КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЕ ДВУХСЛОЙНЫЕ КЛАСТЕРНЫЕ ПРЕКУРСОРЫ *К*57 = Li@15(Ga₆Cu₉)@41(Cu₁₅Mg₂₆) И *К*41 = 0@8(Mg₂Ga₆)@33(Li₆Mg₃Ga₂₄) В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Li₁₀Mg₃₄Cu₂₄Ga₇₁-*hP*139 И *К*5 = 0@Ca₂LiInGe В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Ca₂LiInGe₂-*oP*24

© 2023 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ²Научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия *e-mail: shevchenko@isc.nw.ru

> Поступила в редакцию 06.09.2022 г. После доработки 07.10.2022 г. Принята к публикации 27.10.2022 г.

Проведен геометрический и топологический анализ кристаллической структуры интерметаллида Li₁₀Mg₃₄Cu₂₄Ga₇₁-*hP*139 (*a* = 14.080 Å, *c* = 13.625 Å, *V* = 2339.36 Å³, *P*-6*m*2) и интерметаллида Ca₂LiInGe₂-oP24 (a = 7.251, b = 4.438, c = 16.902 Å, V = 543.9 Å³, Рпта). Для интерметаллида Li₁₀Mg₃₄Cu₂₄Ga₇₁-hP139 методом полного разложения 3D фактор-графа на кластерные структуры найдено 1319 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 9. Установлены два каркасобразующих нанокластеров $K57 = \text{Li}@15(\text{Ga}_6\text{Cu}_9)@41(\text{Cu}_{15}\text{Mg}_{26})$ с внутренним полиэдром Франка-Каспера Li@15(Ga₆Cu₉) и *K*41 = 0@8(Mg₂Ga₆) @ 33(Li₆Mg₃Ga₂₄) с внутренним полиэдром в виде гексагональной бипирамиды 0@8(Mg₂Ga₆). Центр кластера-прекурсора K57 и K41 находится в частных позициях 1f и 1c с симметрией g = -6m2. В большой полости каркаса расположены сдвоенные LiGa₁₃ – полиэдры с центром в позиции 1b. Для интерметаллида Ca₂LiInGe₂-oP24 установлен кластерпрекурсор $K5 = 0@Ca_2LiInGe$ в виде треугольной бипирамиды с атомами Li, In и Ge, лежащими в основании бипирамиды и атомами Са, являющимися вершинами бипирамиды. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*hP*139 и Ca₂LiInGe₂-*oP*24 из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.

Ключевые слова: Li₁₀Mg₃₄Cu₂₄Ga₇₁-*hP*139, Ca₂LiInGe₂-*oP*24, самосборка кристаллической структуры, кластерные прекурсоры *K*57 = Li@15(Ga₆Cu₉)@41(Cu₁₅Mg₂₆), *K*41 = 0@8(Mg₂Ga₆)@33(Li₆Mg₃Ga₂₄), *K*5 = 0@Ca₂LiInGe₂ **DOI**: 10.31857/S0132665122600650, **EDN**: CGOBLN

ВВЕДЕНИЕ

В настоящее время определены кристаллические структуры 14669 тройных интерметаллидов и 1404 четверных интерметаллидов [1, 2]. В тройных системах с участием 51 атома металла *M* происходит образование 472 Li-интерметаллидов и в четверных системах с участием 31 атома металла *M* происходит образование 55 Li-интерметаллидов.

