КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЕ ДВУХСЛОЙНЫЕ НАНОКЛАСТЕРЫ-ПРЕКУРСОРЫ К61 = IN@16(CE₄IN₁₂)@44(CE₄IN₁₂PD₂₈) И К42 = 0@8(IN₈)@34(CE₆PD₄IN₂₄) В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ CE₈₀PD₁₂₈IN₂₈₄-*CF*492

© 2021 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия ³ Федеральный научно-исследовательский центр "Кристаллография и фотоника",

Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 29.12.2020 г. После доработки 26.01.2021 г. Принята к публикации 07.06.2021 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Ce_{80}Pd_{128}In_{284}$ -cF492 (a = 21.838 Å, V = 10414.79 Å³, пр. группа F-43m). Установлены два новых нанокластера-прекурсора с симметрией -43m: двухслойный нанокластер K61 состава In@16(Ce_4In_{12})@44($Ce_4In_{12}Pd_{28}$) с внутренним центрированным полиэдром Фриауфа In@16(Ce_4In_{12}) и с 44 атомами во внешней оболочке и двухслойный нанокластер K42 состава 0@8(In_8)@34($Ce_6Pd_4In_{24}$) с внутренним полиэдром In₈ и с 34 атомами во внешней оболочке. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K61 и K42 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K-61 и K-42, установлены In₄тетраэдры с симметрией -43m, а также атомы-спейсеры Ce и In.

Ключевые слова: интерметаллид $Ce_{80}Pd_{128}In_{284}$ -*cF*492, самосборка кристаллической структуры, нанокластеры-прекурсоры K61 = In@16(Ce₄In₁₂)@44(Ce₄In₁₂Pd₂₈) и K42 = 0@8(In₈)@34(Ce₆Pd₄In₂₄) DOI: 10.31857/S0132665121050139

ВВЕДЕНИЕ

Данные по числу химических элементов M, образующих интерметаллиды в системах A-M1-M2, с атомами A = Na, K, Rb, Cs, Ca, Sr, Ba и Ln (La–Lu), различаются как по числу соединений в этих трех группах, так по числу химических элементов M, образующих тройные интерметаллиды. Так, в 103 тройных системах Na-M1-M2 установлено образование и кристаллическая структура 176 интерметалидов с участием 32 химических элементов; в 179 тройных системах Ca-M1-M2 найдены 588 интерметалидов с участием 46 химических элементов; в 276 тройных системах Ce-M1-M2 синтезированы 1181 интерметалида с участием 53 химических элементов [1, 2]. Многочисленные тройные интерметаллиды образуются с участием атомов M = Mn, Fe, Co, Ni, Cu, Pd, Ce, а также Al, Ga, In и Ge, Sn. B 17 тройных системах Ce-In-M установле-

Интерметаллид	(In + Pd)/Ce	Группа симметрии	Параметры элементарной ячейки, Å и градусы,	<i>V</i> , Å ³	Индекс Пирсона
Ce ₁₁ Pd ₄ In ₉ [3]	1.18	<i>Cmmm</i> (65)	15.431, 22.516, 3.763	1307.4	oS48
$Ce_2InPd_2[4]$	1.5	P4/mbm (127)	7.813, 7.813, 3.916	239.0	<i>tP</i> 10
CePdIn [5]	2	P-62m (189)	7.704, 7.704, 4.019	206.6	hP9
Ce ₆ Pd ₁₂ In ₅ [6]	2.83	<i>P</i> 6 ₃ / <i>mcm</i> (193)	8.292, 8.292, 16.051	955.8	<i>hP</i> 46
CeInPd ₂ [7]	3	<i>P</i> 6 ₃ / <i>mmc</i> (194)	4.627, 4.627, 9.198	170.5	hP8
CePdIn ₂ [8]	3	<i>Cmcm</i> (63)	4.621, 10.694, 7.455	368.4	oS16
Ce ₃ PdIn ₁₁ [9]	4	P4/mmm (123)	4.685, 4.685, 16.846	369.7	<i>tP</i> 15
Ce ₅ Pd ₂ In ₁₉ [9]	4.2	P4/mmm (123)	4.701, 4.701, 29.136	643.9	<i>tP</i> 26
Ce_2PdIn_8 [9]	4.5	P4/mmm (123)	4.690, 4.690, 12.185	268.0	<i>tP</i> 11
Ce ₂ Pd ₄ In ₅ [10]	4.5	$P2_{1}/m$ (11)	9.552, 4.614, 10.582, 90.00, 102.56, 90.00	455.2	mP22
CePd ₃ In ₂ [11]	5	<i>Pnma</i> (62)	10.265, 4.623, 9.878	468.8	oP24
CePdIn ₄ [12]	5	<i>Cmcm</i> (63)	4.535, 16.856, 7.308	558.6	oS24
Ce ₈₀ Pd ₁₂₈ In ₂₈₄ [13]	5.15	F-43m (216)	21.838, 21.838, 21.838	10414.8	cF492
$Ce_4Pd_{10}In_{21}$ [14]	5.25	<i>C</i> 2/ <i>m</i> (12)	23.082, 4.525, 19.448, 90.00, 133.40, 90.00	1475.9	<i>mS</i> 70
CePd ₂ In ₄ [15]	6	<i>Pnma</i> (62)	18.449, 4.565, 7.415	624.4	oP28
CePd ₂ In ₄ [16]	6	$Pmc2_{1}(26)$	4.572, 9.920, 33.017	1497.5	oP70

