РОЛЬ ЖИДКОЙ ФАЗЫ В ФОРМИРОВАНИИ ФАЗОВОГО СОСТАВА И СВОЙСТВ СТРОИТЕЛЬНОЙ ОБЛИЦОВОЧНОЙ КЕРАМИКИ

© 2021 г. Н. Д. Яценко^{1, *}, Н. А. Вильбицкая¹, А. И. Яценко¹

¹Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, ул. Просвещения, 132, Новочеркасск, 346428 Россия *e-mail: natvacen@vandex.ru

> Поступила в редакцию 18.03.2020 г. После доработки 02.09.2020 г. Принята к публикации 08.10.2020 г.

Установлена роль жидкой фазы в формировании микрострукутры керамической облицовочной плитки с различными физико-техническими свойствами. Выявлено влияние природы сырьевых материалов и соотношения щелочных и щелочноземельных оксидов на образование при низкотемпературном обжиге различных кальцийсодержащих кристаллических фаз.

Ключевые слова: плавни, высококальциевый отход, кальцийсодержащие кристаллические фазы, низкотемпературный обжиг

DOI: 10.31857/S0132665121010133

ВВЕДЕНИЕ

Особенность производства керамической облицовочной плитки заключается в скоростном обжиге, что затрудняет завершение формирования ее фазового состава и микроструктуры и влияет на свойства готовой продукции.

Для ускорения фазообразования в состав масс вводят плавни в виде природного сырья — нефелинового сиенита, пегматита, перлита или синтезированного стеклобоя, что очень часто вызывает снижение интервала спекания, значительную огневую усадку и деформацию плитки.

Для решения этой проблемы российскими и зарубежными учеными разработан целый ряд технологий по производству фаянсовой малоусадочной керамической облицовочной плитки [1–3]. В качестве сырьевого компонента массы использовано кальцийсодержащее природное и техногенное сырье в виде мела, доломита, высококальциевых отходов различных производств, обусловливающее получение известкового фаянса, характеризующегося низкими прочностными свойствами [4, 5].

В связи с этим как с научной, так и с практической точки зрения несомненный интерес представляет управление процессами формирования микроструктуры, фазового состава и свойств керамической плитки на основе глинисто-карбонатного сырья при температурах обжига 1000–1050°С. Интенсификация процессов спекания таких масс происходит путем ввода щелочных природных и синтезированных материалов, а также при определенном соотношении оксидов щелочных (R_2O) и щелочноземельных (RO) металлов [6–8].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследований были разработаны составы масс на основе местного глинистого тугоплавкого сырья Ростовской области (глина Владимировского месторождения Ро-

Наименование	Содержание оксидов								
сырья	SiO ₂	$Al_2O_3 + TiO_2$	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	ппп	Cymma
Глина владимировская (ВКС)	59.48	23.86	2.29	0.83	1.39	3.48	_	9.67	100.0
Нефелинсиенит	48.20	25.40	2.10	2.30	1.50	8.20	11.1	1.2	100.0
Песок владимировский	97.34	0.65	—	0.12	0.32	0.41	_	0.73	100.0
Отход высококальци- евый (ОВК)	1.93	0.92	2.64	48.63	3.36	0.10	0.30	42.12	100.0

Таблица 1. Химический состав сырьевых материалов

No	Содержание оксидов									2012.0
композиции	SiO ₂	Al_2O_3	TiO ₂	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	ппп	RO/R_2O
1	55.0	24.9	0.7	1.3	2.2	2.3	3.2	2.3	8.8	0.8
2	46.7	18.7	0.6	3.3	10.5	1.3	3.2	2.2	12.3	2.1
3	47.3	17.4	0.5	3.7	10.6	1.5	2.8	1.8	11.8	2.6
4	51.7	15.2	0.5	4.1	10.6	1.5	2.2	1.3	10.9	3.6
5	54.3	13.2	0.4	4.4	10.7	1.4	1.7	1.1	10.4	4.3
6	55.0	12.3	0.4	4.8	10.9	1.3	1.6	1.0	9.7	4.7

Таблица 2. Химический состав разработанных масс

стовской области (ВКС) с содержанием оксида железа от 1.8–2.5%, нефелинового сиенита, песка и высококальциевого отхода, образующегося при очистке воды методом известкования на ГРЭС, ТЭС и атомных электростанциях. Химические составы сырьевых материалов и масс приведены в табл. 1, 2.

