КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ КРИСТАЛЛООБРАЗУЩИХ СИСТЕМ: НОВЫЕ ТРЕХСЛОЙНЫЕ (*K*155 = Al@Al₆Pd₈@Pd₁₂Al₃₀@Pd₈Co₁₈Al₇₂) И ДВУХСЛОЙНЫЕ (*K*55 = Co@Al₁₂@Co₁₂A_{l30}) КЛАСТЕРЫ-ПРЕКУРСОРЫ ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Pd₁₁₂Co₂₀₄Al₆₈₄-*сP*1000

© 2023 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

²Научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 12.09.2022 г. После доработки 07.10.2022 г. Принята к публикации 10.10.2022 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры Pd₁₁₂Co₂₀₄Al₆₈₄-cP1000 с пр. гр. Pa-3, a = 24.433 Å, V = 14587.24 Å³. Металлокластеры-прекурсоры кристаллических структур определены с использованием алгоритма разложения структурных графов на кластерные структуры и путем построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров-прекурсоров S₃⁰. Установлены 26 906 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 12. Рассмотрена самосборка кристаллической структуры из новых трехслойных *K*155(4a) =Al@Al₆Pd₈)@Pd₁₂Al₃₀@Pd₈Co₁₈Al₇₂ и двухслойных кластеров-прекурсоров $K55(4b) = \text{Co@Al}_{12}\text{@Co}_{12}\text{A}_{130}$ с симметрией g = -3. В элементарной ячейке позиции 4а занимают атомы Al, являющиеся центральными атомами 15-атомного полиэдра $K15(4a) = Al@Al_8Pd_6$ и позиции 4b занимают атомы Со, являющихся центральными атома 13-атомного икосаэдра $K13(4b) = Co@Al_{12}$. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K155 и K55 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K155 и K55, установлены атомы Al.

Ключевые слова: интерметаллид $Pd_{112}Co_{204}Al_{684}$ -*cP*1000, нанокластеры-прекурсоры *K*155 = Al@Al₆Pd₈)@Pd₁₂Al₃₀@Pd₈Co₁₈Al₇₂ и *K*55 = Co@Al₁₂@Co₁₂A_{l30}), самосборка кристаллической структуры

DOI: 10.31857/S0132665122600704, EDN: NVBBHV

ВВЕДЕНИЕ

В двойных и тройных системах число образующихся интерметаллидов составляет 7738 и 14669 и уменьшается до 1404 в четверных системах [1, 2]. Во всех этих системах наибольшее число интерметаллидов образуется с участием атомов Fe, Co, Ni, Al, Ge. В табл. 1 приведены все четверные интерметаллиды, образующиеся в системах M–Co–Al–Ge, где M = Y, Ln, Pd [3–7].

Соединение	Класс Пирсона	Последовательность Уайкоффа	Группа симметрии	Параметры элементарной ячейки в Å	$V, Å^3$
Gd ₃ CoGe ₂ Al ₃	hP9	g f d a	P-62m (189)	6.973, 6.973, 4.203	177.0
Nd ₆ Co ₅ Al ₂ Ge ₂	hP15	k2 j2 e d a	P-6m2 (187)	9.170, 9.170, 4.195	305.5
$Pr_6Co_5Al_2Ge_2$	hP15	k2 j2 e d a	P-6m2 (187)	9.203, 9.203, 4.202	308.2
$Gd_2CoAl_4Ge_2$	<i>tI</i> 18	g e2 a	<i>I</i> 4/ <i>mmm</i> (139)	4.144, 4.144, 19.566	336.0
Ce ₂ CoAl ₇ Ge ₄	<i>tP</i> 28	e4 d c3 a	P-421m (113)	5.916, 5.916, 15.363	537.7
$Pd_{112}Co_{204}Al_{684}$	<i>cP</i> 1000	d40 c4 b a	Pa-3 (205)	24.434, 24.434, 24.434	14587.2

Таблица 1. Кристаллохимические данные интерметаллидов, образующиеся в системах *M*–Co–Al–Ge

