, 1500, 3000, 4000 и 6000. Используемые NaOH и ПЭГ – чистые химикаты. Растворы изготовлены гравиметрическим методом. При приготовлении растворов использована бидистиллированная вода. Для приготовления образцов использованы аналитические весы, и измерения проведены с точностью до 0.0001 г. Вязкость измерена капиллярным вискозиметром. Эксперимент проведен при нормальном атмосферном давлении. Время протекания жидкости в вискозиметре определено с точностью ± 0.01 с. Все измерения выполнены 3 раза, взяты их средние значения. Вязкость растворов измерена при температуре 293.15 К, для поддержания постоянной температуры вискозиметр помещен в термостат. Температура измерена с точностью ± 0.05 К. Максимальная относительная погрешность эксперимента составила 0.7%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На основании экспериментальных данных по кинематической вязкости с помощью формулы (1) определены приведенные вязкости водных растворов в исследуемом диапазоне концентраций и температур (293.15 K) для ПЭГ с разной молекулярной массой. Отметим, что кинематическая вязкость всех исследованных водных растворов возрастает с ростом концентрации NaOH в исследуемом диапазоне. По значению приведенной вязкости с помощью формулы (2) вычислены характеристическая вязкость ([η]) и постоянная Хаггинса ($K_{\rm H}$) водных растворов при температуре 293.15 К в данном интервале концентраций NaOH и ПЭГ с разной молекулярной массой (табл. 1).

Как видно из табл. 1, значения характеристической вязкости увеличиваются с ростом молекулярной массы ПЭГ и уменьшаются с ростом концентрации NaOH. Характеристическая вязкость рассматривается для предельно разбавленного раствора, в котором предполагается полное отсутствие взаимодействия макромолекул полимера друг с другом, т.е. отсутствие при течении рас-

Таблица 2. Зависимость параметра α в уравнении Марка–Куна–Хуавинга в системах вода–ПЭГ–NaOH от концентрации NaOH (*x*) при *T* = 293.15 К

	=					
x	0	0.01	0.02	0.03	0.04	0.05
α	0.715	0.693	0.669	0.658	0.650	0.624

твора дополнительных потерь энергии, обусловвращением упруговязкими ленных И деформациями макромолекул в потоке [17, 18]. Из выражений (7) и (8) следует, что характеристическая вязкость прямо пропорциональна размеру макромолекул ([η] ~ R_h^3 , [η] ~ R_g^3): с увеличением размеров макромолекулы ПЭГ более интенсивно взаимодействуют с молекулами воды (посредством водородных связей), что затрудняет их вращение в среде, и поэтому характеристическая вязкость увеличивается. С ростом концентрации NaOH характеристическая вязкость для данной молекулярной массы ПЭГ в связи с уменьшением объема макромолекул ПЭГ уменьшается. Таким образом, несмотря на увеличение вязкости раствора с ростом концентрации NaOH, объем макромолекулы ПЭГ уменьшается, в результате вращения макромолекулы в среде облегчаются. С ростом концентрации конформация и размеры макромолекул ПЭГ изменяются.

По табл. 1, значения постоянной Хаггинса в исследованных растворах уменьшаются с ростом молекулярной массы ПЭГ и увеличиваяются с ростом концентрации NaOH. Постоянная Хаггинса характеризует интенсивность взаимодействия частиц в системе [17], т.е., чем хуже растворитель для данного полимера, тем выше значение постоянной Хаггинса. Снижение значения постоянной Хаггинса с увеличением молекулярной массы при данной температуре указывает на то, что система вода-NaOH – лучший растворитель для относительно большой молекулярной массы ПЭГ. Растворимость ПЭГ в воде улучшается с увеличением молекулярной массы. Это можно объяснить усилением гидратации макромолекулы ПЭГ. Возможно, с увеличением молекулярной массы число молекул воды, накопленных вокруг макромолекулы ПЭГ, возрастает, что привок уменьшению значения постоянной ДИТ Хаггинса. Увеличение значения постоянной Хаггинса с ростом концентрации NaOH для ПЭГ данной молекулярной массы указывает на то, что растворимость ПЭГ в воде ухудшается с ростом концентрации. Вероятно, это связано с гидратацией ионов Na⁺ и OH⁻ в растворе. Таким образом, в системах вода-ПЭГ гидрируются только макромолекулы ПЭГ, в системах вода-ПЭГ-NaOH – как макромолекулы ПЭГ, так и ионы Na⁺ и OH⁻; с ростом количества ионов в растворе ухудшается растворимость ПЭГ в воде.