Исходные сырьевые материалы измельчали мокрым способом в фарфоровом барабане до прохождения через сито № 0063 (9426 отв./см²) в соответствии с ГОСТ 6613-86 с остатком 2–2.5%. Шликер высушивали до влажности пресспорошка 7–8%, просеивали через сито № 1 (51 отв./см²), формовали плитки размером 50 × 50 × 5 и кубики 50 × 50 × 50 мм способом полусухого формования на гидравлическом прессе под давлением 20 МПа. Образцы обжигали в лабораторной муфельной печи с автоматическим регулируемым скоростным режимом обжига при температурах 950–1050°С. Общее время обжига с изотермической выдержкой при максимальной температуре в течение 20 мин составило 100 мин. При этом скорость повышения температуры до максимальной составила 25°С/мин, скорость охлаждения 18–20°С/мин с помощью принудительной вентиляции.

Исследования послеобжиговых свойств (водопоглощения, предела прочности на сжатие) керамических образцов проводили в соответствии с существующими стандартными методиками [9, 10].

Для определения фазового состава керамического черепка на основе керамических масс, отличающихся содержанием щелочных (Na₂O, K₂O) и щелочноземельных (CaO, MgO) катионов проводили рентгенофазовые исследования с использованием дифрактометра ДРОН-3. Данные исследования позволили установить влияние природы сырьевых материалов и количества щелочных и щелочноземельных оксидов на образование кальцийсодержащих фаз.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

С учетом влияния на эти процессы щелочных и щелочноземельных оксидов установлена зависимость основных свойств черепка от их соотношения. В исследуемых массах соотношение RO/R_2O изменяется от 0.8 до 4.7. При этом оптимальные резуль-

Рис. 1. Зависимость водопоглощения от соотношения RO/R₂O при различных температурах обжига, °C: *1* – 950, *2* – 1000; *3* – 1050.

таты по водопоглощению (согласно требованиям ГОСТ 6141-91) достигаются как при соотношении 0.8, так и 4.3–4.7 (рис. 1).

Черепок с водопоглощением не более 16% (по ГОСТ) формируется при температуре обжига 950°С. Соотношение RO/R_2O должно находиться в пределах не более 1.0 мас. % с низким содержанием CaO и в пределах 4.3–4.7 мас. % с высоким содержанием CaO. Повышение температуры обжига до температуры 1050°С расширяет интервал оптимальных значений RO/R_2O от 3.6 до 4.7 для высококальциевых масс и до 1.8 для масс с низким содержанием CaO.

В формировании исследуемых структур важную роль играют процессы, происходящие при низких температурах, которые, в конечном итоге, обеспечивают свойства черепка. При соотношении RO/R_2O менее 1.0, (композиция 1, табл. 2), наличие щелочных компонентов (5.5%) приводит к образованию жидкой фазы. Спекание наблюдается за счет жидкофазовых процессов, со значительной усадкой (табл. 3), а в высококальциевых тонкодисперсных массах (композиции 5, 6) формирование малоусадочной структуры происходит в результате низкотемпературных процессов кристаллизации и повышенной пористости черепка.

Формирование фазового состава и микроструктуры керамической плитки зависит и от природы используемых сырьевых материалов [11–13]. Для образования необходимого количества жидкой фазы в черепке, интенсифицирующей процесс спекания, в составы масс вводили природные и синтезированные щелочесодержащие материалы в виде пегматита ($K_2O + Na_2O = 7.25\%$) и стеклобоя ($K_2O + Na_2O = 14.6\%$). Кальций-содержащие материалы, являющиеся основой для формирования кристаллических фаз, вводили в различном количестве в виде мела или высококальциевого отхода (OBK) химводоочистки электростанций.

