ПРОГНОЗ КРИСТАЛЛИЗУЮЩИХСЯ ФАЗ И МОДЕЛИРОВАНИЕ ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ CaO-MgO-SiO₂

© 2023 г. И. К. Гаркушин¹, О. В. Лаврентьева^{1, *}, А. М. Штеренберг¹

¹Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия *e-mail: olavolga1965@gmail.com

> Поступила в редакцию 08.04.2022 г. После доработки 26.05.2022 г. Принята к публикации 07.12.2022 г.

Построено древо фаз изученной ранее системы CaO–MgO–SiO₂, включающее три цикла и представленные пятнадцатью симплексами, разделяющимися между собой пятнадцатью стабильными секущими. В системе отмечено образование шести двойных и четырех тройных соединений конгруэнтного и инконгруэного плавления. На основании древа фаз с учетом данных по элементам огранения проведен прогноз кристаллизующихся фаз в стабильных секущих и в фазовых вторичных треугольниках. Для фигуративных точек состава, отвечающих пересечениям стабильных и нестабильных секущих, на основе термодинамических данных описано химическое взаимодействие. Показано, что тройные соединения могут быть синтезированы по нескольким реакциям.

Ключевые слова: трехкомпонентная система, оксиды, древо фаз, разбиение, стабильные и нестабильные секущие, тройные соединения, твердые растворы, прогноз **DOI**: 10.31857/S0132665122100109, **EDN**: NOTQMS

ВВЕДЕНИЕ

Тройная система CaO-MgO-SiO₂ включает важные в прикладном отношении двухкомпонентные системы. В системе CaO-SiO₂ образуется ряд двойных соединений, входящих во многие силикатные материалы – портландцементные клинкеры, огнеупоры, шлаки горной металлургии в виде минералов ранкита $3CaO-2SiO_2$, бредита $\alpha'-2CaO-SiO_2$, ларнита β -2CaO-SiO₂, псевдоволластонита α -CaO-SiO₂, волластонита β -CaO-SiO₂. В системе MgO-SiO₂ ортосиликат магния Mg₂SiO₄ (форстерит) является основной фазой в форстеритовых огнеупорах [1, 2].

Фазовые соотношения и проекция политермы кристаллизации на треугольник составов системы CaO-MgO-SiO₂, а также фазовые равновесия в субсолидусной области сечения $Mg_2Si_2O_6$ -CaMgSi₂O₆ при атмосферном давлении приведены в работах [1, 3–5]. Данные по ликвидусу тройной системы необходимы для технологии белокаменного литья и ситаллов, технологии основных огнеупоров, металлургических шлаков [1, 2], а также для формирования биоактивного стекла с помощью микроволновой энергии [6].

Данные по системе CaO-MgO-SiO₂ используются для термодинамического моделирования и экспериментального исследования четырехкомпонентных систем (CaO-MgO-SiO₂-NiO [7], CaO-Al₂O₃-SiO₂-MgO [8–10]), пятикомпонентных систем (CaO–SiO₂–MgO–Al₂O₃–TiO₂ [11–15]). Исследовано распределение кальция и магния между кремнием и шлаками при 1600°С в системе CaO–MgO–SiO₂ [16], проведена термодинамическая оценка фазовых диаграмм и оксидных фаз [3, 17]. Вязкость смесей жидких силикатных систем на основе структурной модели оценена в работах [18–20]. Также проводится моделирование и оценка плотности смесей системы CaO– MgO–SiO₂–Al₂O₃ [21, 22]. Выполнено исследование формирования гидроксилапатита на стеклах системы CaO–MgO–SiO₂ с добавками B₂O₃, Na₂O, P₂O₅ и CaF₂ [23].

Однако, при практически полностью изученном ликвидусе системы CaO-MgO-SiO₂, полученном в результате многолетних исследований, не построено древо фаз. Представленная работа посвящена построению древа фаз, которое позволяет провести прогноз кристаллизующихся фаз в стабильных и секущих элементах системы. В работе проведено термодинамическое моделирование химического взаимодействия, на основе которого тройные соединения и смеси могут быть получены при различном сочетании исходных веществ.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Термические и термодинамические свойства индивидуальных веществ, двойных и тройных соединений системы $CaO-MgO-SiO_2$ представлены в табл. 1 [24]. Максимальную температуру плавления имеет MgO, минимальную – SiO₂. Из двойных соединений минимальная температура плавления характерна для соединения $3CaO\cdot2SiO_2$, максимальная – для $2CaO\cdotSiO_2$. Из тройных соединений при минимальной температуре плавится $CaO\cdotMgO\cdot2SiO_2$. Максимальную температуру плавления имеет тройное соединение $3CaO\cdotMgO\cdot2SiO_2$. Характеристики двухкомпонентных систем, ограняющих тройную систему, приведены в табл. 2.

