= КРАТКОЕ СООБЩЕНИЕ ===

ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ($-180 \le T \le 1000^{\circ}$ С) ОРТОСИЛИКАТА МАГНИЯ ГИДРОКСИЛКЛИНОГУМИТА Mg₅(SiO₄)₂(OH,F)₂

© 2023 г. Я. П. Бирюков^{*a*}, Р. С. Бубнова^{*a*, *b*, *, В. А. Фирсова^{*a*}}

^а Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

^bСанкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия

*e-mail: rimma_bubnova@mail.ru

Поступила в редакцию 13.09.2022 г. После доработки 08.12.2022 г. Принята к публикации 12.12.2022 г.

Гидроксилклиногумит Mg₅(SiO₄)₂(OH,F)₂ – распространенный моноклинный ортосиликат группы гумита, являющийся, с одной стороны, прототипом перспективных материалов, с другой – важным источником информации как о переносе, так и наличии воды в мантии Земли, в связи с чем изучение его термического поведения представляет особый интерес. В настоящей работе минерал исследован методами порошковой рентгенографии впервые в широком интервале температур ($-180 \le T \le 1000^{\circ}$ С). Установлены температурные границы существования фазы, рассчитаны главные значения тензора термического расширения, а также дана структурная трактовка термического го расширения.

Ключевые слова: силикат магния, гидроксилклиногумит, гумит, кристаллическая структура, термическое расширение, терморентгенография

DOI: 10.31857/S0132665122600716, EDN: NVDPWQ

введение

Гидроксилклиногумит $Mg_5(SiO_4)_2(OH,F)_2$ – распространенный моноклинный ортосиликат магния группы гумита, подгруппы клиногумита с общей формулой nM_2SiO_4 · $M_{1-x}Ti_x(F,OH)_{2-2x}O_{2x}$ (0 < x < 0.5), где M – Mg (в следовых количествах в позицию могут входить примесные катионы Fe²⁺, Mn, Ni, Ca, Zn, Cu) [1–6]. К соединениям данной подгруппы относятся норбергит $Mg_3(SiO_4)F_2$ (n = 1) [1], хондродит $Mg_5(SiO_4)_2F_2$ (n = 2) [2], гумит (Mg,Fe^{2+})₇(SiO₄)₃ F_2 (n = 3) [3] и клиногумит $Mg_9(SiO_4)_4F_2$ (n = 4) [4]. Фтор в хондродите и клиногумите может частично замещаться на молекулы OH, в таком случае минералы называют гидроксилхондродит $Mg_5(SiO_4)_2(OH,F)_2$ [5] и гидроксилклиногумит $Mg_9(SiO_4)_4(OH,F)_2$ соответственно [6].

Гидроксилклиногумит кристаллизуется в моноклинной сингонии, пр. гр. $P2_1/b$ (первая моноклинная установка), параметры решетки: a = 4.748, b = 10.273, c = 13.689 Å, V = 656.06 Å³, $\alpha = 100.72^{\circ}$ [6]. Кристаллическая структура может быть охарактеризована как плотноупакованный каркас, сложенный из связанных между собой по ребру октаэдров [M(F,OH)O₆], в пустотах которого располагаются изолированные друг от друга тетраэдры [SiO₄], связанные с октаэдрами через общие вершины и ребра. В структуре

гидроксилклиногумита имеются пять кристаллографических позиций для катионов *М*, две позиции для кремния, девять — для кислорода и две — для водорода и/или фтора.

Синтетические аналоги минералов данных групп, главным образом, могут быть получены гидротермальным методом синтеза [7], применяются в различных технических приложениях, таких как детекторы ионизирующего излучения, квантовая электроника, медицинские устройства [8–10]. Помимо материаловедческого интереса, изучение гидроксилклиногумита крайне актуально в настоящее время и по той причине, что данный минерал является распространенным силикатом нижней и верхней мантии Земли, и, следовательно, может являться индикатором как переноса, так и наличия воды в этих областях. Обычно гидроксилклиногумит образуется в результате разложения обогащенного водной компонентой серпентина $M_3[Si_2O_5](OH)_4$ (M - Mg, Fe и др.) в зонах субдукции при воздействии высоких давлений и температур. Гидроксилклиногумит также структурно близок к оливину M_2SiO_4 (M - Mg, Fe и др.), основному минералу верхней мантии, и наличие в его структуре атома водорода делает его интересным объектом и с позиций как моделирования включений водной компоненты в структуру оливина, так и изучения механизмов переноса воды в верхнюю мантию Земли [11, 12].