Параметр а в уравнении Марка-Куна-Хаувинга – количественный показатель, определяющий форму молекулы полимера, так что при любых взаимодействиях, которые меняют форму молекулы полимера, значения α меняются $(0 \le \alpha \le 2)$. Если макромолекула имеет форму сферы, окружающая среда не может проникнуть в нее и $\alpha = 0$, в случае стержневидной конформации жесткой макромолекулы значение $\alpha = 2$ [17, 18], для конформации полностью проницаемого клубка $\alpha = 1$, в θ -растворителе для невозбужденных макромолекул в форме клубка $\alpha = 0.5$. Зависимость α-показателя, входящего в уравнение Марка–Куна–Хаувинга, от концентрации NaOH показана в табл. 2. По нашим исследованиям при температуре 293.15 К и данной концентрации NaOH значение параметра α варьируется в интервале 0.62-0.72. На основании изложенного выше, можно считать, что макромолекулы ПЭГ в водных растворах имеют конформацию полупроницаемого клубка. Как видно из табл. 2, параметр α уменьшается с ростом концентрации NaOH: следовательно, с увеличением концентрации NaOH в растворе молекулярный клубок сжимается, т.е. объем макромолекулы ПЭГ уменьшается.

Далее на основании полученных значений характеристической вязкости систем вода-ПЭГ-NaOH (табл. 1) с использованием выражение (6) вычислены значения θ -констант (K_{θ}). Затем по выражению (5) вычислены значения характеристической вязкости растворов ПЭГ в соответствии с исследуемой системой в θ-растворителе ([ŋ]₄) (табл. 3). По данным табл. 3 значение характеристической вязкости растворов ПЭГ в θ-растворителе возрастает и с увеличением молярной массы ПЭГ, и с ростом концентрации NaOH. Изменение характеристической вязкости ПЭГ в θ растворителе в зависимости от молярной массы $([\eta]_{\theta} \sim M)$ объясняется по аналогии с зависимостью характеристической вязкости от молярной массы ($[\eta] \sim M$) в присутствии растворителя воды-NaOH. Известно, что в θ-растворителе молекулы полимера и молекулы растворителя не взаимодействуют друг с другом, т.е. макромолекулы полимера в θ-растворителе находятся в невозмущенном состоянии, и для этого состояния параметр $\alpha = 0.5$ остается постоянным [17]. Следовательно, в θ-растворителе при данной молекулярной массе ПЭГ в зависимости от концентрации NaOH сжимания или растягивания молекулярного клубка не происходит. Предполагается, что с увеличением концентрации NaOH для данных молекулярных масс ПЭГ рост [η]_в связан с частичным увеличением объема молекулярного клубка ($[\eta]_{\theta} \sim R_{\theta h}^3$, $[\eta]_{\theta} \sim R_{\theta g}^3$) и с вязкостью раствора в θ-растворителе.

x	PEQ-1000	PEQ-1500	PEQ-3000	PEQ-4000	PEQ-6000			
	$[\eta]_{\theta}$							
0	0.0212	0.0259	0.0367	0.0423	0.0519			
0.01	0.0224	0.0274	0.0388	0.0448	0.0548			
0.02	0.0228	0.0279	0.0395	0.0456	0.0559			
0.03	0.0226	0.0276	0.0391	0.0451	0.0553			
0.04	0.0226	0.0277	0.0392	0.0453	0.0555			
0.05	0.0234	0.0287	0.0406	0.0469	0.0574			
	β							
0	1.172	1.220	1.226	1.255	1.373			
0.01	1.148	1.180	1.185	1.224	1.316			
0.02	1.102	1.142	1.144	1.190	1.237			
0.03	1.117	1.126	1.128	1.185	1.238			
0.04	1.091	1.122	1.129	1.154	1.212			
0.05	1.062	1.092	1.099	1.125	1.154			