В тройной системе образуется четыре тройных соединения (рис. 1), из которых два – CaO·MgO·2SiO₂ (T₁) и 2CaO·MgO·2SiO₂ (T₂) – конгруэнтного типа плавления, а два соединения – 3CaO·MgO·2SiO₂ (T₃) и CaO·MgO·SiO₂ (T₄) – инконгруэнтного плавления.

Методика построения древа фаз и описания основных реакций химического взаимодействия приведена в работе [8]. Древо фаз, построенное на основе данных [1], включает в качестве симплексов 15 вторичных фазовых треугольников, которые соединяются между собой пятнадцатью стабильными секущими (рис. 2). Совпадение числа стабильных секущих и числа вторичных треугольников связано с образованием в древе фаз трех циклов: $C_2...C_{11}$ (связан стабильной секущей T_1-T_2); $C_2...C_{11}...C_{15}...C_4$ (связан стабильными секущими T_1-T_2 , T_3-T_2), $C_{12}...C_{15}$ (связан стабильной секущей T_2-T_4). Линейная часть древа фаз представлена симплексами $C_1...C_3$.

Для прогноза кристаллизующихся фаз, кроме характеристик двойных систем, рассмотрим данные по фазовым диаграммам стабильных секущих [1].

 $CaSiO_3-Ca_2MgSi_2O_7$ – образуются ограниченные (граничные) твердые растворы (OTP) на основе $CaSiO_3$ и $Ca_2MgSi_2O_7$;

 $CaMgSiO_4 - Mg_2SiO_4 - OTP$ на основе $CaMgSiO_4$ и Mg_2SiO_4 ;

 $CaMgSiO_4 - Ca_3MgSi_2O_8 - OTP$ на основе $Ca_3MgSi_2O_8$;

 Ca_2SiO_4 - $Ca_3MgSi_2O_8$ - OTP на основе Ca_2SiO_4 .

В табл. 3 приведен прогноз кристаллизующихся фаз в стабильных и секущих элементах древа фаз. Как видно из табл. 3, на большинстве стабильных секущих и в стабильных треугольниках присутствуют граничные твердые растворы (ОТР).

В результате нанесении нестабильных секущих (рис. 1) получен ряд пересечений со стабильными секущими. Для смесей, отвечающих пересечениям, опишем химическое взаимодействие с учетом термодинамических данных табл. 1. Стабильным секущим отвечает несколько нестабильных секущих, что видно из рис. 1 и табл. 3. Поэтому

Вещество	Температура плавления, °С	Энтальпия образования $\Delta_{\!f} H_{298}^\circ$, кДж/моль	Энергия Гиббса $\Delta_f G_{298}^{\circ}$, кДж/моль
CaO	2627 ± 30	-635.089 ± 0.962	-603.475
MgO	2825 ± 25	-601.491 ± 0.292	-569.254
SiO ₂	1728	-910.940 ± 1.422	-856.669
$3CaO \cdot SiO_2 (D_1)$ (Ca ₃ SiO ₅)	2070 ± 20	-2930.473 ± 2.928	-2785.104
$\begin{array}{l} 2\text{CaO}\cdot\text{SiO}_2 \left(\text{D}_2\right) \\ (\text{Ca}_2\text{SiO}_4) \end{array}$	2130 ± 20	-2316.680 ± 4.184	-2200.018
$3CaO \cdot 2SiO_2 (D_3)$ $(Ca_3Si_2O_7)$	1464 ± 5	-3956.306 ± 4.184	-3756.729
$CaO·SiO_2 (D_4)$ (CaSiO ₃)	1544 ± 5	-1635.232 ± 1.673	-1549.598
$\begin{array}{l} MgO \cdot SiO_2 (D_5) \\ (MgSiO_3) \end{array}$	1560 ± 5	-1548.916 ± 1.673	-1462.098
$\begin{array}{c} 2MgO\cdot SiO_2 (D_6) \\ (Mg_2SiO_4) \end{array}$	1877 ± 10	-2171.914 ± 2.092	-2052.929
$\begin{array}{l} CaO\cdot MgO\cdot 2SiO_2\left(T_1\right)\\ (CaMgSi_2O_6) \end{array}$	1392 ± 2	-3202.684 ± 4.184	-3028.534
$\begin{array}{l} 2\text{CaO·MgO·2SiO}_2 \left(\text{T}_2\right) \\ (\text{Ca}_2\text{MgSi}_2\text{O}_7) \end{array}$	1454 ± 5	-3877.145 ± 3.430	-3679.786
$3CaO \cdot MgO \cdot 2SiO_2 (T_3)$ $(Ca_3MgSi_2O_8)$	1575 ± 5	-4567.421 ± 1.757	-4340.197
$CaO \cdot MgO \cdot SiO_2 (T_4)$ (CaMgSiO ₄)	1490	-2263.041 ± 0.292	-2145.454 ± 3.054