Таблица 1. Система Ce-Pd-In. Кристаллохимические данные интерметаллидов

но образование 118 интерметаллидов, из них 16 образуется с участием атомов Pd (табл. 1), 13 – с атомами Pt, и 11 – с атомами Ni и Cu. По одному интерметаллиду образуются с атомами M = La, Mn, Zn, по два – с атомами M = Y, Sn, Co.

Кристаллохимической особенностью строения интерметаллидов в системах Ce–In–M, является образование кристаллических структур с одним и двумя небольшими значениями вектора трансляций 3.8–4.8 Å. В системах с участием атомов Ni такими небольшими векторами трансляций характеризуются все 11 кристаллических структур, в системах с участием атомов Pt – 11 из 13 кристаллических структур, а в системах с участием атомов Pd – 14 из 16 кристаллических структур (табл. 1).

Наиболее кристаллохимически сложным (и не имеющим аналогов) является интерметаллид $Ce_{80}Pd_{128}In_{284}$ -cF492 с параметрами кубической ячейки: a = 21.838 Å, V = 10414.79 Å³, пр. пр. группа F-43m [13]. В настоящей работе проведен геометрический и топологический анализ кристаллической структуры $Ce_{80}Pd_{128}In_{284}$ -cF492. Установлены новые двухслойные кластеры-прекурсоры K61 и K42, участвующие в самосборке кристаллической структуры интерметаллида. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас. Работа продолжает исследования [18–25] в области моделирования процессов самоорганизации систем на супраполиздрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

Атом	Локальное окружение	Координационные последовательности				
AIOM		N ₁	N ₂	N ₃	N ₄	N ₅
Pd1	1Pd + 5In + 4Ce	10	52	110	197	326
Pd2	8In	8	33	98	175	293
Pd3	6In + 4Ce	10	47	100	197	342
In1	2Pd + 4In + 4Ce	10	53	117	203	331
In2	9In + 3Ce	12	53	124	206	327
In3	4Pd + 3In + 4Ce	11	50	112	197	333
In4	2Pd + 8In + 2Ce	12	47	106	202	314
In5	3Pd + 6In + 3Ce	12	48	118	192	331
In6	4Pd + 6In + 3Ce	13	48	117	190	327
In7	9In + 3Ce	12	50	108	218	320
In8	1Pd + 9In + 3Ce	13	53	111	209	331
In9	4Pd + 6In + 3Ce	13	44	103	203	336
In10	12In + 4Ce	16	50	120	200	358
Ce1	6Pd + 9In	15	44	109	218	315
Ce2	4Pd + 14In	18	53	115	215	321
Ce3	6Pd + 12 In	18	47	115	212	327
Ce4	7Pd + 10In	17	45	113	220	311

Таблица 2. Се₈₀Рd₁₂₈In₂₈₄. Координационные последовательности атомов

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ТороsPro [16], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационных последовательностей атомов в 3D-сетках, приведены в табл. 1, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа на кластерные единицы приведен в работах [18–20].

