АНТИСТРУКТУРНЫЕ ДЕФЕКТЫ В СТЕКЛООБРАЗНЫХ СПЛАВАХ Ge-Te, As-Te И Ge-As-Te

© 2019 г. Г. А. Бордовский¹, А. В. Марченко¹, Ф. С. Насрединов², Е. А. Карулина¹, П. П. Серегин^{1, *}, К. Б. Шахович¹

¹Российский государственный педагогический университет им. А.И. Герцена, 191186 Россия, Санкт-Петербург, наб. реки Мойки, 48

²Санкт-Петербургский политехнический университет Петра Великого, 195251 Россия, Санкт-Петербург, ул. Политехническая, 29

*e-mail: ppseregin@mail.ru

Поступила в редакцию 24.09.18 г. После доработки 11.02.19 г. Принята к публикации 04.04.19 г.

Эмиссионную мессбауэровскую спектроскопию на изотопах $^{119mm}Sn(^{119m}Sn)$, $^{119m}Sb(^{119m}Sn)$, $^{119m}Sn(^{119m}Sn)$, $^{125m}Te(^{125}Te)$, $^{125}Sb(^{125}Te)$, $^{125}Sn(^{125}Te)$ и $^{129m}Te(^{129}I)$ использовали в качестве метода создания и идентификации антиструктурных дефектов в стеклообразных сплавах Ge₂₀Te₈₀, As₃₀Te₇₀ и Ge₁₅As₄Te₈₁ в виде атомов олова в узлах теллура и мышьяка, а также атомов теллура в узлах германия и мышьяка. Атомы олова в позициях мышьяка и теллура, как и атомы теллура в позициях германия и мышьяка перестраивают свое локальное окружение, тогда как симметрия локального окружения узлов германия не изменяется при их изовалентном замещении атомами олова.

Ключевые слова: стеклообразные сплавы, антиструктурные дефекты, эмиссионная мессбауэровская спектроскопия

DOI: 10.1134/S0132665119040036

введение

Антиструктурные дефекты (АСД) возникают, когда размеры атомов разных подрешеток близки, а ионная составляющая химической связи мала [1]. Это может быть атом (или пара атомов из разных подрешеток), оказавшийся в узле соседней подрешетки. АСД наблюдали в нелегированном арсениде галлия, в котором кроме вакансий и междоузельных атомов мышьяка и галлия были обнаружены атомы мышьяка в узлах галлия и атомы галлия в узлах мышьяка [2]. Концентрации таких дефектов малы. Их влияние на свойства кристалла минимально, они мало изучены. В [3] показано, что использование эмиссионной мессбауэровской спектроскопии позволяет создавать в результате ядерных превращений и четко идентифицировать АСД в полупроводниковых соединениях.

В настоящей работе приведены результаты использования эмиссионной мессбауэровской спектроскопии на изотопах 119mm Sn(119m Sn), 119 Sb(119m Sn), 119m Te(119m Sn), 125m Te(125 Te), 125 Sb(125 Te), 125 Sn(125 Te) и 129m Te(129 I) для исследования АСД в стеклообразных полупроводниковых сплавах Ge₂₀Te₈₀, As₃₀Te₇₀ и Ge₁₅As₄Te₈₁.

Рис. 1. Схемы распада ядер ¹²⁵Sn, ¹²⁵Sb, ^{125m}Te, ^{119mm}Sn, ¹¹⁹Sb, ^{119m}Te и ^{129m}Te.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные компоненты (Ge, As и Te чистоты не хуже 99.999%) сплавляли в вакуумированных до 10^{-3} мм рт. ст. кварцевых ампулах, выдерживали при 1050°C в течение 24 ч, затем закаляли в ледяной воде для получения стеклообразных сплавов.