Таблица 1. Характеристика исходных веществ и соединений

Cuerrante	Характер точки	Содержание компонентов, мас. %			Температура
Система		CaO	SiO ₂	MgO	плавления, °С
CaO–SiO ₂	Эвтектика	69.5	30.5	_	2050
	Дистектика	65.0	35.0	_	2130
	Перитектика	73.6	26.4	_	2079
	Перитектика	58.2	41.8	_	1464
	Эвтектика	54.5	45.5	_	1455
	Дистектика	48.2	51.8	_	1544
	Эвтектика	37.0	63.0	_	1435
	Монотектика	0.6	99.4	_	1698
MgO–SiO ₂	Эвтектика	-	37.0	63.0	1850
	Дистектика	_	42.9	57.1	1890
	Перитектика	-	62.5	37.5	1557
	Эвтектика	-	65.0	35.0	1543
	Монотектика		99.2	0.8	1695
СаО–MgO OTP CaO (17 мас. %) + + OTP MgO (7.8 мас. %)	Эвтектика	67.0	_	33.0	2370

Таблица 2. Данные по точкам нонвариантных равновесий в двухкомпонентных системах [1]

Рис. 1. Фазовый комплекс системы (составы – в молярных концентрациях эквивалентов; \bigcirc – тройные соединения конгруэнтного плавления (T₁, T₂); • – тройные соединения инконгруэнтного плавления (T₃, T₄)).

тройные соединения можно получить по следующим реакциям в случае термодинамического подтверждения (табл. 4): $Ca_3MgSi_2O_8 - 19$, 20, 47, 48, 49; $CaMgSiO_4 - 50$, 51, 53; $CaMgSi_2O_6 - 54$, 55; $Ca_2MgSi_2O_7 - 18$, 21, 52, 58.

Анализ табл. 4 показывает, что не только тройные соединения, но и смеси одинаковых веществ можно получить из различного сочетания исходных веществ. Например, MgO и Ca₃SiO₅ получается, согласно расчета, из смесей, приведенных в реакциях 1, 2, 3, 7, 8, 10, 22. Соединения Ca₂SiO₄ и MgO получаются по реакциям 4, 5, 9, 23, 26, 27, 30. Аналогично можно проследить получение одинаковых смесей и для других реакций из табл. 4. Некоторые реакции (11, 19, 20, 21, 23, 43, 47, 49, 51, 52, 54, 55) приведены ранее в работе [1]. $\Delta_r H_{298}^{\circ}$ и $\Delta_r G_{298}^{\circ}$ для них рассчитаны. Практически многие реакции имеют $\Delta_r G_{298}^{\circ} < 0$, что подтверждают данные табл. 4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Фазовый комплекс системы (рис. 1) и древо фаз (рис. 2) позволили провести прогноз кристаллизующихся фаз в стабильных секущих и вторичных стабильных треугольниках с учетом данных по бинарным системам и тройным соединениям. Для смесей, отвечающих точкам пересечения стабильных и нестабильных секущих, приведены уравнения возможных реакций и выполнен термодинамический расчет для стандартных условий (табл. 4).

Рис. 2. Древо фаз системы CaO-MgO-SiO₂.