Самосборка кристаллической структуры Ce₈₀ Pd₁₂₈In₂₈₄-cF492

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [18—20]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — ме-

Нанокластер 1@16@44				
Полиэдр Фриауфа	Оболочка			
1 In10	4 Ce3			
4 Ce4	12 In3			
12 In1	24 Pd1			
	4 Pd3			
$In@16(Ce_4In_{12})$	$@44(Ce_4In_{12}Pd_{28})$			
Всего 61 атом				

Таблица 3. Нанокластер К61. Атомы, формирующие внутренний полиэдр Фриауфа К17 = 1@16 и 44-атомную оболочку

Таблица 4. Нанокластер К42. Атомы, формирующие внутренний полиэдр К8 = 0@8 и 34-атомную оболочку

Нанокластер 0@8@34				
Полиэдр К8	Оболочка			
4 In2	6 Ce2			
4 In8	12 In4			
	12 In5			
	4 Pd2			
0@8(In ₈)	$@34(Ce_6Pd_4In_{24})$			
Всего 42 атома				

ханизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные Ce₈₀Pd₁₂₈In₂₈₄-cF492

Пространственная группа *F*-43*m* (по. 216) характеризуется позициями с точечной симметрией: -43m (4*a*, 4*b*, 4*c*, 4*d*), 3*m* (16*e*) и др. В табл. 2 приведено локальное окружение атомов Се, Pd, In и значения их координационных последовательностей в 3D атомной сетке. Для атомов Се значения координационных чисел KЧ = 15, 17, 18 (два атома), атома Pd – 8, 10 (два атома), и In – 10, 11, 12 (4 атома), 13 (3 атома), 16 (1 атом).

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Число вариантов разложения на кластерные подструктуры с числом выделенных кластеров, равным 1, 2, 3, 4, 5, 6 и 7 составило 1, 1, 26, 77, 138, 134, 49 соответственно. В результате установлены образующие 3D упаковку каркас-образующие нанокластеры K61 и K42 (табл. 3 и 4). Двухслойный нанокластер K61 с внутренним полиэдром Фриауфа In@16(Ce₄In₁₂) и с 44 атомами Ce₄In₁₂Pd₂₈ во второй оболочке находится в позиции 4*a* (рис. 1*a*). Двухслойный нанокластер K42 с внутренним полиэдром In₈ и с 34 атомами (Ce₆Pd₄In₂₄) в оболочке находится в позиции 4*b* (рис. 1*b*). В пустотах каркаса в позициях 4*c* и 4*d* расположены In₄-тетраэдры. В качестве спейсеров фигурируют атомы Ce1 и In6.

Рис. 1. $Ce_{80}Pd_{128}In_{284}$. Нанокластерные структуры.

Самосборка кристаллической структуры Ce₈₀ Pd₁₂₈In₂₈₄-cF492

Первичная цепь. Самосборка первичных цепей происходит при связывании нанокластеров K61 с K42 в направлении [100] (рис.2). Расстояние между центрами нанокластеров соответствует половине длины вектора трансляции *a*/2 = 10.919 Å.

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей в плоскости (001) (рис. 3). На этой стадии в пустотах микрослоя происходит локализация In₄-тетраэдров, и атомов-спейсеров Ce1

Рис. 2. Се₈₀Pd₁₂₈In₂₈₄. Механизм комплементарного связывания нанокластеров K61 и K42 при образовании первичной цепи.

Рис. 3. $Ce_{80}Pd_{128}In_{284}$. Микрослой, образованный из нанокластеров K61 и K42.

Рис. 4. Се₈₀Рd₁₂₈In₂₈₄. Микрокаркас из двух микрослоев, состоящих из связанных нанокластеров К61 и К42.

и In6 (рис. 3). Расстояние между центрами кластеров из соседних цепей в направлениях [100] и [010] соответствует длинам векторов a/2 = b/2 = 10.919 Å.

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двух микрослоев в направлении [001]. Расстояние между микрослоями определяет длину вектора трансляции c/2 = 10.919 Å (рис. 4).

ЗАКЛЮЧЕНИЕ

Самосборка каркасной структуры интерметаллида $Ce_{80}Pd_{128}In_{284}$ -*cF*492 осуществляется с участием новых двухслойных нанокластеров-прекурсоров K61 = In@16(Ce₄In₁₂)@44(Ce₄In₁₂Pd₂₈) и K42 = 0@8(In₈)@34(Ce₆Pd₄In₂₄). Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из нанокластеров-прекурсоров K61 и K42 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K61 и K42, установлены In₄-тетраэдры с симметрией –43*m*, а также атомы Ce и In.

