ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ СИСТЕМЫ LaPO₄-DyPO₄

© 2019 г. Л. П. Мезенцева¹, А. В. Осипов¹, В. Л. Уголков¹, А. А. Акатов², В. А. Доильницын²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия 199034, Санкт-Петербург, наб. Макарова, 2

²Санкт-Петербургский государственный технологический институт (технический университет), Россия 190013, Санкт-Петербург, Московский пр., 26 *e-mail: la mez@mail.ru

> Поступила в редакцию 19.11.18 г. После доработки 29.03.19 г. Принята к публикации 04.04.19 г.

Спеканием наноразмерных порошков La_{1 – x}Dy_xPO₄ при 1000–1600°С получены керамические образцы, измерена их микротвердость в зависимости от температуры и времени термообработки. Изучено термическое поведение керамических образцов методом дилатометрии. Определена устойчивость керамических матриц La_{1 – x}Dy_xPO₄ к выщелачиванию в контактных растворах смеси солей NaCl и Na₂SO₄ при комнатной температуре.

Ключевые слова: ортофосфаты лантана-диспрозия, керамические образцы, дилатометрия, микротвердость, выщелачивание

DOI: 10.1134/S0132665119040085

ВВЕДЕНИЕ

Работа является продолжением исследований системы LaPO₄–DyPO₄ и посвящена получению керамических образцов (матриц) на ее основе для иммобилизации отдельных радионуклидов актинид-редкоземельной фракции высокоактивных отходов (BAO). Роль иммобилизуемого радионуклида здесь играет второй компонент – ион диспрозия.

Ранее золь-гель методом с использованием приема обратного осаждения были синтезированы наноразмерные порошки La_{1 – x}Dy_xPO₄ · nH₂O [1]. Было показано образование непрерывного ряда гексагональных твердых растворов на основе LaPO₄ · nH₂O, который при температуре выше 600°С переходит в моноклинную форму, образуя непрерывный ряд моноклинных твердых растворов на основе LaPO₄. Показано, что при обработке порошка DyPO₄ при 850°С на рентгеновской дифрактограмме образца появляется рефлекс, соответствующий тетрагональной форме DyPO₄. При температурах 1000–1200°С наблюдаются два типа твердых растворов – моноклинных на основе LaPO₄ (до $x \approx 0.7$) и тетрагональных на основе DyPO₄ (0.90 ≤ $x \le 1.0$).

Цель данной работы — получение керамических образцов путем спекания синтезированных наноразмерных порошков $La_{1-x}Dy_{x}PO_{4} \cdot nH_{2}O$, изучение их физико-химических свойств и оценка их химической стойкости.

Анализ полученных продуктов проводили методом РФА, описанным в работе [1]. Процессы спекания изучены методом дилатометрии с помощью прибора DIL 402 С

Состав образца	ТКЛР, (×10 ⁻⁶ K ⁻¹), \pm 1% отн.		
LaPO ₄	9.5		
La _{0.8} Dy _{0.2} PO ₄	5.2		
La _{0.4} Dy _{0.6} PO ₄	6.4		
La _{0.3} Dy _{0.7} PO ₄	6.2		
La _{0.2} Dy _{0.8} PO ₄	7.9		
La _{0.1} Dy _{0.9} PO ₄	8.4		
DyPO ₄	1.5		

Таблица 1. ТКЛР керамических образцов $La_{1-x}Dy_xPO_4$ после нагревания до 1550°С в интервале температур 400–800°С

(NETZSCH) до 1500°С на образцах в виде таблеток размером 5 (диаметр) × 0.8 мм (высота), спрессованных под давлением около 7.0 МПа. Скорость нагревания — 20°С/мин. Микротвердость керамических образцов измеряли по методу Виккерса на микротвердомере ПМТ 3, снабженном пакетом программ "Микро-Анализ", разработанным в ОАО ЛОМО, Санкт-Петербург.

Для оценки химической стойкости керамических матриц были проведены опыты по выщелачиванию. С этой целью порошки запрессовывали в форме кубиков объемом 1 см³ под давлением 8–10 МПа, после чего проводили ступенчатый обжиг при 1000, 1200, 1300 (по 24 ч) и 1600°С (1 ч). Контактными растворами служили водные хлоридно-сульфатные растворы, содержащие 292 г/дм³ хлорида натрия и 8 г/дм³ сульфата натрия, имитирующие состав рассолов, характерных для кристаллических (гнейсовогранитоидных) щитов на глубине нахождения планируемого объекта захоронения отходов в районе г. Железногорска Красноярского края.