Таблица 2. Кристаллохимические данные всех интерметаллидов с пр. гр. Ра-3

Соединение	Класс Пирсона	Последовательность Уайкоффа	Параметры элементарной ячейки в Å	<i>V</i> , Å ³
NaAu ₃ Ge	<i>cP</i> 40	<i>d c</i> 2	9.021, 9.021, 9.021	734.1
CaAu ₃ Ga	<i>cP</i> 40	<i>d c</i> 2	9.088, 9.088, 9.088	750.6
CaAu ₃ Al	<i>cP</i> 40	<i>d c</i> 2	9.112, 9.112, 9.112	756.6
Rb ₇ NaGe ₈	<i>cP</i> 64	d2 c b a	13.165, 13.165, 13.165	2281.7
Sc ₉₆ Mg ₈ Zn ₆₀₀	<i>cP</i> 704	d28 c4	22.412, 22.412, 22.412	11257.5
$Mg_{72} Al_{27} Zn_{70}$	<i>cP</i> 672	d27 c3	23.028, 23.028, 23.028	12210.9
Yb ₁₆ Ag ₄₂ In ₄₂	<i>cP</i> 720	d29 c3	24.869, 24.869, 24.869	15380.1
Ca ₁₃ Cd ₇₆	<i>cP</i> 708	d28 c4 a	25.340, 25.340, 25.340	16270.2
Pd ₁₁₂ Co ₂₀₄ Al ₆₈₄	<i>cP</i> 1000	d40 c4 b a	24.434, 24.434, 24.434	14587.2

Наибольшее число соединений насчитывает топологическое семейство Gd₃CoAl₃Ge₂-*hP*9 с пр. гр. *P*-62m, включающее 8 двойных, 504 тройных и 68 четверных соединений [1–3].

Три других структурных типа образуются с участием больших A-атомов редкоземельных элементов: A_6 Co₅Al₂Ge₂ (A = Nd, Pr) [4], A_2TAl_4 Ge₂ (A = Y, Gd-Er, T = Fe, Co) [5], Ce₂MAl₇Ge₄ (M = Co, Ir, Ni, Pd) [6].

Интерметаллид Al₂₈₃Co₇₇Pd₄₆Ge_{5.3}-*cP*1000 с редкой пр. группой *Pa*-3 (по. 205) кристаллохимических аналогов не имеет [7]. Все известные двойные и тройные интерметаллиды с пр. гр. *Pa*-3 (по. 205) [1, 2, 8–15] приведены в табл. 2. Кристаллохимическое семейство образуют три простых интерметаллида AAu_3M -сP40 (A = Na, Ca; M = Ge, Ga, Al) [8–10]. Не имеет кристаллохимических аналогов интерметаллид Rb₇NaGe₈-*cP*64 [11]. Кристаллохимически сложные интерметаллиды Sc₉₆Mg₈Zn₆₀₀-*cP*704 [12], Mg₇₂Al₂₇Zn₇₀-*cP*672 [13], Ag₄₂In₄₂Yb₁₆-*cP*720 [14], Ca₁₃Cd₇₆-*cP*708 [15] рассматриваются как аппроксиманты квазикристаллов. В [16] для интерметаллида Sc₉₆Mg₈Zn₆₀₀-*cP*704 проведено моделирование самосборки кристаллической структуры и установлен новый трехслойный каркас-образующий нанокластер *K*65 = 0@3@20@42. В центре нано-

Рис. 1. Кластер *K*49(24d) = 1@9@39 с внутренним полиэдром Co@Al₉ (слева) и внешней оболочкой из 39 атомов (справа).

кластера *K*65 (в позиции 8*c* на оси 3) расположено кольцо из 3 атомов Zn внутри додекаэдра Zn_{20} , на поверхности которого формируется 42 атомная оболочка из 12 атомов Sc и 30 атомов Zn.

