УДК 550.388.8:551.510.535.2

ОТКЛИК СОБСТВЕННОГО ИЗЛУЧЕНИЯ ОБЛАСТИ МЕЗОПАУЗЫ НА КОРОТКОПЕРИОДИЧЕСКИЕ ИЗМЕНЕНИЯ СОЛНЕЧНОЙ АКТИВНОСТИ

© 2023 г. В. И. Перминов^{1, *}, Н. Н. Перцев^{1, **}, П. А. Далин^{2, 3}, В. А. Семенов¹,

В. А. Суходоев¹, И. В. Медведева^{1, 4}, Ю. А. Железнов⁵

¹Институт физики атмосферы им. А.М. Обухова РАН, Москва, Россия ²Шведский институт космической физики, Кируна, Швеция ³Институт космических исследований РАН, Москва, Россия ⁴Институт солнечно-земной физики СО РАН, Иркутск, Россия ⁵Институт электрофизики и электроэнергетики РАН, Санкт-Петербург, Россия ^{*}e-mail: v.perminov@rambler.ru **e-mail: n.pertsev@bk.ru Поступила в редакцию 25.05.2022 г. После доработки 22.06.2022 г. Принята к публикации 20.07.2022 г.

Исследовано влияние 27-суточной солнечной осцилляции на температуру и интенсивность излучения области мезопаузы по одночасовым полуночным наблюдениям полос $O_2A(0-1)$ и OH(6-2) на Звенигородской научной станции в период 2000–2021 гг. Установлено, что отклик на изменение солнечной активности наблюдается во всех характеристиках атмосферного излучения как по годовым, так и по сезонным данным. В зимний период они статистически значимы для всех характеристик атмосферного излучения, а летом только для интенсивности $O_2A(0-1)$. В летний период положительный отклик для излучения молекулярного кислорода ниже зимнего значения приблизительно в 2 раза. Обнаружено, что вариации в характеристиках атмосферного излучения находятся близко к противофазе с 27-суточной солнечной осцилляцией. При этом температура излучающего гидроксила в зимний период испытывает колебания со сдвигом на треть периода относительно максимума солнечной вариации.

DOI: 10.31857/S0016794022060116, EDN: ACRJLQ

1. ВВЕДЕНИЕ

Мезопауза – область атмосферы 80-100 км, часто также называемой верхней мезосферой и нижней термосферой, является местом активного преобразования энергии поглощенного солнечного УФ-излучения и энергии, поступающей посредством широкого спектра волн из нижних слоев атмосферы. В результате в ней возникают различного масштаба пространственно-временные изменения в структуре и термодинамике газового состава. Воздействие солнечного излучения на атмосферу происходит циклично, в основном с периодами около 27 сут и 11 лет. Последняя из этих двух осцилляций является наиболее мошной, и вследствие этого ее влияние на средние и верхние слои атмосферы наиболее изучено. Менее исследованной является 27-суточная осцилляция, ассоциируемая с каррингтоновским циклом вращения Солнца. Она возникает вследствие того, что активные области на поверхности Солнца, обусловливающие повышенное УФ-излучение, могут сохраняться в течение нескольких оборотов. Спорадичность возникновения и исчезновения активных областей по времени вызывает нарушение периодичности и изменение ее фазы, что может затруднять исследование влияния короткопериодических вариаций на атмосферу Земли.