Концентрации La³⁺ и Dy³⁺ в контактном растворе после выщелачивания определяли методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS). Определения проводили во Всероссийском научно-исследовательском геологическом институте им. А.П. Карпинского (Санкт-Петербург).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Из предварительно прокаленных при 850°С (2 ч) порошков состава $La_{1-x}Dy_xPO_4$ (x = 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, 0.975, 1.0) путем спекания при 1000–1600°С получены керамические образцы.

Процесс спекания предварительно термически обработанных образцов изучен с помощью дилатометрии и представлен на рис. 1. Данные дилатометрии керамических образцов La_{1-x}Dy_xPO₄ после нагревания до 1550°С показывают незначительную усадку в интервале температур до 1000°С. Выше этой температуры наибольшая усадка наблюдается у образцов с тетрагональной сингонией (рис. 1, кривые *14*, *15*). Такое поведение характерно для тетрагональных ортофосфатов РЗЭ, которые трудно спекаются даже при высоких температурах [2, 3]. По дилатометрическим кривым оценен термический коэффициент линейного расширения (ТКЛР) некоторых керамических образцов (табл. 1). Из таблицы видно, что ТКЛР образцов La_{1-x}Dy_xPO₄ сопоставим с приведенными в литературе данными для ортофосфатов РЗЭ с разной предысторией (например, 10.0×10^{-6} K⁻¹ y LaPO₄ [4], 5.0×10^{-6} K⁻¹ y LaPO₄ [5], 6.2×10^{-6} K⁻¹ y YPO₄ [6]) в интервале температур до 1000°С.

Микротвердость керамических образцов меняется в зависимости от состава и условий синтеза (табл. 2). В представленной таблице для серии образцов La_{1 – x}Dy_xPO₄

Рис. 1. Дилатометрические кривые образцов после нагревания до 1550°C La_{1 – x}Dy_xPO₄, где *x* = 0.0 (*1*); 0.05 (*2*); 0.1 (*3*); 0.15 (*4*); 0.2 (*5*); 0.25 (*6*); 0.3 (*7*); 0.4 (*8*); 0.5 (*9*); 0.6 (*10*); 0.7 (*11*); 0.75 (*12*); 0.8 (*13*); 0.9 (*14*); 1.0 (*15*).

можно отметить некоторое снижение микротвердости с ростом концентрации диспрозия, особенно вблизи концентрационной границы растворимости тетрагонального $DyPO_4$ в моноклинном $LaPO_4$ (до $x \approx 0.7$), связанное, по-видимому, с наличием полиморфного перехода моноклинных твердых растворов в тетрагональные в интервале 1000–1100°С.

Состав образца	Микротвердость, ГПа, ±0.1					
	длительность и температура термообработки, °C					
	24 ч				1ч	
	1000	1100	1200	1300	1600	
LaPO ₄	10.5	14.7	24.0	27.2	28.1	
La _{0.9} Dy _{0.1} PO ₄	10.0	14.3	23.5	26.7	30.2	
La _{0.8} Dy _{0.2} PO ₄	9.6	13.7	23.0	26.4	—	
La _{0.75} Dy _{0.25} PO ₄	9.4	13.2	22.6	25.8	—	
La _{0.7} Dy _{0.3} PO ₄	9.3	13.0	22.2	25.1	—	
La _{0.6} Dy _{0.4} PO ₄	9.0	12.5	21.4	24.6	—	
La _{0.5} Dy _{0.5} PO ₄	8.6	11.6	20.7	23.7	26.5	
La _{0.4} Dy _{0.6} PO ₄	8.9	10.9	20.1	23.1	—	
La _{0.3} Dy _{0.7} PO ₄	9.4	11.1	20.5	23.8	—	
La _{0.2} Dy _{0.8} PO ₄	9.7	11.4	20.9	24.6	—	
La _{0.1} Dy _{0.9} PO ₄	9.9	11.6	21.2	25.0	28.4	
DyPO ₄	10.2	_	_	_	29.1	

Таблица 2. Значения микротвердости керамических образцов $La_{1-x}Dy_{x}PO_{4}$ в зависимости от температуры термообработки

Рис. 2. Скорость выщелачивания (*R*) основных элементов матрицы (La^{3+} и Dy^{3+}) состава $\text{La}_{0.7}\text{Dy}_{0.3}\text{PO}_4$ (*a*) и $\text{La}_{0.5}\text{Dy}_{0.5}\text{PO}_4$ (*б*) в концентрированном растворе, содержащем 292 г/дм³ NaCl и 8 г/дм³ Na₂SO₄, при комнатной температуре.

