СТЕКЛА СЕРЕБРОБОРАТНОЙ СИСТЕМЫ $xAg_2O \cdot (1 - x)B_2O_3$, ГДЕ x = 0.5-47 мол. %: СИНТЕЗ, АНАЛИЗ, СВОЙСТВА

© 2019 г. Г. А. Сычева^{1, *}, Т. Г. Костырева¹

¹Институт химии силикатов им. И.В. Гребенщикова, РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия *e-mail: Sycheva galina@mail.ru

> Поступила в редакцию 19.04.2018 г. После доработки 21.09.2018 г. Принята к публикации 08.10.2018 г.

Проведен синтез стекол сереброборатной системы $xAg_2O(1 - x)B_2O_3$, где x = 0.5–47 мол. % при различных режимах синтеза. Химический анализ показал, что в процессе синтеза происходит изменение состава стекла по сравнению с рассчитанным. Показано, что при температуре синтеза 850°С и времени 90 мин относительное уменьшение содержания Ag_2O составляет 3–6% при содержании Ag_2O от 5 до 30%. При этом режиме синтеза потери минимальны при содержании Ag_2O в интервале 20–30%. При температуре синтеза 1050°С и времени синтеза 60 мин относительные потери резко возрастают с ростом содержания Ag_2O от 30 до 47%. Повышение температуры синтеза приводит к заметному росту относительных потерь Расширена область стеклообразования в сереброборатной системе.

Ключевые слова: стекла сереброборатной системы, синтез, анализ, свойства **DOI**: 10.1134/S0132665119010104

введение

В последнее десятилетие в литературе появился ряд работ, посвященных изучению антибактериальных свойств серебра, помещенного в матрицу биоактивных стекол различного состава: фосфатные, цинковоборатные натриевокальциевосиликатные, боросиликатные и сереброборатные [1]. Как правило, даже в состав не сереброборатных стекол Ag₂O вводили в виде соединений $xAg_2O \cdot (1 - x)B_2O_3$. Изучение особенностей синтеза, анализа и свойств стекол сереброборатной системы актуально. В табл. 1 приведены составы стекол в сереброборатной системе по данным различных авторов.

Из табл. 1, видно, что только в [2, 3, 8] состав стекол приведен по данным химического анализа.

На рис. 1 представлен фрагмент области стеклообразования в системе $SeO_2-Ag_2O-B_2O_3$ по данным [12], относящийся к системе $Ag_2O-B_2O_3$.

Как видно из рис. 1, область стеклообразования в бинарной системе $Ag_2O-B_2O_3$ по данным [12] простирается до 33 мол. % Ag_2O , по данным [7] до 35 мол. %, по данным [5] до 40 мол. %. Т. к. ни в [7], ни в [12], ни в [5] химический анализ стекол не проводился, то данный разброс в значениях максимального содержания Ag_2O вполне вероятен.

Цель настоящей работы – получение сереброборатных стекол в области стеклообразования системы Ag₂O–B₂O₃, проведение химического анализа полученных стекол, сопоставление результатов химического анализа с данными по синтезу и определение

Год	Аg ₂ O, мол. % по синтезу	Ag ₂ O, мол. % по анализу	Номер ссылки, автор	
1941	Данные не приведены	3.2-28.8	[2, 3], Маркин	
1967	9.69-33.92	Данные не приведены	[4], Koxep	
1971	0-40	Данные для некоторых составов	[5], Болус	
1974	25	Данные не приведены	[6], Ван Гермет	
1976	35	Данные не приведены	[7], Крейдл	
1977	Данные не приведены	29.3	[8], Сакка	
1985	0-30	Данные не приведены	[9], Пижо	
1992	0-25	Данные не приведены	[10], Двайведи	
1999	0-25	Данные не приведены	[11], Сычева	
2008	33	Данные не приведены	[12], Дмитриев	

Таблица 1. Составы стекол в сереброборатной системе по данным различных авторов

величины изменения содержания ΔAg_2O в составах сереброборатных стекол в процессе их синтеза и изучение некоторых их свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Шихту для синтеза стекол готовили из азотнокислого серебра и безводного борного ангидрида марки "х. ч" перемешиванием в барабане. Стекла синтезировали в платиновом тигле объемом 50 мл в силитовой печи с нагревателями из карбида кремния. Для определения ΔAg_2O использовали два режима синтеза: при температуре 850°C, 90 мин и при 1050°C, 1 ч.