Интерметаллид	Индекс Пирсона	Группа симметрии	Параметры элементарной ячейки, Å и градусы	$V, Å^3$
Yb ₂ LiInGe ₂ [3]	oP24	Pnma	7.182, 4.390 , 16.758	528.4
$Ca_2Li(InGe_2)$ [4]	oP24	Pnma	7.251, 4.438 , 16.902	543.9
$Sr_2Li(InGe_2)$ [4]	oP24	Pnma	7.503, 4.619 , 17.473	605.6
$(Eu_2Sr_6)Li_4Ge_{12}[5]$	oP24	Pnnm	11.078, 11.862, 4.617	583.6
$Ba_6(Mg_{4.9}Li_{3.1})Ge_{12}[6]$	mC26	<i>C</i> 2/ <i>m</i>	12.320, 4.626 , 11.499, $\beta = 91.89$	655.0
Eu ₂ (Li _{1.37} In _{0.63})Ge ₃ [7]	oC28	Cmcm	4.534 , 19.347, 7.164	628.4
$Eu_2(Li_{1.10}Mg_{0.90})Ge_3$ [7]	oC28	Cmcm	4.562 , 19.442, 7.208	639.3
$Sr_2(Li_{1.45}In_{0.55})Ge_3$ [7]	oC28	Cmcm	4.618 , 19.685, 7.260	660.0
Eu ₂ (Li _{0.9} Mg _{1.1})Sn ₃ [7]	oC28	Cmcm	4.782 , 20.717, 7.743	767.1
Sr ₂ (Li _{0.74} Mg _{1.26})Sn ₃ [7]	oC28	Cmcm	4.843 , 20.923, 7.805	790.9
Li ₄ Mg _{15.5} Zn ₁₃ Ca _{6.5} [8]	cP39	<i>Pm</i> -3	9.387, 9.387, 9.387	827.1
$Li_{13}Ba_8GaSb_{12}$ [9]	<i>mC</i> 34	C2/m	18.065, 4.941 , 13.012, $\beta = 126.73$	930.8
$Sr_{12}(Mg_{17.9}Li_{2.1})Ge_{20}$ [10]	oP52	Pnma	14.607, 4.518 , 18.634	1229.7
Ca ₈ (Mg _{1.82} Li _{1.18})Ge ₈ [11]	oP76	Pnma	21.998, 4.474 , 18.560	1826.6
(Li _{2.17} Cd _{2.83})Ba ₄ Sb ₆ [12]	oC60	Cmcm	4.886 , 21.423, 17.968	1880.7
$Li_{20.08}Mg_{11.92}Al_{6.24}Zn_{61.78}$ [13]	oC100	Cmcm	5.102, 23.477, 13.691	1639.9
$Li_{10}Mg_{34}Cu_{24}Ga_{71}$ [14]	<i>hP</i> 139	<i>P</i> -6 <i>m</i> 2	14.080, 14.080, 13.625	2339.4
LiLa ₁₁ (Ge ₄ In ₅) [15]	<i>tI</i> 84	I4/mmm	11.837, 11.837, 17.231	2414.3
LiMg Ca ₁₀ Sb ₉ [16]	<i>tP</i> 84	P4 ₂ /mnm	11.866, 11.866, 17.181	2419.0
TmLi ₂ Co ₆ Sn ₂₀ [17]	<i>cF</i> 116	Fm-3m	13.537, 13.537, 13.537	2480.7
$Li_{40}Mg_{12}Cu_{26}Al_{84}$ [18]	<i>cI</i> 162	<i>Im</i> -3	13.845, 13.845, 13.845	2653.9
Li _{1.03} Mg _{0.6} Zn _{1.78} Al _{1.59} [19]	<i>cI</i> 160	<i>Im</i> -3	13.993, 13.993, 13.993	2739.9
Na ₁₆ Cs ₈ (Li _{2.8} Ge _{133.2}) [20]	<i>cF</i> 168	Fd-3m	15.454, 15.454, 15.454	3690.7
$Li_{0.27}Mg_{0.12}Al_{0.55}Cu_{0.057}$ [21]	hP270	<i>P</i> 6 ₃ / <i>mmc</i>	14.116, 14.116, 28.235	4872.4
Li ₁₈ Cu ₅ Ga ₃₁ In ₄ [22]	cF480	Fd-3m	19.928, 19.928, 19.928	7913.9

Таблица 1. Кристаллохимические данные интерметаллидов. Выделены значения коротких векторов трансляций Å

Восемь структурных типов четверных Li-интерметаллидов с V = 528.4 - 1639.9 Å³ характеризуются небольшими значениями векторов трансляций 4.390–4.941 Å, соответствующим толщине 2D слоя и содержат в элементарных ячейках от 24 атомов в A_2 LiInGe₂-oP24 (A =Ca, Sr,Yb) до 76 в Ca₈(Mg_{1.82}Li_{1.18})Ge₈-oP76 (табл. 1) [3–22].