Таблица 3. Зависимость характеристической вязкости ($[\eta]_{\theta}$, дл/г) для ПЭГ с разной молекулярной массой и коэффициента набухания (β) макромолекул ПЭГ систем вода—ПЭГ— NaOH при θ -растворителе от концентрации NaOH (*x*) при *T* = 293.15 К

Таблица 4. Зависимость среднеквадратичного расстояния между концами макромолекулярной цепи ПЭГ ($\langle h \rangle$ и $\langle h_{\theta} \rangle$, Å) от концентрации NaOH (*x*) в системе вода–ПЭГ–NaOH и в θ -растворителе, выбранном соответственно этим системам, при *T* = 293.15 К

X	PEQ-1000	PEQ-1500	PEQ-3000	PEQ-4000	PEQ-6000			
	$\langle h \rangle$, Å							
0	25.33	32.28	45.86	54.21	72.67			
0.01	25.27	31.81	45.17	53.90	70.97			
0.02	24.42	30.99	43.90	52.71	67.09			
0.03	24.66	30.45	43.11	52.30	66.94			
0.04	24.11	30.35	43.22	51.02	65.58			
0.05	23.74	29.88	42.53	50.29	63.16			
	$\langle h_{0} \rangle$, Å							
0	21.60	26.46	37.42	43.20	52.91			
0.01	22.01	26.96	38.12	44.02	53.91			
0.02	22.15	27.13	38.36	44.30	54.26			
0.03	22.07	27.03	38.23	44.14	54.06			
0.04	22.09	27.06	38.27	44.19	54.12			
0.05	22.34	27.37	38.70	44.69	54.73			

Макромолекулярный клубок макромолекулы в неидеальном растворителе набухает в β раз больше, чем в NaOH. С помощью выражения (9) по найденным значениям были вычислены коэф фициенты набухания (β) макромолекулы для систем вода—ПЭГ—NaOH (табл. 3). Для систем вода—ПЭГ—NaOH параметр β растет с увеличением молекулярной массы ПЭГ и уменьшается с ростом концентрации NaOH. Рост β с увеличением молекулярной массы ПЭГ, вероятно, связан с его гидратацией (путем водородной связи), так как ПЭГ с относительно большой молекулярной массой более гидратирован; снижение β с ростом концентрации NaOH в растворе обусловлено гидратацией ионов Na⁺ и OH⁻, а также увеличением вязкости среды. Можно предположить, что гидратация макромолекул ПЭГ в системах вода– ПЭГ–NaOH слабее, чем в системах вода–ПЭГ.

Значения среднеквадратичных расстояний между концами возмущенных макромолекул ПЭГ в растворе ($\langle h \rangle$) и невозмущенных макромо-

X	PEQ-1000	PEQ-1500	PEQ-3000	PEQ-4000	PEQ-6000	4 Å
		A_{θ}, A				
0	11.96	12.95	13.07	13.70	16.41	8.70
0.01	11.91	12.58	12.68	13.54	15.65	9.03
0.02	11.12	11.94	11.98	12.95	13.99	9.15
0.03	11.34	11.52	11.55	12.75	13.93	9.08
0.04	10.83	11.45	11.61	12.13	13.36	9.10
0.05	10.51	11.10	11.24	11.79	12.40	9.31

Таблица 5. Зависимость длины сегментов Куна (A и A_{θ} , Å) от концентрации NaOH (x) в системе вода–ПЭГ– NaOH и в θ -растворителе, выбранном соответственно этим системам, при T = 293.15 K

лекул ПЭГ в θ -растворителе ($\langle h_{\theta} \rangle$), вычислены с помощью выражения (7) и приведены в табл. 4. Они увеличиваются с ростом молекулярной массы ПЭГ и уменьшаются с ростом концентрации NaOH в растворе, между концами невозмущенных макромолекул — увеличиваются с ростом и молярной массы ПЭГ, и концентрации NaOH в растворе.