Исходя из заданного химического состава и установленных оптимальных соотношений $RO/R_2O = 1.2$ и 4.3–4.7 разработали шихтовые составы масс (табл. 4), в которых содержание мела меняется от 2.7 до 18.2%, OBK от 3.1 до 19.8%, пегматита от 30.7 до 62.9%, стеклобоя от 15.2 до 30.6%, что обеспечивает соотношение RO/R_2O 1.2 и 4.7.

Подготовку керамического шликера, формование, сушку и обжиг образцов проводили согласно ранее приведенной методике. Свойства исследуемых образцов (табл. 5) показывают, что в образцах составов 1, 4, 6, 7 формируется малоусадочная структура. При этом в качестве шелочесодержащего компонента содержится пегматит и не наблюдается зависимости от количества вводимого кальцийсодержащего материала и его вида (мела и OBK). Водопоглощение этих образцов составляет 16–17% за исключением образца состава 6, водопоглощение которого более 20%. В нем содержание пегматита наименьшее и составляет 30.7%. Все образцы, содержащие стеклобой (составы 2, 3, 5, 8) также независимо от содержания кальцийсодержащего компонента и материала, которым он вводится, имеют высокую усадку – 1.2% (состав 5, содержание стеклобоя 15%) до 2.30% при максимальном содержании стеклобоя 30.6% в составе 3.

24	Свойства черепка									
№ композиции	водопоглоще	ение, %, при тем	ипературах, °C	усадка,	прочность на сжатие (МПа) при 950°С					
	950	1000	1050	% при 950°С						
1	16.8	13.7	12.3	1.5	50.0					
2	24.8	24.0	23.0	1.3	40.0					
3	21.2	20.0	19.0	1.0	42.0					
4	18.0	17.7	16.5	0.8	44.0					
5	16.5	16.0	15.8	0.5	48.0					
6	16.0	16.0	15.5	0.5	48.0					

Таблица 3. Послеобжиговые свойства керамических образцов

Таблица 4. Составы масс шихты

№ п/п М	Материалы	Содержание компонентов, % по массе, в композициях								
	материалы	1	2	3	4	5	6	7	8	
1	Глина	38.5	55.3	60.7	26.9	54.3	37.8	26.7	60.5	
2	Песок	12.0	13.7	6.0	2.6	13.3	11.7	2.6	5.9	
3	Пегматит	31.3	—	—	63.4	—	30.7	62.9	_	
4	Стеклобой	—	15.2	30.6	—	15.0	_	—	30.5	
5	Мел	18.2	15.8	2.7	7.1	—	_	—	_	
6	OBK	—	—	—	—	17.4	19.8	7.9	3.1	
Сумма		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
RO/R_2O		4.7	4.7	1.2	1.2	4.7	4.7	1.2	1.2	

Таблица 5. Физико-химические свойства образцов

N⁰	Содержание око	сидов, мас. %	RO/R.O	Огневая	Водопог-	Прочность на сжатие, МПа	
композиции	RO	R ₂ O	K0/K20	усадка, %	лощение, %		
1	12.33	2.60	4.7	0.35	16.43	23.95	
2	12.07	2.55	4.7	1.85	11.09	32.60	
3	5.66	4.73	1.2	2.30	5.35	49.14	
4	5.10	4.22	1.2	-1.00	16.24	11.78	
5	12.51	2.73	4.7	1.20	12.82	38.58	
6	12.94	2.64	4.7	0.15	20.62	19.26	
7	6.37	5.12	1.2	-0.50	16.94	13.86	
8	6.18	5.05	1.2	2.25	7.39	46.41	

Водопоглощение этих образцов составляет от 5.3 до 12.8%. Прочность образцов на сжатие на основе пегматита значительно ниже, от 11.78 до 23.85 МПа.

Полученные результаты свидетельствуют о формировании различных по фазовому составу и свойствам микроструктур, что подтверждается рентгенофазовыми исследованиями (рис. 2).