Кристаллическая структура кристаллохимически самого сложного интерметаллида $Al_{283}Co_{77}Pd_{46}Ge_{5,3}$ (F-AlCoPdGe) с 46 кристаллографически независимыми атомами характеризуется гигантскими параметрами кубической ячейки: a = 24.433 Å, V = 14587.24 Å³, пр. группой *Pa*-3 (по. 205) и уникальной последовательностью Уайкоф-фа $d^{40} c^4 b a$ [7]. В кристаллической структуре выделены три типа двухслойных кластеров названных псевдокластерами Маккея. Известные двухслойные кластеры Маккея образуются на икосаэдрах 0@12@42 и 1@12@42 и их 42-атомная оболочка характеризуется набором топологических параметров: 42 вершины, 120 ребер, 34 грани.

Выделенный в [7] кластер первого типа K49 (24d) = 1@9@39 характеризуется внутренним полиэдром Co@Al₉ с центральным атомом Co (в котором все (десять) атомов находятся в общей позиции 24d) и внешней оболочной из 39 атомов (рис. 1). В элементарной ячейке содержатся 24 кластера K49, имеющих общие атомы и им соответствуют 892 из 1000 атомов, заполняющих элементарную ячейку (рис. 2)

Кластер второго типа с центральным атомом Со в частной позиции 4b в виде додекаэдра из 20 статистически заселенными атомами Al характеризуется второй оболочной из 12 *M*-атомов (M = Pd и/или Co) и 30 атомным Al-икосододекаэдрам [7].

Третий тип полиэдрического кластера с центром в частной позиции 4а состоит из 14 атомного полиэдра M_8Al_6 и внешней оболочкой подобной, установленным в двух других кластерах [7].

Кроме трех типов двухслойных кластеров, в элементарной ячейке выделены 8 и 24 икосаэдра с центральными атомами, статистически занимающие 8с позиции Pd1 0.74 + Al1 0.26 и позиции 24d атомами Pd2 0.68 + Al2 0.32 [7].

Также предполагается статическое заселении позиции 24d атомами Al3 0.84 + Ge3 0.16 и позиции 8с атомами Al4 0.89 + Ge4 0.11 [7].

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры Pd₁₁₂Co₂₀₄Al₆₈₄-*cP*1000 (комплекс программ ToposPro [17]). Установ-

Рис. 2. Расположение в элементарной ячейке 24 полиэдров Co@Al₉ (сверху) и связанные кластеры *K*49 с внешней оболочкой из 39 атомов (снизу).

лен новый тип трехслойный каркас-образующего нанокластера K155 и двухслойного кластера K55. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow \rightarrow каркас.

Работа продолжает исследования [16, 18–21] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [17], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллических структур получены расчетом топологических индексов (координационных последовательностей, точечных и вершинных символов).

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах:

(1) Структура образуется в результате самосборки из нанокластеров-прекурсоров. При этом нанокластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются спейсерами (атомами или небольшими кластерами).

(2) Кластеры-прекурсоры занимают высокосимметричные позиции.

(3) Набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Полученные значения координационных последовательностей атомов Al, Co, Pd приведены в табл. 3, в которой выделены значения координационных последовательностей, соответствующие атомам во второй сфере, и второй и третьей координационной сфере центральных атомов Co12 и Al5, расположенных в наиболее высокосимметричных позициях 4b и 4a. Все варианты представления кристаллической структуры с 3, 4 и 5 структурными единицами приведены в табл. 4. Атомы, формирующие нанокластер *K*155(4a) = (1@14@42@98) приведены в табл. 5 и атомы, формирующие нанокластер *K*55(4b) = 1@12@42) – в табл. 6.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Рd₁₁₂Со₂₀₄Аl₆₈₄-*сР*1000

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [16, 18–21]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из первичных цепей слоя (2-ой уровень) и затем из слоя - трехмерного каркаса структуры (3-й уровень) [16, 18–21].

Нанокластерный анализ структуры Pd₁₁₂Co₂₀₄Al₆₈₄-cP1000

Пространственная группа Pa-3 (по. 205) характеризуется позициями с точечной симметрией g = -3 (4a, 4b), 3 (8c). Порядок группы равен 24.