Девять кристаллохимически сложных структурных типов интерметаллидов содержат в элементарных ячейках от 100 атомов в $Li_{20.08}Mg_{11.92}Zn_{61.78}Al_{6.24}$ до 480 атомов в $Li_{18}Cu_5Ga_{31}In_4$ (табл. 1). Из них интерметаллид $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*hP*139 обладает самой большой последовательностью Вайкоффа из 27 кристаллографически независимых атомов. Кристаллическая структура интерметаллида $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*hP*139 в [14] представлена в виде каркаса из связанных Ga_{12} -икосаэдров, димеризованных $Li@(Cu,Mg)_{10}Ga_6$ -икосиоктаэдров, двух 15-вершинников $Li@(Cu,Mg)_9Ga_6$ и $Li@Cu_3Ga_{12}$.

В настоящей работе осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида ${\rm Li}_{10}{\rm Mg}_{34}{\rm Cu}_{24}{\rm Ga}_{71}$ -*hP*139 и Ca₂LiInGe₂-*oP*24. Для ${\rm Li}_{10}{\rm Mg}_{34}{\rm Cu}_{24}{\rm Ga}_{71}$ -*hP*139 установлены два типа каркасобразующих кластеров *K*57 и

Работа продолжает исследования [23–27] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [28], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов).

Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов для Li₁₀Mg₃₄Cu₂₄Ga₇₁-hP139 и Ca₂LiInGe₂-oP24, приведены в табл. 2 и 3.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из нанокластеров-прекурсоров образующих каркас структуры, пустоты в котором заполняют спейсеры; кластеры-прекурсоры занимают высокосимметричные позиции; набор нанокластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя — трехмерного каркаса структуры (3-й уровень).

Кристаллическая структура Li₁₀Mg₃₄Cu₂₄Ga₇₁-hP139

Параметры гексагональной ячейки: a = 14.080 Å, c = 13.625 Å, V = 2339.36 Å³. Пространственная группа P - 6m2 характеризуется элементами точечной симметрии: -6m2 (1a, 1b, 1c, 1d, 1e, 1f), 3m (2g, 2h, 2i), mm2 (3j, 3k), m (61, 6m, 6n). Порядок группы 12. Значения координационных чисел для атомов Li - 15 (2 атома), 16 (2 атома); для атомов Mg - 12 (1 атом), 16 (6 атомов); для атомов Cu - 12 (3 атома) 13 (1 атом), 14 (3 атома); для атомов Ga - 10 (1 атом), 11 (5 атомов), 12 (3 атома) (табл. 2).

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров. Установлено 1319 вариантов разложения на кластерные структуры с числом выделенных кластеров, равным 3, 4, 5, 6, 7, 8, 9 составило 4, 17, 68, 361, 557, 275, 37 соответственно. В табл. 4

Атом	Позиция	Координационные последовательности	
		N1 N2 N3 N4 N5	
Li4	6n	16 50 109 207 344	
Li5	2g	16 44 110 226 320	
Li6	1f	15 41 107 207 302	
Li7	1d	15 41 110 210 314	
Mg5	Зј	16 53 112 206 362	
Mg6	Зј	16 53 112 214 354	
Mg7	2h	16 49 106 220 353	
Mg8	6n	16 51 112 211 360	
Mg9	120	16 54 115 226 372	
Mg10	6m	12 48 111 215 352	
Mg11	2i	16 49 109 226 368	
Cul	6n	12 48 116 206 330	
Cu3	3k	12 48 121 224 340	
Cu5	6n	14 53 124 219 346	
Cu6	3k	12 50 117 207 334	
Cu8	6n	13 49 121 217 342	
Gal	120	12 49 114 201 320	
Ga2	120	11 46 113 199 318	
Ga3	6n	10 45 111 202 312	
Ga4	6n	12 47 111 201 323	
Ga5	6n	11 46 110 197 314	
Ga7	6n	12 50 111 203 333	
Ga8	61	11 45 107 199 323	
Ga9	61	11 43 105 199 324	
Ga10	3k	12 46 113 214 330	
Gall	6n	12 48 111 195 318	
Ga12	2g	11 52 115 218 335	

Таблица 2. Li₁₀Mg₃₄Cu₂₄Ga₇₁-*hP*139. Координационные последовательности атомов

приведены варианты разложения на кластерные структуры с числом выделенных кластеров, равным 3 и 4.