Одна из первых работ, в которой было обращено внимание на существование 27-суточной осцилляции в верхней атмосфере, является публикация Шефова [1967], посвященная анализу измерений гидроксильного излучения области мезопаузы. На ее основании были получены эмпирические закономерности поведения излучения гидроксила и его вращательной температуры в зависимости от межсуточного изменения солнечной активности [Шефов и др., 2006]. В дальнейшем в области мезосферы и нижней термосферы 27-суточная солнечная осцилляция была идентифицирована в температуре [Шпынев и др., 2014; Hood et al., 1991; Hall et al., 2006; Dyrland and Sigernes, 2007; von Savigny et al., 2012; Thomas et al., 2015], ветре [Luo et al., 2001; Guharay et al., 2017], характеристиках мезосферных серебристых облаков [Robert et al., 2010; Thurairajah et al., 2017; Köhnke et al., 2018; Dalin et al., 2018], амплитуде полусуточного прилива [Pancheva et al., 2003], содержании гидроксила [Shapiro et al., 2012; Fytterer et al., 2015], перегидроксила [Wang et al., 2015], водяного пара [Shapiro et al., 2012; Thomas et al., 2015; Lainer et al., 2016], атомарного кислорода [Lednyts'kyy et al., 2017], озона [Hood et al., 1991; Fytterer et al., 2015] и высоте отражения радиоволн [von Savigny et al., 2019]. Ее влияние на малые газовые составляющие и температуру средней и верхней атмосферы было исследовано на климатической модели HAMMONIA [Gruzdev et al., 2009]. Таким образом, исследованиям, связанным с воздействием короткопериодических солнечных вариаций на мезосферу и нижнюю термосферу, уделяется большое внимание. В настоящей работе с подобной целью анализируются наблюдения характеристик собственного излучения области мезопаузы, выполненные на Звенигородской научной станции (56° N, 37° E) Института физики атмосферы им. А.М. Обухова РАН (Москва) в 2000-2021 гг. В статье [Gruzdev et al., 2009] обращено внимание на сезонные различия солнечного отклика средней атмосферы. Это связано с тем, что термодинамический режим средней и верхней атмосферы в зимний и летний периоды различен и вследствие этого может более или менее восприимчив к влиянию солнечной активности. Настоящая работа в значительной степени направлена на выявление сезонности солнечного отклика в характеристиках излучения мезопаузы.

2. ДАННЫЕ

В качестве характеристик собственного излучения области мезопаузы и индикатора солнечной активности были использованы следующие данные.

1. Интенсивности (*I*) полос излучения (0-1) 865 нм Атмосферной системы молекулярного кислорода (в дальнейшем $O_2A(0-1)$) и (6-2) 835 нм гидроксила (OH(6-2)), измеряемые в рэлеях (1 Рл = = 10⁶ фотон см⁻² с⁻¹).

2. Вращательная температура (T) колебательно-возбужденного гидроксила (OH*), определяемая по интенсивности первых трех линий P1-ветви полосы OH(6-2) в градусах Кельвина (K). Предполагается, что распределение населенностей по низким вращательным уровням находится в тепловом равновесии с окружающими молекулами атмосферы, и, следовательно, вращательная температура отражает температуру в области излучения гидроксила. 3. Поток солнечного излучения в линии Лайман-альфа 121.6 нм (*Ly*- α) в единицах 10¹¹ фотон см⁻² с⁻¹, принятых за 1 *sfu* (solar flux unit).

Исследуемые эмиссии излучения мезопаузы возникают в результате химических реакций процесса рекомбинации атомарного кислорода. В ночное время излучение $O_2A(0-1)$ локализуется в слое 85–105 км с пиком ~94 км [Шефов и др., 2006]. Полоса ОН(6-2) возникает в области 75–100 км с максимумом ~87 км [Шефов и др., 2006].

Наблюдения полос излучения О₂А(0-1) и ОН(6-2) велутся на Звенигородской научной станции в ночное время с помощью светосильного спектрографа СП-50, оснащенного регистрирующей камерой с высокочувствительной ПЗС-матрицей. Поле зрения (около 9°) спектрального прибора центрировано на северо-запад (азимут 23°. отсчитывается от севера на запад) при зенитном угле 53°. Время экспозиции спектра составляло 10 мин. Условия наблюдений и характеристики прибора позволяли определять интенсивности полос излучения с ошибкой измерения 5-6 рэлей, а вращательную температуру с точностью до 2 К. Полученные интенсивности эмиссий приводились к зенитным условиям. Более детальное описание аппаратуры, методики наблюдений, обработки спектров и определения характеристик эмиссий молекулярного кислорода и гидроксила дано в работах [Семенов и др., 2002; Шефов и др., 2006; Pertsev and Perminov, 2008].