Атом	Позиции	Координационные последовательности	
	Уайкоффа	N1 N2 N3 N4 N5	
Pd1	8c	12 50 119 211 330	
Pd2	24d	12 49 111 201 310	
Pd3	8c	13 47 102 182 319	
Pd4	24d	13 46 100 183 307	
Pd5	24d	11 44 97 183 296	
Pd6	24d	12 44 102 190 302	
Col	8c	10 43 108 208 326	
Co6	24d	10 43 90 180 293	
Co7	24d	11 42 90 175 280	
Co8	24d	12 41 93 172 293	
Co9	24d	9 41 92 183 289	
Co10	24d	10 41 91 173 278	
Coll	24d	8 41 98 176 285	
Co12	4b	12 42 90 158 272	
Co13	24d	9 39 89 175 274	
Co14	24d	9 37 92 174 277	
A13	24d	11 42 98 180 295	
A14	8c	13 42 109 202 313	
AI5	4a	14 42 98 156 296	
A16	24d	14 44 100 177 299	
A17	24d	13 45 103 204 311	
A18	24d	13 46 102 183 297	
A19	24d	13 45 112 202 320	
A110	24d	12 46 96 180 300	
A111	24d	13 47 99 185 312	
A112	24d	13 45 101 186 305	
A113	24d	13 47 104 193 316	
A114	24d	12 42 100 185 299	
A115	24d	13 45 102 185 302	
A116	24d	12 44 106 191 307	
A117	24d	13 46 97 178 306	
A118	24d	13 45 103 190 311	
A119	24d	13 46 106 192 307	
A120	24d	12 46 111 207 328	
Al21	24d	12 45 100 185 295	
A122	24d	12 44 100 185 299	
A123	24d	12 47 109 198 304	
A124	24d	12 46 108 200 315	
A125	24d	11 41 98 176 291	
A126	24d	11 42 101 181 290	
A127	24d	12 47 108 195 314	
A128	24d	12 48 111 201 320	
A129	24d	12 49 107 192 306	
A131	24d	12 46 112 194 303	
A134	24d	12 43 90 173 290	
A135	24d	12 40 95 171 283	

Таблица 3. Значения координационных последовательностей атомов Al, Co, Pd. Выделены значения координационных последовательностей атомов Co12 и Al5, соответствующие атомам во второй координационной сфере, и второй и третьей координационной сфере

Таблица 4. Варианты кластерного представления кристаллической структуры с 3, 4 и 5 структурными единицами. Указан центральный атом полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй и третьей скобке)

3 Структурные единицы (6 вариантов)	
3:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Co1(2)(1@10@43)	
3:Al5(1)(1@14) Co12(4)(1@12@42@90@158) Co1(0)(1)	
3:Al5(1)(1@14) Co12(4)(1@12@42@90@158) Co1(1)(1@10)	
3:Co12(4)(1@12@42@90@158) Co1(0)(1) Co3(1)(1@13)	
3:Co12(4)(1@12@42@90@158) Co1(1)(1@10) Pd3(1)(1@13)	
3:Co12(3)(1@12@42@90) Co1(2)(1@10@43) Al10(1)(1@12)	
4 структурные единицы (6 вариантов)	
4:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Al18(1)(1@13) Al28(1)(1@12)	
4:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Al7(1)(1@13) Al28(1)(1@12)	
4:Co12(3)(1@12@42@90) Co1(2)(1@10@43) Pd3(1)(1@13) Al12(1)(1@13)	

4:Co12(3)(1@12@42@90) Co1(2)(1@10@43) Pd3(1)(1@13) Al15(1)(1@13) 4:Co12(3)(1@12@42@90) Co1(2)(1@10@43) Pd3(1)(1@13) Pd6(1)(1@12) 4:Co12(3)(1@12@42@90) Al7(1)(1@13) Al10(1)(1@12) Al28(1)(1@12)

5 структурных единиц (26 вариантов)

5:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Al4(1)(1@13) Al23(1)(1@12) Pd12(1)(1@9) 5:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Al4(1)(1@13) Co9(1)(1@9) Pd12(0)(1) 5:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Al4(1)(1@13) Co9(1)(1@9) Pd12(1)(1@9) 5:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Co1(1)(1@10) Al18(1)(1@13) Al23(0)(1) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Co1(1)(1@10) Al18(1)(1@13) Al23(1)(1@12) 5:Al5(3)(1@14@42@98) Co12(2)(1@12@42) Co1(1)(1@10) Al18(1)(1@13) Al23(1)(1@12) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Al4(1)(1@13) Al22(1)(1@12) Co9(1)(1@9) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Co1(1)(1@10) Al3(1)(1@11) Al18(1)(1@13) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Co1(1)(1@10) Al18(1)(1@13) Al26(1)(1@11) 5:Al5(3)(1@14@42@98) Co12(0)(1) Co1(1)(1@10) Al18(1)(1@13) Co7(1)(1@11) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Co1(1)(1@10) Al18(1)(1@13) Co7(1)(1@11) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Al3(1)(1@11) Al18(1)(1@13) Al28(1)(1@12) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Al18(1)(1@13) Al26(1)(1@11) Al28(1)(1@12) 5:Al5(3)(1@14@42@98) Co12(0)(1) Al18(1)(1@13) Al28(1)(1@12) Co7(1)(1@11) 5:Al5(3)(1@14@42@98) Co12(1)(1@12) Al18(1)(1@13) Al28(1)(1@12) Co7(1)(1@11) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Al4(1)(1@13) Al7(1)(1@13) Al19(1)(1@13) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Al4(1)(1@13) Al7(1)(1@13) Co13(1)(1@9) 5:AI5(2)(1@14@42) Co12(3)(1@12@42@90) Co1(1)(1@10) AI7(1)(1@13) AI19(1)(1@13) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Co1(1)(1@10) Al7(1)(1@13) Co13(1)(1@9) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(1)(1@12) Al19(1)(1@13) Al24(1)(1@12) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(0)(1) Al24(1)(1@12) Co9(1)(1@9) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(1)(1@12) Al24(1)(1@12) Co9(1)(1@9) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(1)(1@12) Al28(1)(1@12) Co9(0)(1) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(0)(1) Al28(1)(1@12) Co9(1)(1@9) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Pd1(1)(1@12) Al28(1)(1@12) Co9(1)(1@9) 5:Al5(2)(1@14@42) Co12(3)(1@12@42@90) Al7(1)(1@13) Al19(0)(1) Al24(1)(1@12)

	$K_{155(4a)} = (1@14@42@98)$	
Кластер 1@14	42-атомная оболочка	98-атомная оболочка
1 A15	6 Al12	6 A111
6 A110	6 Al13	6 A114
2 Pd3	6 Al15	6 A116
6 Pd4	6 Al25	6 A119
	6 A18	6 A121
	6 Pd5	6 A124
	6 Pd6	6 A127
		6 A129
		6 A131
		6 A16
		6 Al7
		6 A19
		6 Co10
		6 Co11
		6 Co13
		2 Pd1
		6 Pd2
(14,36,24)	(42,108,68)	(98,264,168)
	Всего 155 атомов	1

Таблица 5. Атомы, формирующие нанокластер К155(4а). Жирным шрифтом выделены атомы Рd и Со

Таблица 6. Атомы, формирующие нанокластер *K*55(4b) = 1@12@42

*K*55(4b) = 1@12@42

Кластер 1@12	42-атомная оболочка	
1 Co12	6 Al17(6^6)(6v)	
6 Al34(5^6)(6v)	6 Al22(6^6)(6v)	
6 Al35(5^6)(6v)	6 Al26 (6^6)(6v)	
(12,30,20)	6 Al3 (6^6)(6v)	
	6 Al6 (6^6)(6e)	
	6 Co7 (5^6)(6f)	
	6 Co8 (5^6)(6f)	
	(42,120,80)	
Bcero	55 атомов	

Рис. 3. Кластер-прекурсор Al@Al₈Pd₆ (слева) и Co@Al₁₂ (справа)

Рис. 4. Кластеры *К*57(1@14@42) (слева) и *К*155 = 1@14@42) 98 (справа)

В элементарной ячейке находятся 46 кристаллографически независимых атомов, из них 30 атомов Al c KU = 10, 11, 12, 13, и 14; 10 атомов Co c KU = 8, 9, 10, 11, 12, 13; и 6 атомов Pd c KU = 11, 12 и 13 (табл. 3).