Элемент древа фаз	Прогноз кристаллизующихся фаз	
Секущие элементы		
MgO-3CaO·SiO ₂ (MgO-D ₁)	$OTP(MgO) + D_1$	
MgO-2CaO·SiO ₂ (MgO-D ₂)	$OTP(MgO) + D_2$	
$2CaO \cdot SiO_2 - 3CaO \cdot MgO \cdot 2SiO_2(D_2 - T_3)$	$D_2 + OTP(T_3)$	
$2CaO \cdot SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(D_2 - T_2)$	$D_2 + T_2$	
$3CaO \cdot 2SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(D_3 - T_2)$	$D_3 + T_2$	
$CaO \cdot SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(D_4 - T_2)$	$OTP(D_4) + T_2$	
$CaO·SiO_2-CaO·MgO·2SiO_2(D_4-T_1)$	$OTP(D_4) + T_1$	
SiO_2 -CaO·MgO·2SiO ₂ (SiO ₂ -T ₁)	$SiO_2 + OTP(T_1)$	
$MgO \cdot SiO_2 - CaO \cdot MgO \cdot 2SiO_2(D_5 - T_1)$	$OTP(D_5) + OTP(T_1)$	
$2MgO \cdot SiO_2 - CaO \cdot MgO \cdot 2SiO_2(D_6 - T_1)$	$OTP(D_6) + OTP(T_1)$	
$CaO \cdot MgO \cdot SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(T_1 - T_2)$	$OTP(T_1) + T_2$	
$2MgO \cdot SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(D_6 - T_2)$	$OTP(D_6) + T_2$	
$2MgO \cdot SiO_2 - CaO \cdot MgO \cdot SiO_2(D_6 - T_4)$	$OTP(D_6) + OTP(T_4)$	
$MgO-CaO MgO 2SiO_2(MgO-T_4)$	$OTP(MgO) + OTP(T_4)$	
$3CaO MgO 2SiO_2 - CaO MgO SiO_2(T_3 - T_4)$	$OTP(T_3) + OTP(T_4)$	
$2CaO MgO 2SiO_2 - CaO MgO SiO_2(T_2 - T_4)$	$T_2 + OTP(T_4)$	
$3CaO \cdot MgO \cdot 2SiO_2 - 2CaO \cdot MgO \cdot 2SiO_2(T_3 - T_4)$	$OTP(T_3) + OTP(T_4)$	
Стабильные	греугольники	
MgO–CaO–D ₁	$OTP(MgO) + OTP(CaO) + D_1$	
MgO-D ₁ -D ₂	$OTP(MgO) + D_1 + D_2$	
MgO-D ₂ -D ₃	$OTP(MgO) + D_2 + D_3$	
$D_2 - T_2 - T_3$	$D_2 + T_2 + OTP(T_3)$	
$D_2 - D_3 - T_2$	$D_2 + D_3 + T_2$	
$D_3 - D_4 - T_2$	$D_3 + D_4 + T_2$	
$D_4 - T_1 - T_2$	$OTP(D_4) + T_1 + T_2$	
$D_4 - T_1 - SiO_2$	$OTP(D_4) + T_1 + SiO_2$	
$D_5 - T_1 - SiO_2$	$OTP(D_5) + T_1 + SiO_2$	
$D_5 - D_6 - T_1$	$OTP(D_5) + OTP(D_6) + OTP(T_1)$	
$D_6 - T_1 - T_2$	$OTP(D_6) + T_1 + T_2$	
$D_6 - T_2 - T_4$	$OTP(D_6) + T_2 + OTP(T_4)$	
D ₆ -MgO-T ₄	$OTP(D_6) + OTP(MgO) + OTP(T_4)$	
T ₃ -T ₄ -MgO	$OTP(T_3) + OTP(T_4) + OTP(Mg)$	
$T_2 - T_3 - T_4$	$T_2 + OTP(T_3) + OTP(T_4)$	

Таблица 3. Прогноз кристаллизующихся фаз в секущих и стабильных элементах древа фаз

Из рис. 1 видно, что стабильные секущие имеют пересечения с несколькими нестабильными секущими: MgO–D₁ (на рисунке – точки эквивалентности 1, 2, 3); MgO–D₂ (4...12); D₂–T₃ (24, 25); D₂–T₂ (13, 27, 42); D₃–T₂ (19, 20, 41); D₆–T₁ (32...34); T₁–T₂ (29); D₆–T₂ (30, 31, 35); D₆–T₄ (36); MgO–T₄ (22, 23); T₃–T₄ (26); T₂–T₄ (21); T₂–T₃ (27, 38); D₄–T₁ (39, 40). Для стабильных секущих SiO₂–T₁, D₅–T₁ подобные пересечения отсутствуют. Максимальное число пересечений – девять – отмечается для стабильной се-