Схемы распадов изотопов ^{119*mm*}Sn, ¹¹⁹Sb, ^{119*m*}Te, ^{125*m*}Te, ¹²⁵Sb, ¹²⁵Sn и ^{129*m*}Te приведены на рис. 1. Изотопы ^{119*mm*}Sn, ¹¹⁹Sb, ^{119*m*}Te, ^{125*m*}Te, ¹²⁵Sb, ¹²⁵Sn и ^{129*m*}Te получали по реакциям

Рис. 2. Эмиссионные мессбауэровские спектры 119mm Sn(119m Sn), 119 Sb(119m Sn), 119m Te(119m Sn) (*a*) и 125 Sn(125 Te), 125 Sb(125 Te), 125m Te(125 Te) (*b*) стеклообразного сплава Ge₂₀Te₈₀. Показано положение спектров, отвечающих центрам 119m Sn в узлах германия (Sn-IV), в узлах теллура (Sn⁰) и в узлах примесных атомов сурьмы (Sn²⁺).

¹¹⁸Sn(n, γ)^{119mm}Sn, ¹²⁰Sn(p, 2n)¹¹⁹Sb, ¹¹⁷Sn($\alpha, 2n$)^{119m}Te, ¹²⁴Te(n, γ)^{125m}Te, ¹²⁴Sn(n, γ)¹²⁵Sn и ¹²⁸Te(n, γ)^{129m}Te. Для выделения безносительных изотопов ¹¹⁹Sb, ^{119m}Te и ¹²⁵Sb использовали процедуру хроматографического разделения. Мессбауэровские источники готовили путем сплавления стекол с препаратами ^{119mm}Sn, ¹¹⁹Sb, ^{119m}Te, ¹²⁵Sn, ^{125m}Te и ^{129m}Te. Концентрация примесных атомов ^{119m}Sn и ¹²⁹I, образующихся после распада материнских изотопов, не превышала 10¹⁶ ат/см³.

Мессбауэровские спектры ^{119m}Sn, ¹²⁵Te и ¹²⁹I измеряли на спектрометре SM 4201 TERLAB при 80 K с поглотителями Ca¹¹⁹SnO₃, Zn¹²⁵Te и K¹²⁹I соответственно. На спектрах указанных поглотителей с источниками Ca^{119mm}SnO₃, Zn^{125m}Te и Zn^{129m}Te можно видеть одиночные линии с шириной на полувысоте 0.80(3), 6.10(9) и 1.10(3) мм/с соответственно, которые принимали за аппаратурную ширину спектральных линий. Изомерные сдвиги приводятся относительно поглотителей Ca¹¹⁹SnO₃, Zn¹²⁵Te и K¹²⁹I. Типичные спектры приведены на рис. 2–6, а их параметры сведены в табл. 1.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При использовании радиоактивных материнских атомов ^{119*mm*}Sn, ¹¹⁹Sb и ^{119*m*}Te в результате их распада образуется дочернее ядро ^{119*m*}Sn и эмиссионные мессбауэровские

Рис. 3. Эмиссионные мессбауэровские спектры 119mm Sn(119m Sn), 119 Sb(119m Sn), 119m Te(119m Sn) (*a*) и 125 Sn(125 Te), 125 Sb(125 Te), 125m Te(125 Te) (*b*) стеклообразного сплава As₃₀Te₇₀. Показано положение спектров, отвечающие центрам 119m Sn в узлах мышьяка (Sn²⁺), в узлах теллура (Sn⁰) и в узлах примесных атомов олова (Sn-IV).

спектры позволяют получить информацию о состоянии атомов ^{119m}Sn, оказавшихся в узлах, занимаемых атомами олова, сурьмы или теллура. Аналогичным образом, при использовании радиоактивных материнских атомов ^{125m}Te, ¹²⁵Sb и ¹²⁵Sn в результате их распада образуется дочернее ядро ¹²⁵Te и эмиссионные мессбауэровские спектры позволяют получить информацию о состоянии атомов ¹²⁵Te, оказавшихся в узлах, занимаемых атомами теллура, сурьмы и олова.

Мессбауэровская спектроскопия на изотопе^{119m}Sn. Мессбауэровские спектры ^{119m}Sn всех исследованных стекол представлены одиночными уширенными линиями или суперпозицией двух уширенных линий. При обработке спектров предполагали, что уширение линий можно объяснить неоднородным изомерным сдвигом (т.е. вариацией длин связей и валентных углов в структурных единицах олова).

Полученные значения изомерного сдвига *IS* и площадей под нормированными мессбауэровскими спектрами *S* сведены в таблице.