Частные позиции 4а занимают атомы Al5 являющихся центральными атома 15-атомного полиэдра Франка-Каспера $K15(4a) = Al@Al_8Pd_6$ и частные позиции 4b занимают атомы Со, являющихся центральными атома 13-атомного икосаэдра $K13(4b) = Co@Al_{12}$ (рис. 3).

Кластер-прекурсор К155(4а) = (1@14@42@98)

Кластер-прекурсор Al@Al₈Pd₆ с симметрией –3 является темплатом, на котором формируется вторая 42-атомная оболочка, имеющая состав @Pd₁₂Al₃₀ и третья 98-атом-

Рис. 5. Кластер $K55(4b) = Co@Al_{12}@Co_{12}Al_{30}$

ная оболочка, имеющая состав @Pd₈Co₁₈Al₇₂ (рис. 4). Все (шесть) кристаллографически независимых атомов Pd входят в состав трех оболочек кластера.

Кластер-прекурсор K55(4b) = 1@12@42)

Икосаэдрический кластер-прекурсор $Co@Al_{12}$ с симметрией -3 (рис. 4) является темплатом, на котором формируется вторая 42-атомная оболочка Маккея, имеющая состав $@Co_{12}A_{130}$ (рис. 5). В образовании кластера участвуют только атомы Со и Al.

Атомы Al4, Al18, Al28, Al20, Al23 являются спейсерами, заполняющие пустоты между каркас-образующими кластерами *K*155(4a) и *K*55(4b) (рис. 6).

Самосборка первичных цепей S₃¹

Первичная цепь формируется в результате связывания кластеров K155(4a) + K55(4b). Расстояния между центрами кластеров K155(4a) и K55(4b) соответствуют a/2 = 22.412 Å/2.

Самосборка слоя S_3^2

Образование слоя S_3^2 происходит при связывания первичных цепей $S_3^1 + S_3^1$ (рис. 6). На этой стадии происходит локализация атомов-спейсеров Al. Центр микрослоя расположен в позиции 24d (0.25, 25, 50). В направлении оси *X* и *Y* расстояния между центрами кластеров *K*155(4a) и *K*55(4b) соответствуют a/2 = 22.412 Å/2.

Рис. 6. Слой S_3^2 из кластеров *K*155(4a) и *K*55(4b). Аl-спейсеры расположены в центральной части между кластерами.

Самосборка каркаса S₃³

Каркас структуры S_3^3 формируется при связывании слоев $S_3^2 + S_3^2$. Расстояние между слоями S_3^2 направлении оси *Z* соответствует a/2 = 22.412Å/2 (рис. 7).

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ кристаллической структуры интерметаллида $Pd_{112}Co_{204}Al_{684}$ -*cP*1000. Установлены 26 906 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 12. Рассмотрена самосборка кристаллической структуры из новых трехслойных *K*155 = $Al@Al_6Pd_8)@Pd_{12}Al_{30}@Pd_8Co_{18}Al_{72}$ и двухслойных кластеров-прекурсоров *K*55 = $Co@Al_{12}@Co_{12}Al_{30}$ с симметрией g = -3. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*155 и *K*55 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас.

Рис. 7. Каркас $S_3^3 = S_3^2 + S_3^2$.