N⁰	Уравнение реакции (точка на рис. 1)	Тепловой эффект реакций	Энергия Гиббса реакций
		$(-\Delta_r H_{298}^\circ)$, кДж	$(-\Delta_r G_{298}^\circ),$ кДж
1	$3CaO + Ca_3MgSi_2O_8 = MgO + 2Ca_3SiO_5(1)$	-9.830	-11.160
2	$5CaO + CaMgSi_2O_6 = MgO + 2Ca_3SiO_5(1)$	84.008	93.553
3	$4\text{CaO} + \text{Ca}_2\text{MgSi}_2\text{O}_7 = \text{MgO} + 2\text{Ca}_3\text{SiO}_5(1)$	44.936	45.777
4	$CaO + Ca_3MgSi_2O_8 = MgO + 2Ca_2SiO_4 (8)$	32.341	25.618
5	$2CaO + Ca_2MgSi_2O_7 = MgO + 2Ca_2SiO_4 (8)$	87.588	82.554
6	$3CaO + CaMgSi_2O_6 = MgO + 2Ca_2SiO_4 (8)$	126.9	130.331
7	$3CaO + MgSiO_3 = Ca_3SiO_5 + MgO(2)$	77.781	81.835
8	$2CaO + CaMgSiO_4 = Ca_3SiO_5 + MgO(2)$	-1.255	-1.554
9	$2CaO + MgSiO_3 = Ca_2SiO_4 + MgO (11)$	99.077	100.224
10	$2CaO + CaMgSiO_3 = Ca_3SiO_5 + MgO(2)$	1.255	-1.954
11	$CaO + MgSiO_3 = CaMgSiO_4 (14)$	79.036	79.881
12	$3CaO + 2MgSiO_3 = MgO + Ca_3MgSi_2O_8$ (16)	165.813	174.83
13	$CaO + 2CaMgSiO_4 = MgO + Ca_3MgSi_2O_8$ (16)	7.741	15.068
14	$2CaMgSiO_4 + MgSiO_3 = Mg_2SiO_4 + Ca_2MgSi_2O_7 (31)$	-25.939	-20.291
15	$CaMgSiO_4 + 2MgSiO_3 = Mg_2SiO_4 + Ca_2MgSi_2O_6 (34)$	13.725	11.813
16	$2CaO + 3MgSiO_3 = Mg_2SiO_4 + Ca_2MgSi_2O_7 (31)$	132.159	139.471
17	3CaO + 3 MgSiO ₃ = Mg ₂ SiO ₄ + Ca ₃ MgSi ₂ O ₈ (16)	187.320	196.407
18	$CaO + CaMgSi_2O_6 = Ca_2MgSi_2O_7 (T_2)$	39.372	47.777
19	$2CaO + CaMgSi_2O_6 = Ca_3MgSi_2O_8 (T_3)$	94.559	104.713
20	$CaO + Ca_2MgSi_2O_7 = Ca_3MgSi_2O_8 (T_3)$	55.187	56.939
21	$CaMgSi_2O_6 + Ca_3MgSi_2O_8 = 2Ca_2MgSi_2O_7 (T_2)$	15.815	9.159
22	$3\text{CaO} + \text{Mg}_2\text{SiO}_4 = \text{Ca}_3\text{SiO}_5 + 2\text{MgO}(3)$	56.271	60.258
23	$2CaO + Mg_2SiO_4 = Ca_2SiO_4 + 2MgO(12)$	77.570	78.647
24	$3CaO + 2Mg_2SiO_4 = Ca_3MgSi_2O_8 + 3MgO(18)$	122.799	132.950
25	$CaO + Mg_2SiO_4 = CaMgSiO_4 + MgO (23)$	57.529	58.304
26	$Ca_{3}SiO_{5} + Ca_{3}MgSi_{2}O_{8} = 3Ca_{2}SiO_{4} + MgO(6)$	53.637	44.007
27	$2Ca_{3}SiO_{5} + Ca_{2}MgSi_{2}O_{7} = 4Ca_{2}SiO_{4} + MgO(5)$	130.120	119.332
28	$2Ca_{3}SiO_{5} + MgSiO_{3} = 3Ca_{2}SiO_{4} + MgO(7)$	141.669	137.002
29	$Ca_{3}SiO_{5} + CaMgSiO_{4} = 2Ca_{2}SiO_{4} + MgO(9)$	41.337	38.732
30	$2Ca_3SiO_5 + 2MgSiO_3 = 3Ca_2SiO_4 + 2MgO (7)$	120.162	115.425
31	$2Ca_{3}SiO_{5} + CaMgSi_{2}O_{6} = 2Ca_{2}SiO_{4} + Ca_{3}MgSi_{2}O_{8}$ (24)	137.151	141.491
32	$Ca_{3}SiO_{5} + CaMgSi_{2}O_{6} = Ca_{2}MgSi_{2}O_{7} + Ca_{2}SiO_{4} (42)$	750.944	726.577
33	$SiO_2 + Ca_2MgSi_2O_7 = CaSiO_3 + CaMgSi_2O_6$ (39)	49.831	41.877
34	$Ca_{3}SiO_{5} + 2CaMgSi_{2}O_{6} = CaSiO_{3} + 2Ca_{2}MgSi_{2}O_{7} (20)$	53.681	66.998
35	$Ca_{3}SiO_{5} + Ca_{2}MgSi_{2}O_{7} = Ca_{2}SiO_{4} + Ca_{3}MgSi_{2}O_{8} (24)$	76.483	75.325
36	$2Ca_{3}SiO_{5} + 4MgSiO_{3} = 3Ca_{2}MgSi_{2}O_{7} + MgO (21)$	179.316	190.012
37	$2\mathrm{SiO}_2 + \mathrm{Ca}_3\mathrm{MgSi}_2\mathrm{O}_8 = 2\mathrm{Ca}\mathrm{SiO}_3 + \mathrm{Ca}\mathrm{MgSi}_2\mathrm{O}_6(40)$	83.847	74.195
38	$Ca_{3}SiO_{5} + 2MgSiO_{3} = Ca_{2}MgSi_{2}O_{7} + CaMgSiO_{4} (26)$	111.881	115.940
39	$2Ca_{3}SiO_{5} + 5MgSiO_{3} = 3Ca_{2}MgSi_{2}O_{7} + Mg_{2}SiO_{4} (30)$	197.818	211.589
40	$SiO_2 + Ca_3MgSi_2O_8 = CaSiO_3 + Ca_2MgSi_2O_7$ (41)	34.016	32.518