Материнские атомы ^{119*mm*}Sn. Мессбауэровские спектры ^{119*m*}Sn стекол Ge₂₀Te₈₀ и Ge₁₅As₄Te₈₁ с материнскими атомами ^{119*mm*}Sn представлены одиночными линиями с изомерными сдвигами *IS* ~ 2.05–2.09 мм/с (см. рис. 2 и 4), которые близки к изомерному сдвигу мессбауэровского спектра ¹¹⁹Sn элементарного олова, в котором реализу-

Рис. 4. Эмиссионные мессбауэровские спектры 119mm Sn(119m Sn), 119 Sb(119m Sn), 119m Te(119m Sn) (*a*) и 125 Sn(125 Te), 125m Te(125 Te) (*b*) стеклообразного сплава Ge₁₅As₄Te₈₁. Показано положение спектров, отвечающие центрам 119m Sn в узлах германия (Sn-IV), в узлах теллура (Sn⁰) и в узлах мышьяка (Sn²⁺).

ется тетраэдрическое окружение атомов. На рис. 2 и 4 это состояние олова обозначено как Sn-IV. Согласно рентгеноструктурным данным [4] германий в стеклообразных сплавах Ge_{1 – x}Te_x образует тетраэдрическую систему химических связей. Можно сделать вывод, что в стеклах Ge₂₀Te₈₀ и Ge₁₅As₄Te₈₁ олово изовалентно замещает четырех-координированный германий и воспроизводит его ближайшее окружение.

В случае материнских атомов ^{119mm}Sn в стекле $As_{30}Te_{70}$ заранее не известно положение зонда ^{119m}Sn в структурной сетке стекла, но на эмиссионном мессбауэровском спектре ^{119m}Sn стекла $As_{30}Te_{70}$, как и для стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$, отмечаются одиночная линия (рис. 3), изомерный сдвиг которой отвечает четырех-координированному олову (см. табл. 1). В стекле $As_{30}Te_{70}$ атомы мышьяка трех-координированы, атомы теллура двух-координированы [5]. Атомы ^{119mm}Sn не могут замещать мышьяк или теллур, а образуют в структурной сетке стекла новые узлы с тетраэдрическим локальным окружением, подобным окружению атомов германия в стеклах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$. Мессбауэровский зонд ^{119m}Sn, возникающий после распада таких атомов ^{119mm}Sn, наследует их окружение.

Мессбауэровский зонд ^{119m}Sn, образовавшийся после изомерного перехода в материнском атоме ^{119mm}Sn не может является антиструктурным дефектом в исследованных стеклах. Он может становится атомом замещения в узлах германия структурной

Рис. 5. Эмиссионные мессбауэровские спектры 129m Te(129 I) стеклообразных сплавов Ge₂₀Te₈₀, As₃₀Te₇₀ и Ge₁₅As₄Te₈₁. Показано разложение экспериментальных спектров на два квадрупольных мультиплета, отвечающих двум структурно неэквивалетным центрам теллура (см. табл. 1).

сетки $Ge_{20}Te_{80}$, и $Ge_{15}As_4Te_{81}$ или образовывать узел, отличный от узлов мышьяка и теллура в $As_{30}Te_{70}$.

Материнские атомы ¹¹⁹Sb. На эмиссионных спектрах ^{119m}Sn с материнскими атомами ¹¹⁹Sb в стеклах $As_{30}Te_{70}$ и $As_4Ge_{15}Te_{81}$ (рис. 3, 4) видны одиночные линии с изомерными сдвигами $IS \sim 3.46-3.52$ мм/с (табл. 1), близкими к изомерному сдвигу мессбауэровского спектра двухвалентного шести-координированного олова в SnTe (~3.45–3.55 мм/с, [3]). Сурьма является электронным аналогом мышьяка, и в структурной сетке стекол $As_{30}Te_{70}$ и $As_4Ge_{15}Te_{81}$ материнские атомы ¹¹⁹Sb изовалентно замещают атомы мышьяка. Образовавшийся после электронного захвата дочерний зонд ^{119m}Sn также оказывается в узлах мышьяка с атомами теллура в ближайшем окружении. Близость параметров мессбауэровских спектров олова в стеклах $As_{30}Te_{70}$ и $As_4Ge_{15}Te_{81}$ и в теллуриде олова свидетельствует о том, что за время жизни ядра ^{119m}Sn (27 нс) оно успевает перестроить свое окружение так, что координационное число изменяется с трех для мышьяка (сурьмы) до шести.