Образцы стекол с содержанием Ag_2O по синтезу до 30 мол. % вырабатывали отливкой на стальную плиту, образцы с содержанием Ag_2O по синтезу выше 30 мол. % – способом быстрой закалки, используя "установку М.П. Арешева" лабораторного производства. Получены стекла, внешний вид которых представлен на рис. 2.

Из рис. 2 видно, что цвет сереброборатных стекол меняется от почти бесцветного со слабым желтым оттенком до интенсивно желтого в области составов с содержанием Ag_2O свыше 5 мол. %. После пребывания на воздухе синтезированные стекла темнели в результате реакции серебряного зеркала. К потемнению стекол приводит выделение атомарного серебра. В силу указанных причин синтезированные стекла хранили в непрозрачном контейнере в машинном масле. При облучении стекол и образование наночастиц серебра [13].

Рис. 1. Фрагмент области стеклообразования в системе SeO₂-Ag₂O-B₂O₃ относящейся к системе Ag₂O-B₂O₃ по данным [12]: – — — стекло; – — — кристаллы.

Рис. 2. Внешний вид сереброборатных стекол: с содержанием Ag_2O до 5 мол. % (*a*), с содержанием Ag_2O свыше 5 мол. % (*б*), после пребывания на воздухе (*в*).

Химический анализ стекол. Химический анализ стекол проводили, используя две навески проб. Одну из них сплавляли с углекислым натрием и растворяли в разбавленной азотной кислоте. В полученном растворе определяли содержание оксида бора методом потенциометрического титрования [14]. Предварительные испытания на модельных растворах показали, что присутствие серебра не влияет на результаты определения бора. Точность определения бора составила ± 0.5 мол. %. Для определения оксида серебра вторую навеску пробы переводили в раствор разложением смесью фтористоводородной и азотной кислот с последующим разбавлением. Концентрацию серебра измеряли пламенно-фотометрическим методом [15] в режиме абсорбции на спектрометре ICE 3000 в пламени воздух—ацетилен. Полученные результаты показали хорошую сходимость с результатами гравиметрического метода. Точность определения оксида серебра ± 1 мол. %. Результаты химического анализа синтезированных стекол приведены в табл. 2.

На рис. 3 показано уменьшение содержания Ag_2O в процессе синтеза сереброборатных стекол для двух режимов синтеза: в абсолютных значениях (рис. 3, *a*); в относительных (рис. 3, *б*).

Nº	Ag ₂ O, мол. % по синтезу	Аg ₂ O, мол. % по анализу		Разница Δ, мол. %		
		для режима 1 (<i>a</i>)	для режима 2 (б)	<i>(a)</i>	(б)	
1	0.5	0.4	_	0.10	_	
2	5.0	4.70	—	0.30	_	
3	8.0	7.60	—	0.40	_	
4	10.70	10.20	—	0.50		
5	20.0	19.40	—	0.60	_	
6	25.0	24.15	—	0.85	_	
7	30.0	28.80	—	1.20	_	
8	30.0	—	28.10		1.90	
9	33.0	—	30.20		2.80	
10	36.0	—	32.00		4.00	
11	40.0	—	34.30		5.70	
12	47.05	—	38.03		9.02	

Таблица 2. Химический состав сереброборатных стекол, мол. %

Puc. 3. Изменение содержания Ag_2O в процессе синтеза сереброборатных стекол: при температуре синтеза 850°C (*1*), при температуре синтеза 1050°C (*2*) (*a*); относительное изменение содержания Ag_2O в зависимости от содержания Ag_2O в процессе синтеза сереброборатных стекол: при температуре синтеза 850°C (*1*), при температуре синтеза 1050°C (*2*) (*b*).