Определены два типа кристаллообразующих нанокластеров K57 == Li@15(Ga₆Cu₉)@41(Cu₁₅Mg₂₆) с внутренним полиэдром Франка–Каспера Li@15(Ga₆Cu₉) и $K41 = 0@8(Mg_2Ga_6)@33(Li_6Mg_3Ga_{24})$ с внутренним полиэдром в виде гексагональной бипирамиды 0@8(Mg₂Ga₆) (рис. 1*a*, 1*б*). Центры кластера-прекурсора K57 и K41находятся в частных позициях 1*f* и 1*c* с симметрией g = -6m2.

Образование димеров S_3^0 происходит при связывании нанокластеров *K*57 и *K*41 с участием атомов-спейсеров Ga3 и Ga9 (рис. 2).

Атом	Позиция	Координационные последовательности	
	позиция	N1 N2 N3 N4 N5	
Lil	4c	12 44 108 207 329	
Cal	4c	15 50 116 210 340	
Ca2	4c	15 51 121 216 342	
Gel	4c	9 47 108 203 331	
Ge2	4c	9 43 108 194 313	
In1	4c	12 49 107 208 327	

Таблица 3.	Ca ₂ LiInG	е ₂ - <i>оР</i> 24. К	ординационные последовательности атомов
------------	-----------------------	----------------------------------	---

Таблица 4. Варианты кластерного представления кристаллической структуры с 3 и 4 структурными единицами. Указан центральный атом или центр пустоты полиэдрического кластера, число его оболочек и количество атомов в каждой оболочке. Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров обозначены ZA1, ZA2, ZA3и ZA4

Три структурные единицы

ZA3(1c)(3)(0@8@33@80) ZA2(1b)(1)(0@11) Li6(2)(1@15@41)

ZA3(1c)(3) (0@8@33@80) Li6(2)(1@15@41) Li5(1)(1@16)

ZA4(1e)(3)(0@8@33@80) ZA2(1b)(1)(0@11) Li7(2)(1@15@41)

ZA4(1e)(3)(0@8@33@80) Li7(2)(1@15@41) Li5(1)(1@16)

Четыре структурные единицы

ZA3(1c)(3)(0@8@33@80) ZA2(1b)(1)(0@11) ZA1(1a)(1)(0@8) Li6(2)(1@15@41) ZA4(1e)(3)(0@8@33@80) ZA2(1b)(1)(0@11) ZA1(1a)(1)(0@8) Li7(2)(1@15@41) ZA3(1c)(3)(0@8@33@80) ZA1(1a)(1)(0@8) Li6(2)(1@15@41) Li5(1)(1@16) ZA4(1e)(3)(0@8@33@80) ZA1(1a)(1)(0@8) Li7(2)(1@15@41) Li5(1)(1@16) ZA4(1e)(3)(0@8@33@80) ZA3(1c)(1)(0@8) ZA2(1b)(1)(0@11) Li7(2)(1@15@41)ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) ZA2(1b)(2)(0@11@50) Li6(1)(1@15) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) ZA2(1b)(1)(0@11) Mg3(1)(1@14) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) ZA2(1b)(2)(0@11@50) Mg3(1)(1@14) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) ZA2(1b)(1)(0@11) Li6(2)(1@15@41) ZA4(1e)(3)(0@8@33@80) ZA3(1c)(1)(0@8) Li7(2)(1@15@41) Li5(1)(1@16) ZA4(1e)(3)(0@8@33@80) ZA3(1c)(1)(0@8) Li7(1)(1@15) Cu4(1)(1@12) ZA4(1e)(3)(0@8@33@80) ZA3(1c)(1)(0@8) Li5(1)(1@16) Cu3(1)(1@14) ZA4(1e)(3)(0@8@33@80) ZA3(1c)(1)(0@8) Cu3(1)(1@14) Cu4(1)(1@12) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) Li6(2)(1@15@41) Li5(1)(1@16) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) Li6(1)(1@15) Mg2(1)(1@13) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) Li5(1)(1@16) Mg3(1)(1@14) ZA4(1e)(1)(0@8) ZA3(1c)(3)(0@8@33@80) Mg3(1)(1@14) Mg2(1)(1@13)

