КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ ЧЕТЫРЕХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР К244 = 0@12@20@80@132 И НОВЫЙ ТРЕХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР К245 = 1@14@48@206 В КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ Rh₁₄₀Al₄₀₃-*cP*549 и Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549

© 2021 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3, **}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

²Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, г. Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

> *e-mail: shevchenko@isc.nw.ru **e-mail: gdilvushin@gmail.com

Поступила в редакцию 10.08.2020 г. После доработки 01.10.2020 г. Принята к публикации 08.10.2020 г.

С помощью пакета программ ToposPro осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Rh_{140}Al_{403}$ -*cP*549 с параметрами кубической ячейки: *a* = 19.9350 Å, *V* = 7922.25 Å³, и пр. группой *Pm*-3 и Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 с параметрами кубической ячейки: *a* = 20.211 Å и пр. группой *Pm*-3. Установлены два новых кластерных прекурсора с симметрией -43*m*: четырехслойный кластер *K*244 = 0@12@20@80@132 с внутренним икосаэдром Pd₁₂ или Rh₁₂ и трехслойный кластер *K*245 = 1@14@48@206 с внутренним 15-атомным полиэдром Al@Pd₈Al₆ или Al@Rh₈Al₆. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров *K*244 и *K*245 в виде: первичная цепь → микрослой → микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров *K*242 и *K*245 установлены кластеры *M*Al₃ и *M*₂Al₂ (*M* = Rh или Pd), связанные атомами Al.

Ключевые слова: интерметаллиды $Rh_{140}Al_{403}$ и $Mn_{18}Pd_{138}Al_{387}$, самосборка кристаллической структуры, новые нанокластеры-прекурсоры K244 = 0@12@20@80@132 и K245 = 1@14@48@206

DOI: 10.31857/S0132665121010108

ВВЕДЕНИЕ

При быстром охлаждении сплава алюминия и марганца MnAl₆ в [1] впервые были получены квазикристаллы, обладающие точечной икосаэдрической симметрией. В настоящее время в двойной системе Mn—Al установлено образование 16 кристаллохимически различных интерметаллидов [2, 3]. Близким по химическому составу к сплаву MnAl₆ является интерметаллид Mn₁₂Al₅₇, содержащий 54-атомный двухслойный кластер Maкkes 0@Al₁₂@42(Mn₁₂Al₃₀) [4].

В настоящее время синтезированы многие интерметаллиды, кристаллические структуры которых рассматриваются как икосаэдрические аппроксиманты квазикри-

Интерметаллид	Группа симметрии	Параметр кубической ячейки, Å	Объем Å ³	Индекс Пирсона
Mn ₁₂ Al ₅₇ [4]	<i>Pm</i> -3	12.680	2038.7	<i>cP</i> 138
$Fe_{14}Cu_{48}Al_{78}$ [5]	<i>Pm</i> -3	12.312	1866.3	<i>cP</i> 140
$Ir_{13}Sc_{57}$ [6]	<i>Pm</i> -3	14.364	2963.6	<i>cP</i> 140
$Ru_{13}Sc_{57}$ [6]	<i>Pm</i> -3	14.394	2982.3	<i>cP</i> 140
$Rh_{13}Sc_{57}$ [6]	<i>Pm</i> -3	14.405	2989.1	<i>cP</i> 140
$Pt_{13}Sc_{57}$ [6]	<i>Pm</i> -3	14.415	2995.3	<i>cP</i> 140
Ru ₁₄ Cu ₃₉ Al ₇₀ [7]	<i>Pm</i> -3	12.377	1896.2	<i>cP</i> 142
Mg ₃₀ Ag ₁₉ Al ₂₄ [8]	<i>Pm</i> -3	14.500	3048.6	<i>cP</i> 146
K ₄₉ Tl ₁₀₈ [9]	<i>Pm</i> -3	17.287	5166.1	cP157
$Ti_6Mg_{20}Zn_{128}$ [10]	<i>Pm</i> -3	13.554	2490.1	<i>cP</i> 168
Hf ₆ Mg ₂₀ Zn ₁₂₈ [10]	<i>Pm</i> -3	13.674	2556.7	<i>cP</i> 168
$Zr_6Mg_{20}Zn_{128}$ [10]	<i>Pm</i> -3	13.709	2576.4	<i>cP</i> 168
Rh ₁₄₀ Al ₄₀₃ [11]	<i>Pm</i> -3	19.935	7922.3	cP549
Mn ₁₈ Pd ₁₃₈ Al ₃₈₇ [12]	<i>Pm</i> -3	20.211	8255.9	<i>cP</i> 549