Характерным для сереброборатных стекол является изменение содержания Ag_2O в процессе синтеза стекла. Уменьшение содержания Ag_2O в синтезированном стекле зависит от состава стекла (содержания оксида серебра), температуры и времени синтеза, и достигает 9.0 мол. % для состава 12 (47.0 мол. % Ag_2O по синтезу). Эти величины необходимо закладывать при расчете исходного количества реактива азотнокислого серебра при приготовлении шихты. Полезную информацию можно получить из данных

Таблица 3. Химический состав, мол. % по анализу и энтальпии образования стекол системы $xAg_2O \cdot (1-x)B_2O_3$

Ag ₂ O, мол. %	0	5.42	10.28	15.90	21.13	25.82	31.04	38.03
ΔH_f^{ox} , kj/mol	0	-5.07	-6.83	-10.31	-11.54	-13.72	-12.39	-9.57

Рис. 4. Экспериментальные энтальпии образования стекол системы $xAg_{2}O \cdot (1 - x)B_{2}O_{3}$ из оксидов $Ag_{2}O$ и $B_{2}O_{3}$.

об относительном изменении содержания Ag_2O в зависимости от содержания Ag_2O (см. рис. 3, δ). При температуре синтеза 850°C относительное уменьшение содержания Ag_2O составляет 3–6 мол. % при содержании Ag_2O от 5 до 30 мол. %, причем потери минимальны при содержании Ag_2O в интервале 20–30 мол. %. При температуре 1050°C потери резко возрастают с ростом содержания Ag_2O (30–47 мол. %). Повышение температуры синтеза приводит к заметному росту относительных потерь (эти данные получены при содержании Ag_2O 30 мол. %).

Максимальное содержание Ag_2O (по анализу) в сереброборатном стекле удалось получить равным 38.03 мол. % (табл. 2). Это значение и будет являться границей стеклообразования в данной системе. Большие значения получить не удалось, так как уже в процессе выработки в стекле образуются металлические частицы серебра.

Определение энтальпии образования стекол системы $xAg_2O \cdot (1 - x)B_2O_3$. В табл. 3 приведены значения энтальпии образования стекол данной системы.

Энтальпию образования стекла из оксидов определяли методом растворения исходных оксидов и стекол в идентичных условиях при 25°C в двунормальной, 2N, азотной кислоте в дифференциальном микрокалориметре растворения лабораторного производства (прибор и ячейка аналогичны использованным в [16, 17]). На рис. 4 приведены экспериментальные энтальпии образования стекол системы $xAg_2O \cdot (1 - x)B_2O_3$ из оксидов Ag_2O и B_2O_3 .

Т. к. энтропийный вклад в случае конденсированных фаз относительно невелик [18], от энтальпий образования возможен переход к свободным энергиям стекла и кристалла, если известны теплоемкости для этих составов. Эти данные позволят в дальнейшем определить значения критического зародыша при кристаллизации сереброборатных стекол.

Кристаллизационные свойства сереброборатных стекол. В [19, 20] было показано, что сереброборатные стекла кристаллизуются с поверхности в виде игл, растущих

<i>T</i> ,°C	570	580	590
<i>U</i> (<i>T</i>), мкм/мин	0.036	0.125	0.031

Таблица 4. Скорость роста U(T), мкм/мин, кристаллов в стекле 4 в зависимости от температуры

Рис. 5. Фото кристаллов (*a*), полученные с помощью оптического микроскопа Jenaval, ×300. Зависимость радиуса наибольших сферолитов R_{max} в образцах стекла, предварительно термообработанных при температуре 300°С, 4 ч от времени проявления при 580°С (*б*).

Рис. 6. Поверхность костного бульона по истечении трех недель выдержки на воздухе: слева – без порошка сереброборатного стекла, справа – с добавлением порошка.

Рис. 7. Зависимость плотности сереброборатных стекол от содержания оксида серебра (квадратики) по данным Маркина [3] и (кружочки) Болуса [5].