Таблица 4. Уравнения реакций, тепловые эффекты и энергия Гиббса

N⁰	Уравнение реакции (точка на рис. 1)	Тепловой эффект реакций	Энергия Гиббса реакций
		$(-\Delta_r H_{298}^\circ)$, кДж	$(-\Delta_r G_{298}^\circ),$ кДж
41	$Ca_{3}SiO_{5} + 3CaMgSiO_{4} = 2Ca_{3}MgSi_{2}O_{8} + MgO(15)$	16.373	28.182
42	$Ca_{3}SiO_{5} + Mg_{2}SiO_{4} = Ca_{3}MgSi_{2}O_{8} + MgO (17)$	66.525	71.418
43	$Ca_3SiO_5 + 2Mg_2SiO_4 = 3CaMgSiO_4 + MgO(22)$	116.313	114.654
44	$Ca_{3}Si_{2}O_{7} + Ca_{3}MgSi_{2}O_{8} = 2Ca_{2}SiO_{4} + Ca_{2}MgSi_{2}O_{7}$ (13)	-13.222	-17.104
45	$Ca_{3}Si_{2}O_{7} + CaMgSiO_{4} = Ca_{2}SiO_{4} + Ca_{2}MgSi_{2}O_{7} (27)$	-25.522	-22.379
46	$Ca_{3}Si_{2}O_{7} + CaMgSi_{2}O_{6} = 2CaSiO_{3} + Ca_{2}MgSi_{2}O_{7} (19)$	-11.381	-6.281
47	$Ca_2SiO_4 + CaMgSiO_4 = 2Ca_3MgSi_2O_8(T_3)$	-12.300	-5.275
48	$Ca_3Si_2O_7 + MgO = Ca_3MgSi_2O_8 (T_3)$	1035.457	985.839
49	$3Ca_2SiO_4 + Mg_2SiO_4 = 2Ca_3MgSi_2O_8 (T_3)$	12.888	27.411
50	$Ca_2SiO_4 + Mg_2SiO_4 = 2CaMgSiO_4 (T_4)$	37.488	37.961
51	$CaSiO_3 + MgO = CaMgSiO_4 (T_4)$	26.318	26.602
52	$2\text{CaSiO}_3 + \text{MgO} = \text{Ca}_2\text{MgSi}_2\text{O}_7 (\text{T}_2)$	5.190	11.336
53	$CaO + MgSiO_3 = CaMgSiO_4 (T_4)$	78.650	79.881
54	$CaMgSiO_4 + SiO_2 = CaMgSi_2O_6 (T_1)$	28.703	26.411
55	$CaSiO_3 + MgSiO_3 = CaMgSi_2O_6 (T_1)$	18.536	16.838
56	$3MgO + 2CaMgSi_2O_6 = 2Mg_2SiO_4 + Ca_2MgSi_2O_7 (15)$	11.132	20.814
57	$2MgO + CaMgSi_2O_6 = Mg_2SiO_4 + CaMgSiO_4 (36)$	29.289	31.341
58	$CaMgSi_{2}O_{6} + Ca_{3}MgSi_{2}O_{8} = 2Ca_{2}MgSi_{2}O_{7} (T_{2})$	-15.215	-9.459
59	$2SiO_2 + 3Ca_3MgSi_2O_8 = Ca_3Si_2O_7 + 3Ca_2MgSi_2O_7$ (28)	63.598	61.827
60	$Ca_{3}Si_{2}O_{7} + 2CaMgSiO_{4} = Ca_{2}MgSi_{2}O_{7} + Ca_{3}MgSi_{2}O_{8} (38)$	-37.822	-27.654
61	$Ca_{3}SiO_{5} + Ca_{2}MgSi_{2}O_{7} = Ca_{2}SiO_{4} + Ca_{3}MgSi_{2}O_{8} (25)$	76.483	75.325
62	$3\text{CaSiO}_3 + \text{Mg}_2\text{SiO}_4 = \text{CaMgSi}_2\text{O}_6 + \text{Ca}_2\text{MgSi}_2\text{O}_7 (29)$	22.190	6.597
63	$2Ca_{3}SiO_{5} + 5MgSiO_{3} = 3Ca_{2}MgSi_{2}O_{7} + Mg_{2}SiO_{4} (33)$	198.423	211.589
64	$MgO + 2CaMgSi_2O_6 = 2Mg_2SiO_4 + Ca_2MgSi_2O_7$ (35)	11.132	20.814
65	$CaSiO_3 + Ca_3MgSi_2O_8 = Ca_2SiO_4 + Ca_2MgSi_2O_7 (37)$	-8.828	-9.991
66	$SiO_2 + Ca_2MgSi_2O_7 = CaSiO_3 + CaMgSi_2O_6$ (39)	49.931	41.677