Рис. 6. Эмиссионные мессбауэровские спектры ^{125m}Te(¹²⁵Te), ^{129m}Te(¹²⁹I) и ^{119m}Te(^{119m}Sn) элементарного теллура. Сплошными линиями представлены расчетные спектры для случая единственного состояния атомов теллура.

Эмиссионный спектр ^{119m}Sn с материнскими атомами ¹¹⁹Sb в стекле $Ge_{20}Te_{80}$ (рис. 2) представлен одиночной линией с изомерным сдвигом $IS \sim 3.51$ мм/с (табл. 1), близким к сдвигам спектров $As_{30}Te_{70}$ и $As_4Ge_{15}Te_{81}$. В этом стекле материнские атомы ¹¹⁹Sb не замещают атомы германия или теллура, а образуют собственные трех-координированные узлы структурной сетки [5]. В ближайшем окружении атомов сурьмы находятся только атомы теллура. Дальнейший процесс трансформации окружения дочернего атома ^{119m}Sn происходит так, как это описано выше для стекол $As_{30}Te_{70}$ и $As_4Ge_{15}Te_{81}$.

Мессбауэровский зонд ^{119m}Sn, образовавшийся после распада материнских атомов ¹¹⁹Sb в узлах мышьяка (или сурьмы) структурной сетке стекол $Ge_{20}Te_{80}^{119}Sb_x$, $As_{30}Te_{70}$ и $Ge_{15}As_4Te_{81}$, по-видимому, не следует считать антиструктурным дефектом, т. к. частично сохраняется исходное окружение материнских атомов.

Материнские атомы ^{119*m*}Те. На спектрах ^{119*m*}Sn всех стекол с материнскими атомами ^{119*m*}Te (рис. 2–4) можно видеть суперпозицию двух одиночных линий различной интенсивности (табл. 1). Согласно [1–3], после электронного захвата в материнских атомах ^{119*m*}Te часть дочерних атомов ¹¹⁹Sb и смещается из узлов теллура. Менее интенсив-

Состав	Изотопы	<i>IS</i> , мм/с	С, мм/с	<i>S</i> , отн.ед.	Локализация зонда
Ge ₂₀ Te ₈₀	119mm Sn(119m Sn)	2.05			^{119m} Sn в узлах Ge
As ₃₀ Te ₇₀	119mm Sn(119m Sn)	2.09			^{119m} Sn в узлах Sn
As ₄ Ge ₁₅ Te ₈₁	^{119mm} Sn(^{119m} Sn)	2.09			^{119m} Sn в узлах Ge
Ge ₂₀ Te ₈₀	119 Sb(119m Sn)	3.51			^{119m} Sn в узлах Sb
As ₃₀ Te ₇₀	119 Sb(119m Sn)	3.46			^{119m} Sn в узлах As
As ₄ Ge ₁₅ Te ₈₁	119 Sb(119m Sn)	3.52			^{119m} Sn в узлах As
Ge ₂₀ Te ₈₀	119m Te(119m Sn)	3.17		0.95	^{119m} Sn в узлах Те
		2.07		0.05	^{119m} Sn в узлах Ge
As ₃₀ Te ₇₀	119m Te(119m Sn)	3.15		0.95	^{119m} Sn в узлах Те
		3.48		0.05	^{119m} Sn в узлах As
As ₄ Ge ₁₅ Te ₈₁	119m Te(119m Sn)	3.16		0.90	^{119m} Sn в узлах Те
		2.07		0.05	^{119m} Sn в узлах Ge
Ge ₂₀ Te ₈₀	125 Sn(125 Te)	0.65	7.00		¹²⁵ Те в узлах Ge
As ₃₀ Te ₇₀	125 Sn(125 Te)	0.67	3.20		¹²⁵ Те в узлах Sn
As ₄ Ge ₁₅ Te ₈₁	125 Sn(125 Te)	0.62	6.80		¹²⁵ Те в узлах Ge
Ge ₂₀ Te ₈₀	125 Sb(125 Te)	0.10	16.50		¹²⁵ Те в узлах Те
As ₃₀ Te ₇₀	125 Sb(125 Te)	0.62	3.45		¹²⁵ Те в узлах As
As ₄ Ge ₁₅ Te ₈₁	125 Sb(125 Te)	0.53	3.90		¹²⁵ Те в узлах As
Ge ₂₀ Te ₈₀	125m Te(125 Te)	0.22	16.70		¹²⁵ Те в узлах Те
As ₃₀ Te ₇₀	125m Te(125 Te)	0.30	17.40		¹²⁵ Те в узлах Те
As ₄ Ge ₁₅ Te ₈₁	125m Te(125 Te)	0.12	8.45		¹²⁵ Те в узлах Те
Ge ₂₀ Te ₈₀	129m Te(129 I)	1.25	-17.6	0.15	¹²⁹ I в узлах Те
		0.94	-23.8	0.85	¹²⁹ I в узлах Те
As ₃₀ Te ₇₀	129m Te(129 I)	-1.08	-38.5	0.23	¹²⁹ I в узлах Те
		-1.10	16.0	0.77	¹²⁹ I в узлах Те
As ₄ Ge ₁₅ Te ₈₁	^{129m} Te(¹²⁹ I)	1.23	-17.7	0.17	¹²⁹ I в узлах Те
		0.97	-23.6	0.83	¹²⁹ I в узлах Те
Те	119m Te(119m Sn)	3.02			¹¹⁹ Sn в узлах Те
	125m Te(125 Te)	0.99	14.70		¹²⁵ Те в узлах Те
	129m Te(129 I)	1.15	-16.7		¹²⁹ I в узлах Те