Таблица 1. Кристаллохимические данные интерметаллидов

сталлов (табл. 1). Такие интерметаллиды обладают сложным стехиометрическим составом и получены в двойных и тройных системах с участием атомов Al и Zn [4–11]. Наиболее кристаллохимически сложными структурами являются Rh₁₄₀Al₄₀₃-*cP*549 [10] и Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 [12], рассматриваемые как 2/1 кубические аппроксиманты икосаэдрической фазы.

Интерметаллид Rh₁₄₀Al₄₀₃-*cP*549 характеризуется параметрами кубической ячейки: *a* = 19.9350 Å, *V* = 7922.25 Å³, и пр. гр. *Pm*-3 [10]. Уникальная последовательность Вайкоффа для 39 кристаллографически независимых атомов имеет вид $l^{12}k^7 j^9 t^4 h^2 g^2 f^2 b$. Синтез интерметаллида осуществлен из смеси состава Al₈₅Rh₁₇Si₈ и по данным химического анализа монокристалл имел химический состав Al_{66.6}Rh_{26.1}Si_{7.3} [10]. Положение атомов Si в кристаллической структуре Rh₁₄₀Al₄₀₃-*cP*549 не определено.

Интерметаллид Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 характеризуется параметрами кубической ячейки: a = 20.211 Å, V = 8255.88 Å³, и пр. группой *Pm*-3 [11]. Уникальная последовательность Вайкоффа для 39 кристаллографически независимых атомов имеет вид $l^{12}k^7 j^9 i^4 h^2 g^2 f^2 b$. По данным химического анализа полученных монокристаллов, в состав интерметаллидов входят атомы Si. Особенность строения Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 – наличие 6 и 12 атомов Mn, упорядочено занимающих позиции 6h и 12j, которые в Rh₁₄₀Al₄₀₃-*cP*549 занимали атомы Rh.

В работе [11] в кристаллической структуре $Mn_{18}Pd_{138}Al_{387}$ были выделены многослойные кластеры состава $Mn_{12}Pd_{124}Al_{302}$ и $Pd_{40}Al_{67}$. При этом атомы Mn1 (в позиции *6h*) не входят в состав этих кластеров. В кластере $Mn_{12}Pd_{124}Al_{302}$ геометрически выделены 13 квазисферических оболочек: 5 – из атомов Pd, 7 – из атомов Al и 1 – из атомов Mn. В выделенных оболочках атомы не обязательно связаны друг с другом: в первой икосаэдрической оболочке Pd_{12} связанные атомы Pd–Pd находятся на расстоянии 3.058 Å, во второй икосаэдрической оболочке не связанные атомы Pd находятся на расстоянии 4.778 Å. В последних оболочках атомы Pd и Al являются общими с соседними кластерами $Mn_{12}Pd_{124}Al_{302}$. В кристаллической структуре $Rh_{140}Al_{403}$ выделены два таких же многослойных кластера [10].