Анализ самосборки кристаллических структур выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 21-73-30019) и в рамках государственного задания ИХС РАН (тема 0081-2022-0001).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
- He Wei, Zeng Weijing, Lin Guoqiang. Crystal structures of new R₃ Co Al₃ Ge₂ (R = Gd Er) quaternary compounds and magnetic properties and lattice thermal expansion of Gd₃ Co Al₃ Ge₂ // J. Alloys Compd. 2015 V. 627 P. 307–312.
- 4. Zhou Sixuan, Latturner Susan E. Flux growth and magnetic properties of rare earth cobalt germanide, RE₆ Co₅ Ge_{1 + x} Al_{3 x} (RE = Pr, Nd; x ~ 0.8) // J. Solid State Chemistry. 2016. V. 238. P. 189–194.
- 5. *He Wei, Zeng Weijing, Yang Tonghan, Lin Guoqiang.* Crystal structure of new R₂ T Al₄ Ge₂ (R = Y, Gd-Er, T = Fe, Co) quaternary compounds and magnetic properties of Gd₂ T Al₄ Ge₂ //J. Alloys Compd. 2015 V. 633. P. 265–271.
- Ghimire N.J., Cary S.K., Eley S., Wakeham N.A., Rosa P.F.S., Albrecht-Schmitt T., Lee Y., Janoschek M., Brown C.M., Civale L., Thompson J.D., Ronning F., Bauer E.D. Physical properties of the Ce₂ M Al₇ Ge₄

heavy-fermion compounds (M = Co, Ir, Ni, Pd) // Physical Review, Serie 3. B – Condensed Matter. 2016. V. 93. P. 205141-1.

- 7. Sugiyama K., Yubuta K., Yokoyama Y., Suzuki S., Simura R. F AlCoPdGe alloy with three types of Pseudo-Mackay clusters // Acta Physica Polonica A. 2014 V. 126. P. 588-593.
- 8. Doering W., Schuster H.U. Darstellung und Struktur von NaAu₃Si und NaAu₃Ge. // Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie. 1980. V. 35. P. 1482–1483.
- 9. Lin Oisheng, Corbett J.D. Interpenetrating networks of three-dimensional Penrose tiles in CaAu₃ Ga, the structurally simplest cubic approximant of an icosahedral quasicrystal // Inorg. Chem. 2008 V. 47. P. 3462-3464.
- 10. Pham Joyce, Kreyssig Andreas, Goldman Alan I., Miller Gordon J. An icosahedral quasicrystal and its 1/0 crystalline approximant in the Ca-Au-Al system // Inorganic Chemistry. 2016. V. 55. P. 10425-437.
- 11. Llanos J., Nesper R., von Schnering H.G. Rb₇NaGe₈ und K₇NaGe₈. Zintl-Verbindungen mit Na $(Ge_{4})_{2}$ -Einheiten // Angewandte Chemie (German Edition). 1983. V. 95. P. 1026–1027.
- 12. Lin Qisheng, Corbett J.D. The 1/1 and 2/1 approximants in the Sc-Mg-Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks // J. Am. Chem. Soc. 2006. V. 128. P. 13268-273.
- 13. Berthold Rico, Mihalkovic Marek, Burkhardt Ulrich, Prots Yurii, Amarsanaa Altangerel, Kreiner Guido. Crystal structure, disorder and composition of the 2/1 approximant in the Al-Mg-Zn system revisited // Intermetallics. 2014. V. 53. P. 67-84.
- Li M.R., Howmoeller S., Sun J.L., Zou X.D., Kuo K.H. Crystal structure of the 2/1 cubic approximant Ag₄₂ In₄₂ Yb₁₆ // J. Alloys Compd. 2008. V. 465. P. 132–138.
 Pay Gomez C., Lidin S. Structure of Ca₁₃Cd₇₆; a novel approximant to the YbCd_{5.7} and Ca₁₅Cd₈₅ quasicrystals // Angewandte Chemie (Edition international). 2001. V. 40. P. 4037–4039.
- 16. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый кластер-прекурсор K65 = 0@3@20@42 для самосборки кристаллической структуры Sc₉₆Mg₈Zn₆₀₀-*сР*704//Физика и химия стекла. 2022. Т. 42. № 2. С. 94–99.
- 17. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- 18. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 19. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem., 2019. V. 30. № 6. P. 2015–2027.
- 20. Ilyushin G.D. Intermetallic Compounds $K_n M_m$ (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 21. Ilyushin G.D. Intermetallic Compounds $Na_k M_n$ (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.