Рис. 1. $Li_{10}Mg_{34}Cu_{24}Ga_{71}-hP_{139}$. Кристаллообразующий нанокластер $K57 = Li@15(Ga_6Cu_9)@41(Cu_{15}Mg_{26})$ с внутренним полиэдром Франка–Каспера Li@15(Ga_6Cu_9) (*a*) и нанокластер $K41 = 0@8(Mg_2Ga_6)@33(Li_6Mg_3Ga_{24})$ с внутренним полиэдром в виде гексагональной билирамиды $0@8(Mg_2Ga_6)$ (*b*).

При образовании первичной цепи S_3^1 связывание димеров S_3^0 осуществляется с участием атомов-спейсеров Li₇, Mg₆, Ga₃, Ga₉ (рис. 3). В первичной цепи S_3^1 расстояние между центрами димеров в направлении оси *Z* соответствует вектору трансляции *c* = = 13.625 Å.

Рис. 2. $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*hP*139. Механизм образования димера при связывании кластеров *K*57 + *K*41 с участием атомов-спейсеров Ga3, Ga9.

Образование слоя S_3^2 происходит при связывании параллельно расположенных первичных цепей (рис. 4). На этой стадии в большой полости каркаса с центром в позиции 1*b* (0. 0. 1/2) происходит локализация сдвоенных LiGa₁₃ – полиэдров. Расстояние между центрами кластеров из соседних цепей в направлениях [100] и [010] соответствует длинам векторов *a* = *b* = 14.080 Å.

Каркас структуры S_3^3 формируется при связывании слоев $S_3^2 + S_3^2$ в направлении оси *Z*.

Кристаллическая структура Ca₂LiInGe₂-oP24

Параметры ромбической ячейки: a = 7.251, b=4.438, c = 16.902 Å, V = 543.9 Å³. Пространственная группа *Pnma* характеризуется элементами точечной симметрии: g = -1(4a, 4b), m (4c). Порядок группы равен 8. В элементарной ячейке находятся 6 кристаллографически независимых атомов в плоскостях m на высоте 1/4 и 3/4 (в позициях 4c). Значения координационных чисел для атома Li = 12, атомов Ca – 15, атома In – 12 и атомов Ge – 9 (табл. 3).

Кластер-прекурсор *K*5 в виде треугольной бипирамиды с атомами Li, In и Ge лежащими в основании бипирамиды на расстояниях 2.806–2.954 Å и атомами Ca, являющимися вершинами бипирамиды (рис. 5). Центр кластера *K*5 расположен в позиции 8*d* (0.82, 0.95, 0.09).

Образование димера S_3^0 из кластеров K5 + K5 происходит с индексом связанности P = 7 (рис. 5). Атомы-спейсеры Ge1 дополнительно связывают кластеры K5 + K5 на периферии. Центр димера S_3^0 находится в позиции 4*a* с симметрией g = -1.

Рис. 3. $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*hP*139. Механизм связывания димеров *K*57 + *K*41 при образовании первичной цепи с участием атомов-спейсеров Li7, Mg6, Ga3, Ga9.

Образование первичной цепи S_3^1 происходит при связывании димеров $S_3^0 + S_3^0$ в направлении оси X (рис. 5). Центр тяжести тетрамера находится в позиции 4b с симметрией g = -1. Расстояния между димерами S_3^0 в первичной цепи S_3^1 соответствует вектору трансляции a = 7.251 Å.

Образование слоя S_3^2 происходит при связывании первичных цепей $S_3^1 + S_3^1$ с индексом связанности P = 15 в плоскости XZ. В локальном окружении димера S_3^0 находятся шесть эквивалентных димеров S_3^0 (рис. 6).

Образование каркаса S_3^3 происходит при связывании слоев $S_3^2 + S_3^2$ в направлении кратчайшей оси *Y*.