В работе [11] по данным высокотемпературной рамановской спектроскопии и терморентгенографии (от -93 до 240° C) было показано, что гидроксилклиногумит стабилен в данном интервале температур. В работе [12] было установлено, что гидроксилклиногумит не окисляется и не теряет воду до температур ~ 800° C.

В настоящей работе гидроксилклиногумит (Зеленцовская копь, Южный Урал, Россия) впервые был исследован методом порошковой рентгеновской дифракции в широком интервале температур ($-180 \le T \le 1000^{\circ}$ С) с целью обнаружения и описания фазовых переходов, установления их температурных границ, а также расчета главных значений тензора термического расширения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материал. Для исследований использовался природный образец гидроксилклиногумита (Зеленцовская копь, Челябинская область, Урал Южный, Россия). Поликристаллические образцы минерала использовались для экспериментов по порошковой терморентгенографии при комнатной, низких и высоких температурах.

Методы исследования. Исследования порошковой рентгеновской дифракции производились на дифрактометре Rigaku MiniFlex II (Со K_{α} , геометрия на отражение, диапазон углов 20 от 5° до 75°, шаг 0.02°, скорость 2°/мин). Для закрепления на кювете проба была приготовлена с использованием гексановой суспензии. Для определения фазового состава использовался программный комплекс PDXL [13] и база данных PDF-2016 (ICDD).

Терморентгенографические съемки выполнялись с использованием дифрактометра Rigaku Utima IV со следующими параметрами. Для низкотемпературных экспериментов использовались термоприставка R-300, низкий вакуум, охлаждение азотом, Cu K_{α} , 40 кB/35 мA, геометрия на отражение, высокоскоростной энергодисперсионный детектор D/teX Ultra, интервал температур от –180 до 20°C с шагом 10°C в диапазоне углов 20 от 5° до 100°. Для высокотемпературного эксперимента использовалась термоприставка для работы на воздухе со следующими параметрами: Cu K_{α} , 40 кB/35 мA, геометрия на отражение, высокоскоростной энергодисперсионный детектор D/teX Ultra, интервал температур 20–1000°C, шаг 20°C, 20 = 5°–100°.

Обработка экспериментальных данных, вычисление параметров элементарной ячейки, их аппроксимация в функции от температуры и определение коэффициентов и фигур коэффициентов термического расширения выполнялись с использованием программного комплекса Rietveld To Tensor [14].

Рис. 1. Рентгенограмма образца гидроксилклиногумита (полыми кружками указана примесная фаза лизардита, зелеными вертикальными линиями – характеристические линии гидроксилклиногумита).

Кристаллическая структура была визуализирована с использованием программы VESTA [15].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенофазовый анализ ($P\Phi A$). По результатам рентгенофазового анализа образец содержал фазу гидроксилклиногумита (#411284-ICSD) и примесную фазу лизардита Mg₃(Si₂O₅)(OH)₄ (#23813-ICSD), оцененную методом Ритвельда как примерно 4 вес. %. На рис. 1 приведена дифракционная картина исследуемого образца.

Следует также отметить, что для исследуемого образца не наблюдаются характерные для клиногумита пики с самой высокой интенсивностью с индексами *hkl* (024) на $2\theta = 40.69^{\circ}$, (041) на $2\theta = 43.96^{\circ}$ и некоторые другие.

Низко- и высокотемпературная терморентгенография (-180...-1000°C). Как видно из рис. 2 (эксперимент от -180 до 20°C), в данном интервале температур не наблюдается каких-либо изменений на рентгенограммах, за исключением поведения пика фазы льда H₂O на 2 θ = 47.52°, исчезающего примерно после -25°C.

На рис. 3 показаны рентгенограммы, полученные высокотемпературным экспериментом в диапазоне температур от 20 до 1000°С, из которого видно, что гидроксилклиногумит стабилен примерно до 900°С, после чего соединение начинает разлагаться, что, вероятно, связано с дегидратацией, приводящей к последующему разложению фазы, как было показано методом рамановской спектроскопии в работе [12]. Пики же примесного лизардита исчезают примерно после 600°С, что согласуется с данными о термической устойчивости этого соединения [16].