Таблица 1. Параметры эмиссионных мессбауэровских спектров ^{119*m*}Sn, ¹²⁵Te и ¹²⁹I стекол $Ge_{20}Te_{80}$, As₄ $Ge_{15}Te_{81}$ и кристаллического теллура

Примечания: IS – изомерный сдвиг спектров (погрешности в определении для изотопов ^{119m}Sn, ¹²⁵Te и ¹²⁹I составляют ±0.01, ±0.06 и ±0.02 мм/с соответственно); C – постоянная квадрупольного взаимодействия (погрешности в определении для изотопов ¹²⁵Te и ¹²⁹I составляют ±0.09 и ±0.04 мм/с соответственно); S – площадь под нормированным мессбауэровским спектром (погрешности в определении для изотопов ^{119m}Sn и ¹²⁹I составляют ±0.02 и ±0.02 и ±0.05 соответственно).

ную линию на спектрах следует приписывать атомам ^{119m}Sn, образовавшимся из смещенных атомов ¹¹⁹Sb. Величина изомерного сдвига этой линии отвечает состоянию Sn-IV (рис. 2, 3), которое наблюдалось в стеклах, легированных ^{119mm}Sn. Это свидетельствует о том, что за время жизни (38 ч) смещенные атомы ¹¹⁹Sb (или их часть) успевают встроиться в узлы германия.

Более интенсивные линии на спектрах имеют изомерный сдвиг $IS \sim 3.16$ мм/с, который соответствует мессбауэровским спектрам интерметаллических соединений олова (~2.30–3.20 мм/с [3]). Отсутствие в спектрах стекол квадрупольного расщепления указывает на кубическую симметрию локального окружения олова. На рис. 2–4 это состояние олова обозначено как Sn⁰.

Независимую информацию о симметрии локального окружения атомов теллура в исследованных стеклах мы получили с использованием эмиссионной мессбауэровской спектроскопии на изотопе ¹²⁹I с материнскими атомами ^{129m}Te. Мессбауэровские спектры ^{129m}Te(¹²⁹I) всех стекол представлены суперпозицией двух квадрупольных мультиплетов, различающихся по величине постоянной квадрупольного взаимодействия *C* (рис. 5, табл. 1). В стеклах локальная симметрия дочерних атомов йода в узлах теллура ниже кубической и теллур занимает две структурно неэквивалентные позиции. Согласно мессбауэровским спектрам ^{119m}Te(^{119m}Sn) этих стекол (рис. 2–4) дочерние атомы олова занимают единственную позицию в структурной сетке с почти кубической симметрией локального окружения. Такое противоречие данных мессбауэровским различия химических свойств дочерних атомов-зондов, получаемых из материнских атомов теллура, и разницы во времени формирования зонда (38 час. через долгоживущее промежуточное ядро ¹¹⁹Sb в случае ^{119m}Sn и 17 нс для ¹²⁹I).