Таблица 4. Окончание

кущей $MgO-D_2$. Это означает, что возможны девять реакций, в результате которых получаются смеси различного содержания на стабильной секущей. Какая из реакций протекает в первую очередь определяется, прежде всего, термодинамическим расчетом, а также, по-видимому, кинетикой взаимодействия смесей.

Рассмотрим нестабильную секущую CaO-Mg₂SiO₄ (D₆), которая пересекается со стабильными секущими MgO-Ca₃SiO₅ (точка 3), MgO-Ca₂SiO₄ (точка 12), MgO-Ca₃MgSi₂O₈ (точка 18) и MgO-CaMgSiO₄ (точка 23). Этим пересечениям в табл. 4 соответствуют реакции 22...25. Максимальный тепловой эффект отвечает реакции 24 ($\Delta_r H_{298}^{\circ} = -122.705$ кДж). Поэтому при смешивании соединений CaO и Mg₂SiO₄ возможно сначала образование смеси MgO + Ca₃MgSi₂O₈.

ЗАКЛЮЧЕНИЕ

Построено древо фаз, включающих 15 стабильных треугольников, соединяющихся между собой пятнадцатью стабильными секущими, и включающее, кроме линейной части, три цикла. С учетом данных элементов огранения и некоторым данным внутри тройной системы на основе древа фаз проведен прогноз кристаллизующихся фаз в секущих и стабильных элементах системы. Для точек эквивалентности, полученных пересечением нестабильных секущих со стабильными, описаны реакции химического взаимодействия и приведен расчет возможности их протекания по стандартным значениям тепловых эффектов и энергий Гиббса. Данные табл. 4 показывают, что тройные соединения и некоторые смеси можно получить из различных сочетаний исходных веществ.