На рис. 4 приведены графики зависимостей параметров элементарной ячейки от температуры (-180...-1000°С), из которого видно, что с температурой параметры ячейки монотонно возрастают, но при достижении 900°С изменяются резко, что происходит вследствие нестабильности структуры гидроксилклиногумита, обусловленной процессом твердофазного разложения.

Таким образом, температурные зависимости параметров моноклинной ячейки, как и объем и угол α (рис. 4), были аппроксимированы полиномами второй степени неза-

Рис. 2. Фрагмент изображения рентгенограмм гидроксилклиногумита (фаза льда H₂O указана стрелочкой).

Рис. 3. Фрагмент изображения рентгенограмм гидроксилклиногумита (фаза лизардита указана стрелочкой, пики материала платиновой подложки указаны Pt, красной горизонтальной пунктирной линией показана температура, после которой гидроксилклиногумит начинает разлагаться).

висимо в интервалах температур от -180 до 20° С (табл. 1, низкотемпературный эксперимент) и 20 до 800° С (табл. 2, высокотемпературный эксперимент). Главные значения тензора термического расширения при некоторых температурах приведены в табл. 3.

Рис. 4. Температурные зависимости параметров элементарной ячейки гидроксилклиногумита (вертикальной пунктирной линией показана температура, после которой гидроксилклиногумит начинает разлагаться).

Термическое расширение. Как было сказано ранее, структура гидкроксилклиногумита, представленная в катионных полиэдрах, представляет собой плотноупакованный каркас из связанных между собой по ребру октаэдров $[M(F,OH)O_6]$, в пустотах которого располагаются изолированные друг от друга тетраэдры [SiO₄], в результате чего термическое расширение соединения во всем интервале температур может быть охарактеризовано как слабо анизотропное (рис. 5). Слабая анизотропия термического расширения у соединений группы гумита, например, у синтетического норбергитоподобного Fe₃BO₆, структура которого так же представляет каркас из октаэдров [FeO₆], в пустотах которого находятся изолированные тетраэдры [ВО₄], ранее также была обнаружена авторами настоящей работы [17-19].

С ростом температуры соединение монотонно расширяется во всех направлениях (табл. 3). Механизм же расширения может быть описан с теории сдвиговых деформаций [20], согласно которой в моноклинных кристаллах в плоскости моноклинности максимальное расширение происходит вдоль одной из диагоналей параллелограмма

уравнение $l(t) = l_0 + l_1 t + l_2 t^2$									
$a(t), \mathrm{\AA}$	$b(t), \text{\AA}$	$c(t), \text{\AA}$	α(<i>t</i>), град	$V(t), \text{\AA}^3$					
$\begin{array}{r} 4.7468(6) + \\ + 0.0000359(2)t + \\ + 0.000000073(1)t^2 \end{array}$	10.2736(2) ++ 0.0001051(4)t ++ 0.000000182(2)t2	13.6876(2) ++ 0.0001321(5)t ++ 0.000000211(3)t2	100.7158(6) ++ 0.000064(1)t ++ 0.00000022(1)t2	$\begin{array}{r} 655.882(26) + \\ + 0.01785(7)t + \\ + 0.0000314(4)t^2 \end{array}$					

ячейки гидроксилклиногумита (-180...-20°С)

Таблица 1. Уравнения аппроксимации температурной зависимости параметров элементарной

Уравнение $l(t) = l_0 + l_1 t + l_2 t^2$									
$a(t), \text{\AA}$	$b(t), \text{\AA}$	$c(t), \text{\AA}$	α(<i>t</i>), град	$V(t), \text{\AA}^3$					
$\begin{array}{r} 4.7455(1) + \\ + 0.00004591(5)t + \\ + 0.0000000354(6)t^2 \end{array}$	$10.2712(2) ++ 0.0001193(1)t ++ 0.000000231(1)t^2$	$13.6852(3) ++ 0.0001631(1)t ++ 0.000000239(2)t^2$	100.7173(2) ++ 0.0000611(1)t ++ 0.000000127(1)t2	$\begin{array}{r} 655.422(4) + \\ + 0.02159(2)t + \\ + 0.00000316(2)t^2 \end{array}$					

Таблица 2. Уравнения аппроксимации температурной зависимости параметров элементарной ячейки гидроксилклиногумита (20–800°С)