На рентгенограммах всех исследуемых образцов идентифицирована кристаллическая фаза β -кварца с дифракционными максимумами, нм: (0.429, 0.336, 0.245, 0.228). Остальной фазовый состав отличается в зависимости от используемых сырьевых материалов. Все образцы на основе пегматита (композиции 1, 4, 6, 7) содержат преимущественно низкотемпературную форму калиевого полевого шпата (микроклина) с дифракционными максимумами, нм (0.382, 0.348, 0.325), что свидетельствует о том, что его полного перехода в расплав не произошло. В образцах присутствует анортит (0.404, 0.320, 0.313 нм) и высококальциевый твердый раствор мелилитового ряда (0.307, 0.285, 0.245 нм), зависит от содержания СаО.

Рис. 2. Рентгенограммы керамических образцов составов 1–8, полученных обжигом при температуре 1000°С: ● – кварц; □ – анортит; ■ – волластонит; ◄ – мелилит; ○ – микроклин.

Образцы, содержащие в качестве щелочесодержащего компонента стеклобой (композиции 2, 3, 5, 8), отличаются наличием, помимо анортита, кристаллической фазы волластонита (0.384, 0.298, 0.248 нм). Это приводит к повышению прочностных свойств керамического черепка (от 32.6 до 49.1 МПа; табл. 5), но с повышенной усадкой. Формирование малоусадочной структуры с повышенной пористостью и пони-

Рис. 3. Содержание кристаллических фаз: ■ – мелилит, ■ – микроклин, ■ – анортит, ■ – волластонит.

женной прочностью обеспечивается кристаллизацией анортита и мелилита при меньшем содержании стеклофазы (композиции 1, 4, 6, 7).

Относительное количественное соотношение формирующихся кристаллических фаз, согласно интенсивности дифракционных максимумов, приведенных на рис. 3, значительно отличается как в образцах на основе пегматита, так и на основе стеклобоя.

В образцах на основе пегматита присутствует микроклин (калиевый полевой шпат), количество которого зависит от содержания пегматита в массе. Наибольшее количество анортита образуется в образцах составов 4 и 7, в присутствии значительного количества R_2O (4.22 и 5.12% соответственно) и отсутствии других кальцийсодержащих фаз. В образцах 1 и 6, содержащих максимальное количество CaO, введенного мелом и OBK, наблюдается приблизительно одинаковое содержание, но в меньшем количестве, анортита и мелилитового твердого раствора.

В образцах на основе стеклобоя количество волластонита, согласно интенсивности дифракционных пиков, практически одинаково, а количество анортита уменьшается при снижении содержания в массе CaO. Эти результаты свидетельствуют о том, что первоначально образуется волластонит, а оставшийся от его образования CaO идет на формирование анортита.

При избытке жидкой фазы, образующейся за счет стеклобоя, процессы кристаллизации при температурах 950–1050°С происходят по следующей реакции:

 $2(Al_2O_3 \cdot 2SiO_2) + 4CaO = 2(CaO - SiO_2) + CaO - Al_2O_3 \cdot 2SiO_2 + CaO - Al_2O_3.$

В присутствии пегматита при температурах 950–1000°С происходит формирование кальцийсодержащих кристаллических фаз, первоначально твердого раствора мелилитового ряда, непосредственно с участием CaCO₃. При более высоких температурах (выше 1000°С) образуется анортит после образования CaO по реакции:

$$Al_2O_3 \cdot 2SiO_2 + CaO = CaO \cdot Al_2O_3 \cdot 2SiO_2$$

Полученные результаты свидетельствуют о том, что природа кальцийсодержащих кристаллических фаз зависит от скорости процесса декарбонизации, на которую существенное влияние оказывает жидкая фаза и ее количество. В образцах на основе стеклобоя происходит образование волластонита при непосредственном взаимодействии метакаолинита с СаО, скорость образования которого, как показывают проведенные исследования, значительно выше в присутствии жидкой фазы, а затем анортита с остатком СаО, обеспечивая высокую прочность структуры, сцементированной значительным количеством стеклофазы с повышенной усадкой.