Были измерены эмиссионные мессбауэровские спектры элементарного теллура с использованием изотопов ^{125m}Te(¹²⁵Te), ^{129m}Te (¹²⁹I) и ^{119m}Te(^{119m}Sn) (рис. 6, табл. 1). На спектре 119m Te(119m Sn) видна уширенная одиночная линия, а в спектрах 125m Te(125 Te), ¹²⁹*т*Ге (¹²⁹I) отмечается квадрупольное расщепление (отличие тонкой структуры спектров ¹²⁵Те и ¹²⁹І объясняется различием спинов ядер ¹²⁵Те и ¹²⁹І). Во всех случаях материнские атомы ¹²⁵^mTe, ^{129m}Te и ^{119m}Te занимают узлы теллура и что подавляющая часть дочерних атомов (125 Te, 129 I и 119m Sn) не покидает этих узлов. Однако различие структуры мессбауэровских спектров указывает на разную локальную симметрию узлов кристаллической решетки теллура, занятых зондами ¹²⁵Te, ¹²⁹I или ^{119m}Sn. В частности, мессбауэровские спектры ¹²⁵ Te(¹²⁵ Te), ¹²⁹ Te (¹²⁹ I) однозначно указывают на некубическое окружение узлов теллура, занятых зондами ¹²⁵Те и ¹²⁹I, что согласуется с рентгеноструктурными данными [6]. В то же время, мессбауэровский спектр 119m Te(119m Sn) соответствует кубической симметрии узлов, занятых мессбауэровским зондом ^{119m}Sn. Аналогичная ситуация возникает в стеклах $Ge_{20}Te_{80}$, $As_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ при образовании атома олова в узле теллура. Это ведет к возникновению антиструктурного дефекта, в котором атом олова находится в окружении атомов металла (вероятнее всего, германия).

Мессбауэровские спектры на изотопе ¹²⁵ Те. Материнские атомы ¹²⁵ Sn. Если учесть изложенные выше результаты с материнскими атомами ^{119mm}Sn, примесные центры теллура ¹²⁵ Те, возникающие после распада материнских атомов ¹²⁵ Sn, должны находиться или в узлах германия (стекла $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$), либо в узлах олова (стекла $As_{30}Te_{70}$:¹²⁵ Sn). Из рис. 2–4, видно что, эмиссионные спектры ¹²⁵ Te с материнскими атомами ¹²⁵ Sn всех стекол представляют собой одиночные уширенные линии с изо-

мерными сдвигами $IS \sim 0.62-0.67$ мм/с, которые близки к изомерному сдвигу мессбауэровского спектра ¹²⁵Те элементарного теллура. Примесные центры теллура ¹²⁵Те, возникающие после распада материнских атомов ¹²⁵Sn, находятся либо в узлах германия (стекла Ge₂₀Te₈₀ и Ge₁₅As₄Te₈₁), либо в узлах олова (стекла As₃₀Te₇₀¹²⁵Sn_x) и образуют химические связи только с атомами теллура в своем локальном окружении. Следует отметить, что мессбауэровский спектр ¹²⁵Те элементарного теллура представляет собой квадрупольный дублет (рис. 6), тогда как эмиссионные спектры ¹²⁵Te в узлах германия стекол – уширенные синглеты (рис. 2–4), т.е., локальное окружение атомов ¹²⁵Te в элементарном теллуре и в узлах стекол различны. Решетка элементарного теллура образована винтообразными цепями, тогда как в узлах германия его окружение представлено атомами теллура, но является тетраэдрическим, как было показано выше на примере зонда ^{119m}Sn, образовавшегося после распада ^{119mm}Sn.