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллидов Rh₁₄₀Al₄₀₃-*cP*549 и Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 (пакет программ ToposPro [12]). Установлен симметрийный и топологический код процессов кла-

Атом	Локальное	Координационные последовательности		
	окружение	$N_1 N_1 N_1 N_1 N_1$		
All	12A1	12 50 116 208 312		
A12	10Al + 3Rh	13 47 105 191 307		
Al4	9Al + 2Rh	11 45 115 200 313		
A15	7Al + 3Rh	10 41 95 176 284		
Al6	7Al + 4Rh	11 43 95 175 287		
Al7	14A1	14 48 110 192 350		
A18	11Al + 2Rh	13 50 104 206 315		
A19	9Al + 4Rh	13 45 106 196 323		
A110	9Al + 3Rh	12 45 105 192 304		
A111	10Al + 4Rh	14 49 97 179 289		
A112	9Al + 4Rh	13 43 105 201 307		
A113	10Al + 4Rh	14 46 101 186 290		
Al14	9Al + 4Rh	13 48 106 195 319		
A115	8Al + 5Rh	13 48 103 188 310		
A116	8Al + 4Rh	12 47 107 198 314		
A117	10Al+ 4Rh	14 51 112 207 316		
A118	10Al + 3Rh	13 47 109 191 310		
A119	9Al + 4Rh	13 47 102 185 308		
A120	10Al + 3Rh	13 48 109 199 316		
Al21	9Al + 3Rh	12 48 113 204 324		
A122	10Al + 3Rh	13 46 107 195 308		
A123	10Al + 4Rh	14 45 105 184 305		
A124	9Al + 3Rh	12 43 101 179 290		
A125	9Al + 3Rh	12 44 104 179 305		
A127	8Al + 4Rh	12 46 106 199 312		
A128	9Al + 3Rh	12 46 105 191 316		
A129	8Al + 3Rh	11 44 102 185 303		
Rh1	12A1	12 53 112 212 320		
Rh2	12Al +1Rh	13 45 93 168 286		
Rh4	8Al + 3Rh	11 44 98 180 297		
Rh5	12Al +1Rh	13 47 109 196 311		
Rh6	9Al + 3Rh	12 42 98 182 295		
Rh7	10Al +1Rh	11 43 96 187 295		
Rh8	10A1	10 43 99 178 308		
Rh10	12A1	12 43 100 178 296		
Rh11	5Al + 5Rh	10 40 95 190 315		
Rh12	12A1	12 45 109 201 331		
Rh13	10A1	10 42 103 196 307		
Rh14	11Al	11 41 94 178 279		

Таблица 2. Rh₁₄₀Al₄₀₃-*cP*549. Координационные последовательности атомов

стерной самосборки кристаллических структур из кластеров K244 = 0@12@20@80@132 и K245 = 1@14@48@206 в виде: первичная цепь S¹₃ \rightarrow микрослой S²₃ \rightarrow микрокаркас S³₃.

Работа продолжает исследования [13–20]. Методики, использованные при компьютерном анализе приведены в [13–20].

Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2, в которой жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Рис. 1. Кластеры 1@14. Здесь и далее числа указывают длины связей в Å.

САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР $Rh_{140}Al_{403}$ И $Mn_{18}Pd_{138}Al_{387}$ Метод моделирования кристаллической структуры представлен в [14, 15].

Кристаллографические данные

Пространственная группа *Pm*-3 (200) характеризуется позициями с точечной симметрией: *m*-3 (1*a*, 1*b*), *mmm* (3*c*, 3*d*) и др.

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристалли-

Рис. 2. Кластеры 0@12 и 0@32.

ческой структуры. Число вариантов разложения на кластерные подструктуры с числом выделенных кластеров от 3 до 12 составляет до 9000.

В результате установлены два новых кластерных прекурсора с симметрией -43*m*: четырехслойный кластер K244 = 0@12@20@80@132 с внутренним икосаэдром Pd₁₂ или Rh₁₂ и трехслойный кластер K245= 1@14@48@206 с внутренним 15-атомным полиэдром Al@Pd₈Al₆ или Al@Rh₈Al₆ (рис. 1, 2). Такие же локальные области в виде 15-атомных полиэдров могут быть выделены в простых кристаллических структурах интерметаллидов Rh₂Al₂-*cP*2 и Pd₂Al₂-*c*P2 с пр. группой *Pm*-3*m* [3] (рис. 1).