Данные по потоку солнечного излучения в линии *Ly*-α взяты согласно LASP Interactive Solar Irradiance Data Center (https://lasp.colorado.edu/lisird). Они представляют собой ряд данных, полученный как по прямым измерениям с помощью спутниковых приборов, так и с учетом моделей, связывающих индексы солнечного излучения в различных спектральных диапазонах.

3. АНАЛИЗ

На рисунке 1 представлены анализируемые данные для периода 2000-2021 гг. Каждое значение характеристик излучения области мезопаузы является средним с 21 до 22 ч по всемирному времени (UT), т.е. около местной полуночи. Такой суточный интервал времени позволял измерять характеристики излучения как зимой, так и летом, обеспечивая круглый год достаточный угол погружения Солнца на широте наблюдения (56° N). Значения солнечного потока излучения в линии Lv-α относятся к 12:00 UT каждого дня. В отличие от ряда *Ly*-а, имеющего ежесуточные значения, ряды интенсивностей полос $O_2A(0-1)$ и OH(6-2) и температуры ОН* не являются непрерывными. Их значения были взяты либо только для ясных ночей, как в случае каждой интенсивности

(1911 значений), либо для ясных и полуоблачных ночей, как в случае температуры (2456 значений).

Данные, показанные на рис. 1, имеют значительные межсуточные, сезонные, межгодовые вариации и трендовые составляющие. В этом случае, чтобы провести анализ влияния короткопериодических изменений солнечной активности на характеристики атмосферного излучения. необходимо предварительно удалить долговременные изменения из всех рядов. Для этого из ряда $Ly-\alpha$ (рис. 1*г*) было удалено бегущее 27-суточное среднее, что позволило оставить в остаточных данных только каррингтоновский цикл и его гармоники (см. ΔLv - α на рис. 2 ϵ). Однако такой подход к выделению долговременных изменений и их удалению из рядов данных с большими разрывами, характерными для анализируемых характеристик атмосферного излучения, был нецелесообразен из-за возможных существенных ошибок в оценке колебаний в остаточных данных. Поэтому был использован подход с удалением статистически значимых гармоник годового хода, широко применяемого для анализа планетарных волн и их активности [Bittner et al., 2000; Perminov et al., 2014; Reisin et al., 2014]. Он заключался в следующем. Для всех интервалов времени с 1 января по 31 декабря и с 1 июля одного года по 30 июня последующего года методом множественной регрессии были определены значимые годовые гармоники: первые четыре для интенсивностей излучения и первые две для температуры ОН*. Гармоники, определенные по первому интервалу, вычитались из соответствующих рядов на временном отрезке с 1 апреля по 30 сентября, а гармоники, определенные по второму интервалу, – из данных, полученных с 1 октября по 31 марта. Такой подход к анализу данных дал возможность удалить из них помимо основных внутригодовых гармонических вариаций также многолетний тренд и межгодовые вариации. Дополнительно ряды остаточных значений были проанализированы методом Ломба-Скаргла [Lomb, 1976; Scargle, 1982] на статистическую значимость более высоких гармоник годового хода. Метод показал, что значимыми являются пятая гармоника для интенсивностей и с третьей по седьмую гармонику для температуры гидроксила. В последующем они были также вычтены. На рисунке 2а, 26, 2в представлены полученные ряды остаточных значений атмосферных характеристик $-\Delta I$ и ΔT .

Анализ данных рис. 2 был проведен методом парной линейной регрессии с применением сдвига временны́х рядов друг относительно друга на задаваемый временно́й промежуток (лаг, Δt), при котором определяется влияние солнечного потока Лайман-альфа на характеристику атмосферного излучения с некоторым запаздыванием (положительные значения Δt) или опережением (отрицательные значения Δt). Этот метод аналогичен кросс-корреляции, только здесь искомым параметром является коэффициент регрессии ($S_{Lv-\alpha}$). Анализ был выполнен как раздельно по сезонам, а именно для данных, полученных зимой и летом. так и для данных, полученных в течение всех сезонов года. Для зимнего периода были использованы данные с 1 октября по 31 марта, а для летнего – с 15 мая по 15 августа. На рисунке 3 показаны результаты анализа. Как видно, летом коэффициент регрессии значим с вероятностью более 95% только для О₂A(0-1). Зимой его значения значимы с такой же вероятностью для всех характеристик атмосферного излучения. Без учета сезона он также высокозначимый для обеих полос излучения, но для температуры его статистическая значимость на уровне 90%. Поскольку вариации солнечной активности являются периодическими, то анализ в некоторых случаях показал наряду с положительными значениями коэффициента регрессии также отрицательные со сдвигом во временном лаге, близким к полупериоду солнечного колебания. В таблице 1 показаны коэффициенты регрессии с наибольшей статистической значимостью в области положительных значений. Кроме того, указаны их значения в процентах относительно среднесезонных и среднегодовых величин характеристик атмосферного излучения. Последние представлены в табл. 2. Они оценены с помощью гармонического анализа методом множественной регрессии. Для определения среднего значения соответствующей выборки данных использовались только статистически значимые гармоники: пять для интенсивностей атмосферного излучения и семь для температуры.