Атом ¹²⁵Te, образовавшийся в узле германия, следует считать антиструктурным дефектом.

Материнские атомы ¹²⁵т Те. Эмиссионные мессбауэровские спектры ¹²⁵ Те с материнскими атомами ¹²⁵т Те всех стекол (рис. 2–4) представляют собой квадрупольные дублеты ($QS \sim 8.35 - 8.45$ мм/с) с близкими значениями изомерных сдвигов ($IS \sim 0.66$ мм/с). В стеклах атомы ¹²⁵ Те, возникающие после изомерного перехода в ¹²⁵т Те, могут находиться только в узлах теллура, и мессбауэровские спектры несут информацию о локальном окружении этого узла. В большинстве случаев зонд ¹²⁵ Те образует химические связи с атомами теллура, причем окружение центров ¹²⁵ Те оказывается близким к их окружению в элементарном теллуре, что видно по значению константы квадрупольного взаимодействия *С*. Образовавшийся зонд ¹²⁵ Те является атомом замещения, но не антиструктурным дефектом.

Материнские атомы ¹²⁵Sb. Эмиссионные спектры ¹²⁵Te с материнскими атомами ¹²⁵Sb в стеклах $As_{30}Te_{70}$ и $Ge_{15}As_4Te_{81}$ (рис. 2–4) представлены уширенной линией ($G \sim 7.85$ мм/с), которая представляет собой неразрешенный дублет с изомерным сдвигом $IS \sim 0.63$ мм/с. Материнские атомы ¹²⁵Sb замещают трех-координированный мышьяк и после β -распада превращаются в атом-зонд ¹²⁵Te, который может сохранить конфигурацию узла мышьяка или, разрушив ее, войти в состав цепочки атомов теллура. Поскольку квадрупольное расщепление спектра ¹²⁵Te оказывается существенно меньше, чем для цепочки в элементарном теллуре, то для $As_{30}Te_{70}$ и $Ge_{15}As_4Te_{81}$ вторую возможность можно исключить. Таким образом, атом ¹²⁵Te, образовавшийся после β -распада ¹²⁵Sb, следует рассматривать как антиструктурный дефект.

ЗАКЛЮЧЕНИЕ

Распад радиоактивных материнских атомов ¹¹⁹mmSn, ¹¹⁹Sb, ¹¹⁹mTe, ¹²⁵mTe, ¹²⁵Sb и ¹²⁵Sn в узлах структурной сетки стеклообразных сплавов $Ge_{20}Te_{80}$, $As_{30}Te_{70}$ и $Ge_{15}As_4Te_{81}$ в ряде случаев сопровождается стабилизацией примесных центров "нормального типа" (примесные атомы ^{119m}Sn в узлах германия и мышьяка). В других случаях это приводит к созданию антиструктурных дефектов (примесные атомы ^{119m}Sn в узлах теллура, примесных атомов ¹²⁵Te в узлах германия и мышьяка). Изовалентное замещение германия атомами олова не изменяет структуры ближнего порядка германия, тогда как атомы олова и теллура в узлах атомов другой химической природы перестраивают свое ло-кальное окружение.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jiawei Z., Bolin L., Gang C. First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors // Semiconductor Science and Technology. 2016. V. 31. 043001.
- 2. Overhof H., Spaeth J-M. Defect identification in the AsGa family in GaAs // Phys. Rev. B. 2005. V. 72. 115205.
- Seregin N.P., Seregin P.P., Nemov S.A., Yanvareva A.Yu. Antistructural defects in lead chalcogenides // J. Physics: Condensed Matter. 2003. V. 15. P. 7591–7597.
- Betts F, Bienenstock A., Ovshinsky S.R. Radial distribution studies of amorphous Ge_xTe_{1-x} alloys // J. Non-Crystalline Solids. 1970. V. 4. P. 554–563.
- 5. Борисова З.У. Халькогенидные полупроводниковые стекла. Л. Изд. ЛГУ. 1983. 344 с.
 6. Kim S., Boolchand P. Chemical bonding in sulfur, selenium, and tellurium from ¹²⁹Te and ¹²⁵Te Mössbauer investigations // Phys. Rev. B. 1979. V. 19. P. 3187–3197.