Рис. 3. Кластерные структуры, расположенные между кластерами К244 и К245 в пустотах с центром в позиции 3*d* с симметрией *mmm*.

В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K244 и K245, установлены кластеры MAl_3 и M_2Al_2 (M = Rh или Pd), связанные атомами Al (рис. 3).

Рис. 4. Rh₁₄₀Al₄₀₃-*cP*549. Микрослой, образованный из нанокластеров К244 и К245.

Самосборка первичных цепей S_3^l происходит при связывании нанокластеров K244 и K245 в направлении диагонали в плоскости (110) (рис. 4–8).

Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей S_3^1 в плоскости (110) (рис. 4). В элементарной ячейке расстояние

$K244 = 0@Rh_{12}@Al_{20}@80(Al_{60}Rh_{20})@132(Rh_{12}Al_{120})$					
Кластер К12	Оболочка	Оболочка	Оболочка		
12 Rh11	12 A112	12 Al24	12 A15		
	8 A19	24 A128	24 Al6		
		24 A129	12 Al11		
		12 Rh10	24 A120		
		8 Rh8	24 A123		
			24 Al27		
			12 Rh14		
Всего 244 атома					

Таблица 3. $Pd_{138}Al_{387}$. Нанокластер К244. Атомы, формирующие внутренний икосаэдрический кластер K12 = 0@12 и 20-, 80- и 132-атомную оболочку

Таблица 4.	Pd ₁₃₈ Al ₃₈₇ .	Нанокластер	К245. Атомь	і, формирующие	внутренний	икосаэдричес	кий
кластер К1	5 = 1@14, 43	8- и 182-атомн	іую оболочку	r			

Кластер К12	Оболочка	Оболочка		
1 Al 7	12 Al 17	8 Al 1	12 Al 14	
8 Rh 8	24 Al 18	12 Al 16	12 Al 15	
6 Al 8	12 Rh 5	24 Al 19	24 Rh 6	
		24 Al 21	24 Rh 7	
		24 Al 22		
		6 Rh 13		
		12 Rh 4		
Всего 245 атомов				

 $K245 = Al@14(Rh_8Al_6)@48(Rh_{12}Al_{36})@182(Rh_{18}Al_{84})(Al_{24}Rh_{48})$

между центрами супракластеров К244 (табл. 3) и К245 (табл. 4) соответствует длинам векторов 19.935 Å или 20.211 Å для $Rh_{140}Al_{403}$ и $Mn_{18}Pd_{138}Al_{387}$ соответственно. На этой стадии в пустоте микрослоя между кластерами К244 и К245 происходит локализация кластеров MAl_3 и M_2Al_2 (M = Rh или Pd), связанных атомами Al.

Микрокаркас структуры S₃³ формируется при связывании двух микрослоев в направлении [001]. Расстояние между микрослоями определяет длину вектора трансляции 19.935 Å или 20.211 Å (рис. 4).

ЗАКЛЮЧЕНИЕ

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Rh_{140}Al_{403}$ -*cP*549 и $Mn_{18}Pd_{138}Al_{387}$ -*cP*549. Установлен симметрийный и топологический код процессов кластерной самосборки кристаллических структур из кластеров K244 = 0@12@20 @80@132 и K245= 1@14@48@206 в виде: первичная цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 . В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K242 и K245, установлены кластеры *M*Al₃ и *M*₂Al₂ (*M* = Rh или Pd), связанные атомами Al.

Нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 20-13-00054), анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

Рис. 5. Rh₁₄₀Al₄₀₃-*cP*549. Кластеры К63 (сверху) и К245 (снизу).