Опыты по выщелачиванию показали высокую устойчивость керамических матриц $La_{1 - x}Dy_xPO_4$ по отношению к вышеупомянутым водным растворам, содержащим хлорид и сульфат натрия. Были отмечены крайне низкие значения стационарной скорости выщелачивания (рис. 2) в диапазоне $10^{-13}-10^{-12}$ г/(см² сут). Ранее полученные нами для других фосфатных систем результаты выщелачивания в воде и азотнокислых растворах с рН 1–2 находились на существенно более высоких уровнях, чем в данном случае [7, 8]. Высокая химическая устойчивость керамических матриц $La_{1 - x}Dy_xPO_4$ в концентрированном сульфатно-хлоридном растворе, по-видимому, связана с образованием малорастворимых двойных сульфатов натрия и лантаноидов, поскольку известно, что наличие ионов натрия в сульфатных средах приводит к ухудшению растворения фосфатов лантаноидов.

ЗАКЛЮЧЕНИЕ

Полученные керамические образцы La_{1-x}Dy_xPO₄ демонстрируют высокую термическую стойкость (они стабильны до 1600°С), низкие ТКЛР ((9.5–1.5) × 10⁻⁶ K⁻¹), высокие значения микротвердости, увеличивающиеся с ростом температуры (до 30 ГПа). Показана их высокая химическая устойчивость в концентрированных водных растворах NaCl и Na₂SO₄, имитирующих состав рассолов, характерных для предполагаемого места окончательной изоляции BAO – района г. Железногорска Красноярского края.

Работа выполнена в рамках государственного задания ИХС РАН по теме НИР № 0097-2019-0012.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мезенцева Л.П., Осипов А.В., Уголков В.Л., Попова В.Ф., Масленникова Т.П., Кучаева С.К., Яковлев А.В. Физико-химические свойства наноразмерных порошков системы LaPO₄−DyPO₄−H₂O// Физ. и хим. стекла. 2018. Т. 44. № 5. С. 520–527.
- 2. Bregiroux D., Lucas S., Champion E., Audubert F., Bernache-Assollant D. Sintering and Microstructure of Rare Earth Phosphate Ceramics REPO₄ with RE = La, Ce or Y // J. Europ. Ceram. Soc. 2006. V. 26. № 3. P. 279–287.
- Cho I.-S., Choi G.K., An J.-S., Kim J.-R., Hong K.S. Sintering, Microstructure and Microwave Dielectric Properties of Rare Earth Orthophosphates, RePO₄ (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb) // Mater. Res. Bull. 2009. V. 44. N 1. P. 173–178.
- Min W., Miyahara D., Yokoi K., Yamaguchi T., Daimon K., Hikichi Y., Matsubara T., Ota T. Thermal and Mechanical Properties of Sintered LaPO₄-Al₂O₃ Composites // Mater. Res. Bull. 2001. V. 36. № 5-6. P. 939–945.
- Sujith S.S., Arun Kumar S.L., Mangalaraja R.V., Peer Mohamed A., Ananthakumar S. Porous to Dense LaPO₄ Sintered Ceramics for Advanced Refractories // Ceram. Int. 2014. V. 40. № 9. P. 15121–15129.
- 6. Hikichi Y., Ota T., Daimon K., Hattori T., Mizuno M. Thermal, Mechanical, and Chemical Properties of Sintered Xenotime-Type RPO₄ (R = Y, Er, Yb or Lu) // J. Am. Ceram. Soc. 1998. V. 81. № 8. P. 2216–2218.
- 7. Уголков В.Л., Мезенцева Л.П., Осипов А.В., Попова В.Ф., Масленникова Т.П., Акатов А.А., Доильницын В.А. Синтез нанопорошков и физико-химические свойства керамических матриц систем LaPO₄−YPO₄−(H₂O) и LaPO₄−HoPO₄−(H₂O) // ЖПХ. 2017. Т. 90. № 1. С. 31–37.
- 8. *Mezentseva L.P., Osipov A.V., Ugolkov V.L., Akatov A.A., Doilnitsyn V.A., Maslennikova T.P., Yakovlev A.V.* Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La_{1 – x}Ho_xPO₄ Ceramic Matrices // Glass Phys. Chem. 2018. V. 44. № 5. P. 440–449.