Таблица 3. Главные значения тензора термического расширения гидроксилклиногумита при некоторых температурах

$\alpha (10^{-6} \circ C^{-1})$	Температура, °С					
	-180	-80	20	300	600	800
α ₁₁	2.01(3)	5.09(1)	9.71(1)	10.11(4)	10.51(4)	10.91(1)
α_{22}^{*}	4.25(6)	7.53(1)	12.34(1)	13.91(6)	15.59(6)	17.27(5)
α_{33}^{*}	3.83(5)	6.98(1)	11.13(1)	11.47(5)	11.79(4)	12.11(1)
$\mu_{b2} = \angle(\alpha_{22}, b) (^{\circ})$	70.1	50	46.3	40	37.2	36.4
α_{α}	-0.14(2)	0.29(6)	0.66(1)	1.36(4)	2.06(3)	2.85(1)
α_V	10.1(1)	19.6(3)	33.2(3)	35.5(2)	37.9(2)	40.3(4)

* α₂₂ и α₃₃ – наибольший и наименьший по отношению друг к другу коэффициенты термического расширения в гидроксилклиногумите в первой моноклинной установке.

bc. Наиболее же интенсивно расширение происходит вдоль оси тензора α_{22} , близкой по направлению с кристаллографической осью *b* (большая диагональ параллелограмма) ($\alpha_{22} = 4.2 \times 10^{-6\circ} \text{C}^{-1}$ при -180°C , 17.3 $\times 10^{-6\circ} \text{C}^{-1}$ при 800°C) (рис. 5). С ростом тем-

Рис. 5. Кристаллическая структура гидроксилклиногумита в проекции на плоскость моноклинности *bc* (серым цветом нарисованы октаэдры [*M*(F,OH)O₆], синим – тетраэдры [SiO₄]) и фигуры главных значений тензора термического расширения (–180°С – сплошная синяя линия, 20°С – пунктирная зеленая линия, 900°С – штриховая красная линия).

пературы фигура главных значений тензора термического расширения плавно поворачивается по часовой стрелке. Интересным является и тот факт, что при –180°С соединение испытывает отрицательное угловое термическое расширение (табл. 3), которое с ростом температуры приобретает положительные значения.

ЗАКЛЮЧЕНИЕ

В настоящей работе в широком интервале температур изучено термическое поведение гидроксилклиногумита ($-180 \le T \le 1000$ °C). В данном температурном диапазоне соединение не испытывает структурных фазовых переходов. Примерно после 900°C минерал претерпевает твердофазное разложение, что, вероятно, может быть связано с его дегидратацией и нестабильностью кристаллической структуры. Термическое расширение слабо анизотропное, что обусловлено каркасным мотивом структуры, содержащей плотноупакованные октаэдры [$M(F,OH)O_6$] и изолированные тетраэдры [SiO₄]. Механизм расширения может быть описан в соответствии с теорией сдвиговых деформаций в моноклинных кристаллах – в плоскости моноклинности *bc* максимальное расширение наблюдается практически вдоль большой диагонали параллелограмма *bc* ($\alpha_{22} = 4.2 \times 10^{-6\circ}$ C⁻¹ при -180° C, 17.3 $\times 10^{-6\circ}$ C⁻¹ при 800°C), минимальное – вдоль малой диагонали ($\alpha_{33} = 3.8 \times 10^{-6\circ}$ C⁻¹ при -180° C, 12.1 $\times 10^{-6\circ}$ C⁻¹ при 800°C).

Рентгеновские эксперименты выполнены с использованием оборудования ресурсного центра СПБГУ "Рентгенодифракционные методы исследования". Работа в части отбора проб для экспериментов, интерпретации рентгеновских данных выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (№ 0081-2022-0002, ИХС РАН), в части проведения рентгеновских экспериментов, обобщения полученных результатов – поддержана Российским научным фондом (РНФ) (№ 22-13-00317).