Рис. 6. Rh₁₄₀Al₄₀₃-*cP*549. Кластеры К112 (сверху) и К244 (снизу).

Рис. 7. Мп₁₈Pd₁₃₈Al₃₈₇-*сР*549. Кластеры К63 (сверху) и К245 (снизу).

Рис. 8. Мп₁₈Pd₁₃₈Al₃₈₇-*cP*549. Кластеры К112 (сверху) и К244 (снизу).

СПИСОК ЛИТЕРАТУРЫ

- 1. Shechtman D., Blech I., Gratias D., Cahn J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984. V. 53. P. 1951–1953.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 3. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 4. *Cooper M., Robinson K.* The crystal structure of the ternary alloy alpha (Al Mn Si). Acta Crystallogr. 1966. V. 20. P. 614–617.
- 5. Puyraimond F., Quiquandon M., Gratias D. et al. Atomic structure of the (Al, Si) Cu Fe cubic approximant phase. Acta Crystallogr., Sect. A: Found. Crystallogr. 2002. V. 58. P. 391–403.
- 6. *Cenzual K., Chabot B., Parthe E.* Cubic Sc57 Rh13 and orthorhombic Hf54 Os17, two geometrically related crystal structures with rhodium- and osmium-centered icosahedra. Acta Crystallogr. 1985. V. 41. C. P. 313–319.
- 7. Sugiyama K., Kato T., Ogawa T., Hiraga K., Saito K. Crystal structure of a new 1/1-rational approximant for the Al–Cu–Ru icosahedral phase. J. Alloys Compd. 2000. V. 299. P. 169–174.
- Kreiner G., Spiekermann S. Investigations in the Ag–Mg and Ag–Al–Mg systems. I. Models for cubic approximants of icosahedral quasicrystals in the Ag–Al–Mg system. J. Alloys Compd. 1997. V. 261. P. 62–82.
- 9. *Cordier G., Mueller V., Froehlich R.* Crystal structure of potassium thallide (49/108), K49 T1108. Z. Kristallogr. 1993. V. 203. P. 148–149.
- Gomez C.P., Ohhashi S., Yamamoto A., Tsai A.P. Disordered structures of the TM-Mg-Zn 1/1 quasicrystal approximants(TM = Hf, Zr, or Ti) and chemical intergrowth. Inorg. Chem. 2008. V. 47. P. 8258–8266.
- Sugiyama K., Sun W., Hiraga K. Crystal structure of a 2/1 cubic approximant in an Al–Rh–Si alloy. J. Non-Crystalline Solids. 2004. V. 334. P. 156–160.
- Sugiyama K., Kaji N., Hiraga K. Crystal structure of a cubic Al₇₀Pd₂₃Mn₆Si; a 2/1 rational approximant of an icosahedral phase. Z. Kristallogr. 1998. V. 213. P. 90–95.
- 13. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- 14. Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure. // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 16. *Pankova A.A., Blatov V.A., Ilyushin G.D., Proserpio D.M.* γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model. // Inorg. Chem. 2013. V. 52. № 22. P. 13094–13107.
- 17. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: 108-атомный трехслойный икосаэдрический кластер 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀) и 44-атомный двухслойный икосаэдрический кластер @12(Ga₁₂)@32(Na₂₀Ga₁₂) для самосборки кристаллической структуры Rb₂₄Na₂₀₀Ga₆₉₆-oF920 // Физика и химия стекла. 2019. Т. 45. № 3. С. 203–214.
- 18. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый кластер-прекурсор (InNa₅)(AuAu₅) и первичная цепь с симметрией 5т для самосборки кристаллической структуры Na₃₂Au₄₄In₂₄-oP100 // Физика и химия стекла. 2019. Т. 45. № 4. С. 303–310.
- 19. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-*h*P168. // Физика и химия стекла. 2019. Т. 45. № 5. С. 403-411.
- 20. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics. // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.