Рис. 4. Li₁₀Mg₃₄Cu₂₄Ga₇₁-*hP*139. Слой из двух первичных цепей. Показаны сдвоенные LiGa₁₃-полиэдры, расположенные в большой полости каркаса.

Рис. 5. Ca₂LiInGe₂-*oP*24. Кристаллообразующие кластеры *K*5 (слева) и первичная цепь из димеров $S_3^0 = K5 + K5$ (справа). Показаны атомы-спейсеры Ge1 участвующие в связывании димеров.

Рис. 6. Ca₂LiInGe₂-*oP*24. Слой из трех первичных цепей. В локальном окружении димера, расположенного в центре, находятся шесть димеров.

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ кристаллической структуры интерметаллида $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*h*P139 и $Ca_2LiInGe_2$ -*o*P24. Для интерметаллида $Li_{10}Mg_{34}Cu_{24}Ga_{71}$ -*h*P139 установлены два типа каркасобразующих нанокластеров *K*57 = Li@15(Ga_6Cu_9)@41(Cu_{15}Mg_{26}) с внутренним полиэдром Франка–Каспера Li@15(Ga_6Cu_9) и *K*41 = 0@8(Mg_2Ga_6)@33(Li_6Mg_3Ga_{24}) с внутренним полиэдром в виде гексагональной бипирамиды 0@8(Mg_2Ga_6). Для интерметаллида Ca_2LiInGe_2-*o*P24 установлен кластер-прекурсор *K*5 = 0@Ca_2LiInGe в виде треугольной бипирамиды с атомами Li, In и Ge, лежащими в основании бипирамиды, и атомами Ca, являющими-ся вершинами бипирамиды.

Анализ самосборки кристаллических структур выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 21-73-30019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ). Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. *You Tae-Soo, Bobev S.* Diytterbium(II) lithium indium(III) digermanide, Yb₂LiInGe₂ // Acta Crystallographica E. Structure Reports Online 2010. V. 66. P. i43.
- 4. *Mao J.-G., Xu Z.-H., Guloy A.M.* Synthesis and crystal structure of Ae₂LiInGe₂ (Ae = Ca, Sr): new Zintl phases with a layered silicate-like network // Inorg. Chem. 2001. V. 40 P. 4472–4477
- 5. *Xie Qinxing, Nesper R.* Structural and electronic characterization of $Eu_2 Li Si_3$, $Eu_2 Li Ge_3$ and $Eu_{(x)} Sr_{(2-x)}LiGe_3 // Z$. Anorg. Allg. Chem. 2006. V. 632. P. 1743–1751.
- Zuercher F., Nesper R. Crystal structure of hexabarium pentamagnesium trilithiumdodecagermanide, Ba₆ Mg_{4.9} Li_{3.1} Ge₁₂ // Zeitschrift fuer Kristallographie – New Crystal Structures. 2001. V. 216. P. 505–506.
- You Tae-Soo, Bobev S. cis-trans Germanium chains in the intermetallic compounds ALi_{(1-x})In_(x)Ge₂ and A₂(Li_(1-x)In_(x))₂Ge₃ (A = Sr, Ba, Eu) – experimental and theoretical studies // J. Solid State Chemistry. 2010. V. 183. P. 2895–2902.
- Remennik S., Xu Chun Jie, Brant R., Meshi L., Shechtman D. Crystal structure of a new quaternary Mg-Zn-Ca-Li phase // Intermetallics 2012. V. 22. P. 62–67.
- 9. Todorov I., Sevov S.C. Synthesis and characterization of Na₂Ba₄Ga₂Sb₆ and Li₁₃Ba₈GaSb₁₂ // Zeitschrift fuer Kristallographie. 2006. V. 221. P. 521-526.
- Zuercher F., Nesper R. Crystal structure of dodecastrontium octadecamagnesium dilithiumeicosagermanide, Sr₁₂Mg_{17.9}Li_{2.1}Ge₂₀ // Z. Kristallogr. New Cryst. Struct. 1999. V. 214. P. 411–412.
- Zuercher F., Nesper R. Crystal structure of octacalcium dimagnesium monolithium octasilicide Ca₈Mg_{2.0}Li_{1.0}Si₈ and octacalcium dimagnesium monolithiumoctagermanide Ca₈Mg_{1.82}Li_{1.18}Ge₈ // Z. Kristallogr. New Cryst. Struct. 2001. V. 216. P. 507–509.
- Makongo Julien P.A., You Tae-Soo, He Hua, Suen Nian-Tzu, Bobev Svilen. New lithium-containing pnictides with 1-d infinite chains of supertetrahedral clusters: synthesis, crystal and electronicstructure of Ba₄Li₂Cd₃Pn₆ (Pn = P, As and Sb) // European J. Inorganic Chemistry. 2014. V. 2014. P. 5113–5124.
- Lee Chishen, Miller G.J. Li₁₀Mg₆Zn₃₁Al a new intermetallic phase containing buildingblocks for decagonal quasicrystals // Angew. Chem. Int. ed. 2001. V. 40. P. 4740–4742.
- Lin Qisheng, Corbett J.D. Li_{14.7}Mg_{36.8}Cu_{21.5}Ga₆₆: An intermetallic representative of a type IV clathrate // Inorg. Chem. 2008. V. 47 P. 10825-831.
- 15. Jeon Beom-Yong, Jeon Jieun, Lee Junseong, Kim Jongsik, You Tae-Soo. Experimental and theoretical investigations for site preference and anisotropic size change of RE₁₁Ge₄In_{6 x}M_x (RE = La, Ce; M = Li, Ge; x = 1, 1.96) // J. Alloys Compd. 2015. V. 620. P. 269–276.
- 16. Ganguli A.K., Gupta S., Corbett J.D. New tetragonal structure type for A₂Ca₁₀Sb₉ (A = Li, Mg). Electronicvariability around a Zintl phase // Inorganic Chemistry 2006. V. 45. P. 196–200.