СПИСОК ЛИТЕРАТУРЫ

- Geijer P. Norbergite and Fluoborite, two new minerals from the Norberg mining district // Geologiska Föreningen i Stockholm Förhandlingar. 1926. V. 48(1). P. 84–85.
- Berry A.J., James M. Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: implications for the stability of humite minerals // Mineralogical Magazine. 2002. V. 66(3). P. 441–449.
- Ribbe P.H., Gibbs G.V. Crystal Structures of the Humite Minerals: III. Mg/Fe Ordering in Humite and its Relation to Other Ferromagnesian Silicates // American Mineralogist. 1971. V. 56(7–8). P. 1155–1173.
- Friedrich A., Lager G.A., Kunz M., Chakoumakos B.S., Smyth J.R., Schultz A.J. Temperature-dependent single-crystal neutron diffraction study of natural chondrodite and clinohumites // American Mineralogist. 2001. V. 86(9). P. 981–989.
- Pekov I.V., Gerasimova E.I., Chukanov N.V., Kabalov Yu.K., Zubkova N.V., Zadov A.E., Yapaskurt V.O., Gekimyants V.M., Pushcharovskii D.Yu. Hydroxylchondrodite Mg₅(SiO₄)₂(OH)₂: A new mineral of the humite group and its crystal structure // Doklady Earth Sciences. 2011. V. 436. P. 230–236.
- 6. Ferraris G., Prencipe M., Sokolova E., Gekimyants V.M., Spiridonov E.M. Hydroxylclinohumite, a new member of the humite group: Twinning, crystal structure and crystal chemistry of the clinohumite sub-group // Zeitschrift für Kristallographie Crystalline Materials. 2000. V. 215(3). P. 169–173.
- Wunder B., Medenbach O., Daniels P., Schreyer W. First synthesis of the hydroxyl end-member of humite, Mg₇Si₃O₁₂(OH)₂ // American Mineralogist. 1995. V. 80. P. 638–640.
- 8. *Redhammer G.J., Roth G., Amthauer G.* Ca₃GeO₄Cl₂ with a norbergite-like structure // Acta Cryst. 2007. C63. i69–i72.
- 9. Voron'ko Yu.K., Sobol' A.A., Shukshin V.E., Zagumennyi A.I., Zavartsev Yu.D., Kutovoi S.A. Structural transformations in LiGd₉(SiO₄)₆O₂ and Ca₂Gd₈(SiO₄)₆O₂ crystals containing isolated [SiO₄] complexes: Raman spectroscopic study // Phys. Solid State. 2012. V. 54. P. 1635–1642.
- Melcher C.L., Schweitzer J.S. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator // IEEE Transactions on Nuclear Science. 1992. V. 39(4). P. 502–505.
- Yu Ye, Smyth J.R., Jacobsen S.D., Céline G. Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth's interior // Contributions to Mineralogy and Petrology. 2013. V. 165. P. 563–574.

- Liu D., Pang Y., Yu Ye, Jin Z., Smyth J.R., Yang Y., Zhang Z., Wang Z. Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth's interior // Contributions to Mineralogy and Petrology. 2013. V. 165. P. 563–574.
- 13. Sasaki A., Himeda A., Konaka H., Muroyama N. Ab initio crystal structure analysis based on powder diffraction data used PDXL // Rigaku J. 2010. V. 26. P. 10–14.
- Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. RietveldToTensor: Program for Processing Powder X-Ray Diffraction Data under Variable Conditions // Glass Phys. Chem. 2018. V. 44. P. 33–40.
- Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Crystallogr. 2011. V. 44. P. 1272–1276.
- 16. Zulumyan N., Isahakyan A., Beglaryan H., Melikyan S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite // J. Therm. Anal. Calorim. 2018. V. 131. P. 1201–1211.
- Бирюков Я.П., Бубнова Р.С., Филатов С.К., Гончаров А.Г. Синтез и термическое поведение оксобората Fe₃O₂(BO₄) // Физика и химия стекла. 2016. Т. 42. С. 284–290.
- 18. Бирюков Я.П., Филатов С.К., Вагизов Ф.Г., Зинатуллин А.Л., Бубнова Р.С. Термическое расширение антиферромагнетиков FeBO₃ и Fe₃BO₆ вблизи температуры Нееля // Журн. структурной химии. 2018. Т. 59. С. 2041–2048.
- Бирюков Я.П., Бубнова Р.С., Дмитриева Н.В., Филатов С.К. Термическое поведение антиферромагнетиков FeBO₃ и Fe₃BO₆ при отрицательных температурах // Физика и химия стекла. 2019. Т. 45. С. 184–188.
- 20. Филатов С.К. Обобщенная концепция повышения симметрии кристаллов с ростом температуры // Кристаллография. 2011. Т. 56(6). С. 1019–1028.