Жесткость и подвижность макромолекулярной цепи играют важную роль в формировании конформации полимерной макромолекулы. Как известно, одной из характеристик жесткости и гибкости макромолекул служит длина сегмента Куна макромолекулы (A). В случае очень гибкой молекулы этот показатель практически равен длине мономерной единицы, а в случае очень жесткой – длине полностью разветвленной цепи L. В табл. 5 отражена, рассчитанная по формуле (7) зависимость значения длины сегмента Куна от концентрации NaOH для возмущенных (A) макромолекул ПЭГ в системе вода–ПЭГ–NaOH и невозмущенных (A_{θ}) макромолекул в θ -растворителе.

Как видно из табл. 5, длина сегмента Куна возмущенной макромолекулы ПЭГ в системах вода– ПЭГ–NaOH увеличивается с ростом молекулярной массы ПЭГ и уменьшается с ростом концентрации NaOH в растворе, невозмущенной макромолекулы ПЭГ в θ -растворителе – не зависит от молекулярной массы ПЭГ и увеличивается с ростом концентрации NaOH. Во всех случаях, которые мы рассмотрели для систем вода–ПЭГ– NaOH, длина сегмента Куна менее 100 Å, поэтому ПЭГ можно рассматривать как гибкий полимер.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Сибилева М.А., Тарасова Э.В. //* Журн. физ. химии. 2004. Т. 78. № 7. С. 1240.
- Pashayev B.G. // Conference Proceedings, Modern Trends In Physics Baku. 01–03 May. 2019. P. 170.

- Pashayev B.G. // AJP FİZİKA. 2019. V. XXV. № 3. section: En P. 7.
- Masimov E.A., Pashayev B.G., Orujova N.F. // Conference Proceedings, Modern Trends In Physics Baku. 01–03 May. 2019. P. 191.
- Шуляк И.В., Грушова Е.И., Семенченко А.М. // Журн. физ. химии. 2011. Т. 85. № 3. С. 485.
- 6. Шуляк И.В., Грушова Е.И. // Там же. 2013. Т. 87. № 3. С. 453.
- 7. *Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш.* // Там же. 2019. Т. 93. № 5. С. 779.
- Venohr H., Fraaije V., Strunk H., Borchard W. // Eur. Polym. J. 1998. T. 34. P. 723.
- Dormidontova E.E. // Macromolecules, 2002. T. 35. P. 987.
- Ozdemir C., Guner A. // Appl. J. Polym. Sci. 2006. T. 101. P. 203.
- 11. Heeb R., Lee S., Venkataraman N.V., Spencer N.D. // Appl. Mater Interfaces. 2009. T. 1. P. 1105.
- Allen C., Maysinger D., Eisenberg A. // Colloids Surf. B. 1999. T. 16. P. 3.
- Sung J.H., Lee D.C., Park H.J. // Polymer. 2007. T. 48. P. 4205.
- 14. Ланге К.Р. // Поверхностно-активные вещества, синтез, свойства, анализ, применение. СПб.: "ПРОФЕССИЯ", 2005. 240 с.
- Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш., Гаджиева Ш.Н. // Журн. физ. химии. 2019. Т. 93. № 6. С. 845.
- 16. *Шуляк И.В., Грушова Е.И.* // Там же. 2013. Т. 87. № 12. С. 2079.
- 17. *Тагер А.А.* // Физикохимия полимеров. М.: Изд-во "Научный мир", 2007. 573 с.
- Рафиков С.Р., Будтов В.П., Монаков Ю.Б. // Под ред. В.В. Коршака. Введение в физико-химию растворов полимеров. М.: Наука, 1978. 328 с.
- Цветков В.Н., Эскин В.Е., Френкель С.Я. // Структура макромолекул в растворах. М.: Наука, 1964. 718 с.
- Stokmayer W.H., Fixman M.J. // Polym. Sci. 1963. Part C. P. 137.
- Манжай В.Н., Сарычева Г.А., Березина Е.М. // Высокомолекулярные соединения. Серия В. 2003. Т. 45. № 2. С. 363.