- Stetskiv Andrij, Rozdzynska-Kielbik Beata, Pavlyuk Volodymyr. Tm_{2.22}Co₆Sn₂₀ and TmLi₂Co₆Sn₂₀ stannides as disordered derivatives of the Cr₂₃C₆ structure type // Acta Crystallographica C. 2013. V. 69. P. 683–688.
- Pavlyuk Nazar, Dmytriv Grygoriy, Pavlyuk Volodymyr, Ehrenberg Helmut. Li₂₀Mg₆Cu₁₃Al₄₂: a new ordered quaternary superstructure to the icosahedral T-Mg₃₂(Zn,Al)₄₉ phase with fullerene-like Al₆₀ cluster. // Acta Crystallographica, Section B: Structural Science, Crystal Engineering and Materials 2019. V. 75. P. 168–174.
- Lee Chishen, Miller G.J. Experimental and theoretical studies of elemental site preferences in quasicrystalline approximants (r-phases) within the Li-Mg-Zn-Al system // Inorg. Chem. 2001. V. 40. P. 338-345.
- Boehme Bodo, Wei Kaya, Bobnar Matej, Prots Yurii, Burkhardt Ulrich, Baitinger Michael, Nolas George S., Grin Yuri. A type-II clathrate with a Li–Ge framework. Space Group: F d –3 m Z->F d –3 m. // Zeitschrift fuer Kristallographie – Crystalline Materials 2017. V. 232 P. 543–556.
- Le Bail A., Leblanc M., Audier M. Crystalline phases related to the icosahedral Al-Li-Cu phase: A single-crystal X-ray diffraction study of the hexagonal Z – Al₅₉Cu₅Li₂₆Mg₁₀ phase. //Acta Crystallographica B. 1991. V. 47. P. 451–457.
- Chahine A., Tillard-Charbonnel M., Belin C. Crystal structure of lithium copper gallium indium (18/5/31/4), Li₈Cu₅ Ga₃₁In₄. // Z. Kristallogr. New Cryst. Struct. 1995. V. 210. P. 80–80.
- 23. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый кластер-прекурсор K65 = 0@3@20@42 для самосборки кристаллической структуры Sc₉₆Mg₈Zn₆₀₀-cP704 // Физика и химия стекла. 2022. Т. 42. № 2. С. 94–99.
- 24. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 25. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.
- 26. Ilyushin G.D. Intermetallic Compounds K_nM_m (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 27. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 28. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.