Нанокластерный анализ и моделирование самосборки кристаллических структур выполнено при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. *Sojka L., Demchyna M., Belan B., Manyako M., Kalychak Ya.* New compounds with Nd₁₁ Pd₄ In₉ structure type in the systems RE-Pd-In (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy) // Intermetallics. 2014. V. 49. P. 14–17.
- Giovannini M., Michor H., Bauer E., Hilscher G., Rogl P., Ferro R. Structural chemistry, magnetism and thermodynamic properties of R₂Pd₂In // J. Alloys Compd. 1998. V. 280. P. 26–38.
- 5. *Tursina A.I., Nesterenko S.N., Seropegin Yu.D.* Intermetallic CePdIn // Acta Crystallogr. Sect. E: Struct. Rep. Online 2004 . V. 60. P. i64–i65.
- Nesterenko S.N., Tursina A.I., Noel H., Seropegin Y.D. Single crystal investigation of Ce₆Pd₁₂In₅ // Journal of Alloys Compd. 2006. V. 426. P. 190–192.
- 7. Xue B., Hulliger F., Baerlocher C., Estermann M. The GdPt₂Sn-type crystal structure of CePd₂In // J. Alloys Compd. 1993. V. 191 P. 9–10.
- Ijiri Y., DiSalvo F.J., Yamane H. Structural, magnetic and electrical properties of the new ternary CePd In₂ // J. Solid State Chem. 1996. V. 122. P. 143–147.
- Tursina A., Nesterenko S., Seropegin Y., Noel H., Kaczorowski D. Ce₂PdIn₈, Ce₃PdIn₁₁ and Ce₅Pd₂In₁₉. Members of homological series based on AuCu₃- and PtHg₂-type structural units // Journal of Solid State Chemistry. 2013. V. 200. P. 7–12.
- Nesterenko S.N., Tursina A.I., Shtepa D.V., Noel H., Seropegin Yu.D. Single crystal investigation of the ternary indides Ce₂Pd₄In₅ and CePdIn₄ // J. Alloys Compd. 2007. V. 442. P. 93–95.
- Nesterenko S.N., Tursina A.I., Rogl P., Seropegin Yu.D. Single crystal investigation of CePd₃In₂ // J. Alloys Compd. 2004. V. 373. P. 220–222.
- Nesterenko S.N., Tursina A.I., Shtepa D.V., Noel H., Seropegin Yu.D. Single crystal investigation of the ternary indides Ce₂Pd₄In₅ and CePdIn₄ //J. Alloys Compd. 2007. V. 442. P. 93–95.
- Tursina A.I., Nesterenko S.N., Noel H., Seropegin Y.D. A new ternary indide, Ce₂₀Pd₃₆In₆₇ // Acta Crystallogr., Sect. E: Struct. Rep. Online 2005. V. 61. P. i99–i101.
- 14. Zaremba V., Rodewald U., Kal'ichak Ya.M., Galadzhun Ya.V., Kaczorowski D., Hoffmann R.D., Poettgen R. Ternary indides RE₄Pd₁₀In₂₁ (RE = La, Ce, Pr, Nd, Sm) – synthesis, structure, and physical properties // Z. Anorg. Allg. Chem. 2003. V. 629. P. 434–442.
- Nesterenko S.N., Tursina A.I., Gribanov A.V., Seropegin Y.D., Kurenbaeva J.M. Single crystal investigation of CePd₂In₄ and CePt₂In₄ compounds // J. Alloys Compd. 2004. V. 383. P. 242–244.
- Tursina A., Nesterenko S., Murashova E., Kurenbaeva Z., Seropegin Yu., Noel H., Roisnel T., Kaczorowski D. Synthesis, crystal structure and magnetic properties of the newternary indides REPd₂In₄ (RE = La, Ce, Pr, Nd) // Intermetallics. 2011. V. 19. P. 1864–1872.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. no. 7. P. 3576–3585.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 19. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.
- 20. *Pankova A.A., Blatov V.A., Ilyushin G.D., Proserpio D.M.* γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model // Inorg. Chem. 2013. V. 52. № 22. P. 13094–13107.
- 21. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Кластеры-прекурсоры для самосборки кристаллической структуры Na₉₉Hg₄₆₈-*hP*56 // Физика и химия стекла. 2019. Т.45. № 6. С. 503–509.
- 22. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новый двухслойный кластер-прекурсор K44 = = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂ для самосборки кристаллической структуры K₂₃Na₈Cd₁₂In₄₈- *hP*91 // Физика и химия стекла. 2019. Т.45. № 6. С. 510–518.
- 23. Ilyushin G.D. Intermetallic Compounds K_nM_m (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 24. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 25. Ilyushin G.D. Intermetallic Compounds Li_kM_n (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and Topological Analysis, Tetrahedral Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 2. P. 202–210.