При наличии пегматита, который при температурах до 1000°С не расплавляется (температура его плавления выше 1200°С), скорость процесса декарбонизации ниже. Формирование структуры зависит от количества карбонатного материала. При содержании CaO более 10% из-за более медленного процесса декарбонизации часть нераз-

ложившегося $CaCO_3$ с метакаолинитом образует кальцийсодержащий твердый раствор мелелито-геленитового ряда, а другая часть уже образовавшегося CaO идет на формирование анортита. В этих же образцах с содержанием CaO 5–6 мас. % образуется только анортит. Отсутствие значительного количества жидкой фазы и поризация массы приводит к формированию черепка с повышенной пористостью и низкой усадкой (табл. 5).

ЗАКЛЮЧЕНИЕ

Управление фазовым составом и микроструктурой формирующегося черепка керамической облицовочной плитки, для которой важнейшими свойствами наряду с водопоглощением и прочностью является низкая усадка, обеспечивается при использовании глинисто-карбонатных шихт и щелочесодержащего компонента, обусловливающих образование преимущественно кристаллических структур за счет регулирования физико-химических процессов в условиях низкотемпературного обжига.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yatsenko N.D., Zubekhin A.P., Golovanova S.P., Rat'kova V.P., Vil'bitskaya N.A. An efficient technology for production of faience articles using calcium-containing waste // Glass and Ceramics. 1999. T. 56. № 9–10. C. 271–273.
- 2. Кочан И.С., Дятлова Е.М. Малоусадочные плитки с использованием кальций содержащих пород // Стекло и керамика. 1990. № 12. С. 4–6.
- 3. *Рыщенко М.И., Лисачук Г.В.* Повышение эксплуатационных свойств керамики. Харьков:Вища. шк., 1987. 104 с.
- 4. Yatsenko N.D., Vil'bitskaysa N.A., Golovanova S.P., Zubekhin A.P., Rat'kova V.P. Intensification of sintering of calcium-bearing ceramic // Glass and Ceramics. 2000. T. 57. № 9–10. C. 318–321.
- 5. *Мороз В.И*. Влияние мела на образование кристаллических фаз из глинистых минералов и полиминеральных глин // Стекло и керамика. 1978. № 4. С. 23
- 6. Яценко Н.Д., Вильбицкая Н.А., Голованова С.П., Зубехин А.П., Ратькова В.П. Влияние щелочноземельного модуля на интенсификацию спекания кальцийсодержащих керамических масс // Качество, безопасность энерго- и ресурсосбережения в промышленности строительных материалов и строительстве на пороге XX1 в.: Сб. докл, Междунар. науч. практ. конф., 2000. Ч. 2. С. 63–64.
- 7. Яценко Н.Д., Вильбицкая Н.А., Голованова С.П., Зубехин А.П., Липкин М.С. Использование комплексного минерализатора в интенсификации спекания высококальциевых масс // Изв. Вузов. Сев.-Кавк. Регион. Техн. науки. 2002. № 2. С.93–96.
- 8. Яценко Н.Д., Голованова С.П., Лихота О.В., Вильбицкая Н.А. Влияние природы сырьевых материалов и минерализаторов на спекание керамических масс // Вестник БГТУ. 2003. № 5. Ч. 2. С. 287–289.
- ГОСТ 7025-91 "Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости". М.: Стандартинформ, 2006. 16 с.
- 10. ГОСТ 8462-85 "Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе". М.: ИПК Издательство стандартов, 2001. 7 с.
- 11. Зубехин А.П., Голованова С.П., Яценко Е.А., Яценко Н.Д. Научные основы спекания в силикатных технологиях // Техника и технология силикатов. 2014. Т. 21. № 2. С. 16–19.
- 12. Зубехин А.П., Яценко Н.Д. Теоретические основы инновационных технологий строительной керамики // Строительные материалы. 2014. № 1–2. С. 88–92.
- 13. Vil'bitskaya N.A., Golovanova S.P., Zubekhin A.P., Yatsenko N.D. Intensification of sintering of ceramic tiles using high-calcium waste products and lithium-containing mineralizers // Glass and Ceramics. 2002. T. 4. C. 21.
- 14. Yatsenko N.D., Vil'bitskaya N.A., Chernyshev V.M., Zakarlyuka S.G., Yatsenko A.I. Control of structure and phase formation in the development of low-temperature technologies based on clay-containing raw material // Glass and Ceramics. 2017. T. 73. № 11–12. C. 446–449.