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бережной А.С. Многокомпонентные системы оксидов. Киев: Наукова думка, 1970. 544 с.
- Carlson W.D. Reversed pyroxene phase-equilibria in CaO-MgO-SiO₂ from 925-degrees to 1,175degrees-C at one atmosphere pressure // J. Contributions to Mineralogy and Petrology. 1986. V. 92. № 2. P. 218-224.
- 3. Jung I.H., Decterov S.A., Pelton A.D. Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO₂ system // J. Eur. Ceram. Soc. 2005. V. 25. № 4. P. 313–333.
- 4. *Carlson W.D.* Subsolidus phase-equilibria on the forsterite-saturated join Mg₂Si₂O₆−CaMgSi₂O₆ at atmospheric pressure // J. Am. Mineral. 1988. V. 73. № 3–4. P. 232–241.
- 5. *Carlson W.D., Lindsley D.H.* Thermochemistry of pyroxenes on the join Mg₂Si₂O₆−CaMgSi₂O₆// J. Am. Mineral. 1988. V. 73. № 3–4. P. 242–252.
- Essien E.R. Atasie V.N., Udobang E.U. Microwave energy-assisted formation of bioactive CaO– MgO–SiO₂ ternary glass from bio-wastes // Bulletin of Materials Science. 2016. V. 39. № 4. P. 989–995.
- 7. *Prostakova V., Chen J., Jak E., Decterov S.A.* Experimental investigation and thermodynamic modeling of the (NiO + CaO + SiO₂), (NiO + CaO plus MgO) and (NiO plus CaO + MgO + SiO₂) systems // J. Chem. Thermodyn. 2015. V. 86. P. 130–142.
- 8. *Ma X.D., Zhang D.W., Zhao Z.X., Evans T., Zhao B.J.* Phase Equilibria Studies in the CaO–SiO₂– Al₂O₃–MgO System with CaO/SiO₂ Ratio of 1.10 // ISIJ International. 2016. V. 56. № 4. P. 513–519.
- 9. Ma X.D., Wang G., Wu S.L., Zhu J.M., Zha B.J. Phase Equilibria in the CaO-SiO₂-Al₂O₃-MgO System with CaO/SiO₂ Ratio of 1.3 Relevant to Iron Blast Furnace Slags // ISIJ International. 2015. V. 55. № 11. P. 2310-2317.
- 10. Ma X.D., Wang G., Wu S.L., Zhu J.M., Zha B.J. Phase Equilibria in the CaO–SiO₂–Al₂O₃–MgO System with CaO/SiO₂ Ratio of 1.3 Relevant to Iron Blast Furnace Slags // ISIJ INTERNATION-AL. 2015. V. 55. № 1. P. 2310–2317.
- Shi J.J., Sun L.F., Qiu J.Y., Wang Z.Y., Zhang B., Jiang M.F. Experimental Determination of the Phase Diagram for CaO-SiO₂-MgO-10% Al₂O₃-5TiO₂ // ISIJ International. 2016. V. 56. № 7. P. 1124-1131.
- Shi J.J., Chen M., Santoso I., Sun L.F., Jiang M.F., Taskinen P., Jokilaakso A. 1250 degrees C liquidus for the CaO-MgO-SiO₂-Al₂O₃-TiO₂ system in air // Ceramics International. 2020. V. 46. N
 № 2. P. 1545–1550.
- Shi J.J., Chen M., Wan X.B., Taskinen P., Jokilaakso A. Phase Equilibrium Study of the CaO– SiO₂-MgO-Al₂O₃-TiO₂ System at 1300 degrees C and 1400 degrees C in Air // JOM. 2020. V. 72. № 9. P. 3204-3212.
- 14. Gao Y.H., Liang Z.Y., Liu Q.C., Bian L.T. Effect of TiO₂ on the Slag Properties for CaO-SiO₂-MgO-Al₂O₃-TiO₂ System // Asian J. Chemistry. 2012. V. 24. № 11. P. 5337–5340.
- Shi J.J., Chen M., Santoso I., Sun L.F., Jiang M.F., Taskinen P., Jokilaakso A. 1250 degrees C liquidus for the CaO–MgO–SiO₂–Al₂O₃–TiO₂ system in air // J. Ceram. Int. 2020. V. 46. № 2. P. 1545–1550.
- 16. Jakobsson L.K., Tangstad M. Thermodynamic Activities and Distributions of Calcium and Magnesium Between Silicon and CaO-MgO-SiO₂ Slags at 1873 K (1600 degrees C) // Metall. Mater. Trans. B. 2015. V. 46. № 2. P. 595–605.
- 17. *Garkushin I.K., Lavrenteva O.V., Shterenberg A.M.* Forecast of Crystallizing Phases and Description of the Chemical Interaction in the Al₂O₃-TiO₂-MgO System // J. Phys. Chem. Glasses. 2021. V. 47. № 6. P. 622–629.

- Lopez-Rodriguez J., Romero-Serrano A., Hernandez-Ramirez A., Perez-Labra M., Cruz-Ramirez A., Rivera-Salinas E. Use of a Structural Model to Calculate the Viscosity of Liquid Silicate Systems // ISIJ International. 2018. V. 58. № 2. P. 220–226.
- 19. *Shu Q., Wang L., Chou K.C.* Estimation of viscosity for some silicate ternary slags // J. Mining and Metallurgy, Section B. 2014. V. 50. № 2. P. 139–144.
- 20. Licko T., Danek V. Viscosity and structure of melts in the system CaO-MgO-SiO₂ // J. Phys. Chem. Glasses. 1986. V. 27. № 1. P. 22-26.
- 21. *Zhang G.H., Singh A.K., Chou K.C.* An Empirical Model for Estimating Density of Multicomponent System Based on Limited Data // J. High Temperature Materials and Processes. 2009. V. 28. № 5. P. 309–314.
- Moharana N., Seetharaman S., Viswanathan N.N., Kumar K.C.H. Modelling the density of Al₂O₃– CaO–MgO–SiO₂ system using the CALPHAD approach // J. CALPHAD. 2020. V. 7. (101781).
- 23. Kansal I., Goel A., Tulyaganov D.U., Rajagopal R.R. Ferreira J. Structural and thermal characterization of CaO-MgO-SiO₂-P₂O₅-CaF₂ glasses // J. Eur. Ceram. Soc. 2012. V. 32. № 11. P. 2739–2746.
- 24. Термодинамические константы веществ. Вып. IX / Под. ред. В. П. Глушко. М.: ВИНИТИ, 1979. 574 с.