внутрь образцов. Зарождение кристаллов в объеме наблюдали только в стекле № 4. В [19, 20] было установлено, что в стекле $10.2Ag_2O \cdot 89.8B_2O_3$ кристаллизуется соединение β -Ag₂O · 4B₂O₃, при 300°С индукционный период зарождения составлял 36 мин, стационарная скорость зарождения (I_{cr}) 3.3 мм⁻³ мин⁻¹. В данной работе изучена скорость роста кристаллов при температурах 570, 580 и 590°С. В случае сферических частиц скорость их роста можно определить из соотношения U = dR/dt', где t' – время выдержки стекла при температуре проявления. На рис. 5, δ представлена зависимость радиуса наибольших сферолитов R_{max} в образцах стекла, предварительно термообработанных при 300°С в течение 4 ч от времени проявления при 580°С. В качестве R_{max} использовали половину суммы D_{max} и D_{min} наибольших сферолитов.

Из рис. 5, δ видно, что эта зависимость имеет линейный характер, что позволяет определить. По ее наклону можно определить стационарную скорость роста U_{cr} при данной температуре. Аналогичным образом были определены скорости роста кристаллов для температур 570 и 590°С (табл. 4).

Максимальная скорость роста наблюдается при 580°С. Максимальная скорость зарождения, определенная в [19, 20] приходится на 300°С. Можно сделать вывод, что максимумы скоростей зарождения и роста кристаллов в стекле состава $10Ag_2O \cdot 90B_2O_3$ разнесены на 280°С.

Бактерицидные свойства порошка стекла $10Ag_2O \cdot 90B_2O_3$. Эксперимент по изучению бактерицидных свойств сереброборатного стекла был проведен на примере стекла стехиометрического состава девятибората серебра. В кюветы был помещен костный бульон. Кювета слева не содержала порошка стекла стехиометрического состава девятибората серебра, в кювету справа на поверхность бульона был добавлен порошок сереброборатного стекла.

По истечении трех нед. на поверхности бульона, не содержащего добавок, выросла колония плесени. Поверхность бульона с добавками порошка стекла девятибората серебра осталась чистой (рис. 6).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Стекла сереброборатной системы чувствительны к режиму синтеза. При синтезе необходимо закладывать избыток реактива оксида серебра, (Δ). На рис. 7 представлена зависимость плотности сереброборатных стекол от содержания оксида серебра по данным Маркина [3] и Болуса [5].

Последние четыре значения плотности по Болусу [5] резко отклоняются от прямолинейной зависимости (рис. 7). По-видимому, это связано с тем, что анализ этих стекол не был сделан и истинные значения содержания Ag_2O должны быть уменьшены на соответствующие значения Δ .

ЗАКЛЮЧЕНИЕ

Синтезированы стекла в бинарной системе $Ag_2O-B_2O_3$. Проведен химический анализ синтезированных стекол. Установлено изменение состава стекла при двух заданных режимах синтеза. Определены составы стекол, сваренных при двух разных режимах. Для стекла с содержанием Ag_2O 30 мол. % использовали оба режима варки. Было обнаружено, что потери Ag_2O связаны с режимом варки. Данные значения изменения состава стекла необходимо закладывать при расчете исходной шихты для синтеза стекол. Получены значения энтальпий образования сереброборатных стекол в широком диапазоне составов. Изучена зависимость скорости роста кристаллов от температуры в стекле $10Ag_2O \cdot 90B_2O_3$. Проведено уточнение области стеклообразования в данной системе. По анализу она составляет 0-38.3 мол. % Ag_2O .

Авторы благодарят М.М. Пивоварова за измерения энтальпии образования стекол системы Ag₂O-B₂O₃.

СПИСОК ЛИТЕРАТУРЫ

- Сычева Г.А. Серебро и сереброборатные антибактериальные стекла // Материалы 6 международной научно-практической конференции "Интеграция науки и практики как механизм эффективного развития современного общества". Москва. 26–27 декабря 2012. С. 23–27 / Науч.-инф. издат. Центр "Институт стратегических исследований". – Москва: Изд-во "Спецкнига", 2012. 380 с. ISBN 978-5-91891-251-5.
- Markin B.I. Electrical conductivity of argento-boric glasses // J. Gen. Chem. USSR. 1941. V. 11. P. 285–292.
- 3. *Маркин Б.И*. Электрические свойства сереброборатных стекол // ЖОХ. 1941. Т. 11. № 4. С. 285–292.
- Kocher J., Sadeghi N. Sur les borates anhydres d'argent // Acad. Sci. Ser. C. (Comptes rendus). 1967. V. 264. № 17. P. 1481–1484.
- 5. *Boulos E.N., Kreidl N.J.* Structure and properties of silver borate glasses // J. Amer. Ceram. Soc. 1971. V. 54. № 5. P. 368–375.
- 6. Van Germert W.J.Th., Van Ass H.M.J.M., Stevels J.M. Internal Friction and dielectric losses of mixed alkali borate glasses // J. Non-Cryst. Solids. 1974. V. 16. № 2. P. 281–293.
- 7. *Крейдл Н.Д., Ассабги Ф., Булос Е., Пател П.* Стекла, содержащие значительные количества серебра // Физика и химия стекла. 1976. Т. 2. № 2. С. 170–177.
- Sakka S., Kamiya K., Ozawa B. Electrical conductivity of mixed-cation l Friction and dielectric losses of mixed cation Ag₂O-Tl₂O-B₂O₃ glasses // J. Amer. Ceram. Soc. 1977. V. 60. № 5–6. P. 285–287.
- Piguet J.L., Shelby J.E. Preparation and properties of silver borate glasses // J. Amer. Ceram. Soc. 1985. V. 68. № 8. P. 450–455.
- 10. Dwivedi B.P., Kumar Y., Khand S.N. Concentration dependence of coordinative dissipation of xAg₂O · (1 − x) B₂O₃ // Indian J. Phys. A. 1992. 66A. № 6. P. 747–754.
- Sycheva G.A. Glass formation and crystallization behavior of Ag₂O-B₂O₃ system // Abstract of Third International Conference on Borate Glasses, crystals and melts: structure and applications. July, 4th-9th, 1999 "Bistritsa Residence". Изд-во Department of silicate technology, university of chemical technology and metallurgy. Sofia. Bulgaria. P. 78.

- 12. Dimitriev Y., Bachvarova-Nedelcheva A., Iordanova R. Glass formation tendency in the system SeO₂-Ag₂O-B₂O₃ // Materials Research Bulletin. 2008. V. 43. № 7. P. 1905–1910.
- 13. *Сычева Г.А.* Способ получения наночастиц серебра. Патент РФ на изобретение № 2547982, приоритет от 21.10.2013.
- 14. Пирютко М.М., Бенедиктова Н.В. Ускоренное титриметрическое определение бора в силикатах // Журн. аналитической химии. 1970. Т. 25. № 1. С. 136–141.
- 15. Прайс В. Аналитическая атомно-абсорбционная спектрометрия / Пер. с анг. М: Мир, 1976. 356 с.
- 16. Шульц М.М., Борисова Н.В., Ведищева Н.М., Пивоваров М.М. Калориметрическое исследование стеклообразных и кристаллических боратов натрия // Физика и химия стекла. 1979. Т. 5. № 1. С. 36–41.
- 17. Шульц М.М., Борисова Н.В., Ведищева Н.М., Пивоваров М.М. Калориметрическое исследование стеклообразных и кристаллических боратов лития // Физика и химия стекла. 1981. Т. 7. № 1. С. 107–115.
- Barin J., Knacke O. Thermochemical properties of inorganic substances. Berlin-Heidelberg-N.Y.-Dusseldorf. 1973. 921p.
- 19. *Сычева Г.А., Полякова И*.Г. Кристаллизация стекла 10Ag₂O · 90B₂O₃ // Физика и химия стекла. 2015. Т. 41. № 6. С. 796–800.
- 20. Sycheva G.A., Polyakova I.G. Crystallization of 10Ag₂O · 90B₂O₃ // Glass Physics and Chemistry ISSN 10876596, Glass Physics and Chemistry. 2015. V. 41. № 6. P. 590–593.