4. ОБСУЖДЕНИЕ

Полученные результаты анализа свидетельствуют, что воздействие короткопериодических вариаций солнечной активности вызывает соответствующие колебания интенсивности излучения и температуры области мезопаузы. Наибольший эффект наблюдается в зимний период. Предельную оценку средней амплитуды (*A*) колебаний характеристик атмосферного излучения можно сделать по формуле

$$A = S_{Ly-\alpha} \sqrt{2\sigma_{\Delta Ly-\alpha}^2},$$

где $\sigma_{\Delta Ly-\alpha}$ — стандартное отклонение значений ΔLy - α для его конкретной выборки (по всей совокупности данных на рис. 2г оно составляет около 0.15 *sfu*). Предполагается, что основной вклад в $\sigma_{\Delta Ly-\alpha}$ вносит 27-суточная осцилляция. Расчет на основании данных табл. 1 показывает, что для излучения O₂A(0-1) амплитуда может составлять ~6.6 Рл (~2.7%) летом и ~13.8 Рл (~5.0%) зимой. Без учета сезонности — ~9 Рл (~3.5%). Для излучения OH(6-2) — ~29 Рл (~4.0%) зимой и ~15.4 Рл

Рис. 1. Временны́е ряды интенсивности (*I*) эмиссий $O_2A(0-1)$ (*a*), OH(6-2) (*б*), температуры OH* (*в*) по наблюдениям на Звенигородской станции в 2000–2021 гг. и потока солнечного *Ly*- α излучения (*г*). Значения характеристик атмосферного излучения соответствуют средним для 21–22 ч UT. Значения потока *Ly*- α указаны для 12 ч UT.

Рис. 2. Временны́е ряды остаточных значений: a -эмиссии O₂A(0-1) (ΔI); $\delta -$ эмиссии OH(6-2) (ΔI); e -температуры OH* (ΔT) и e -потока солнечного *Ly*- α излучения (ΔLy - α).

(~2.2%) без учета сезона. Для температуры OH* – ~1.1 К зимой и ~0.3 К без учета сезона. В периоды максимумов солнечной активности 11-летнего цикла, когда 27-суточные колебания Ly- α имеют более высокие амплитуды (см. рис. 2e), вышеприведенные значения стоит увеличить в ~1.5 раза.

Судя по рис. 3 в большинстве случаев колебания характеристик атмосферного излучения и солнечного потока Ly- α находятся вблизи противофазного состояния. Только в зимний период колебания температуры OH* расходятся с колебаниями солнечной активности на треть периода.

Рис. 3. Коэффициенты регрессии ($S_{Ly-\alpha}$) для лета (a, δ, e), зимы (e, d, e) и без учета сезонности (\mathcal{K}, s, u). Штриховая линия – 95%-й уровень значимости.

Определенные в настоящей работе количественные значения амплитуд характеристик атмосферного излучения оказались значительно меньше обнаруженных Шефовым и др. [2006]. Ее авторы установили, что при средней солнечной активности в 11-летнем цикле для средних широт и среднегодовых условий амплитуды вариаций интенсивности излучения гидроксила и его температуры в течение 27-суточного цикла достигают соответственно 10% и 10 К. По их данным временной лаг между максимумами вариаций солнечной активности и характеристиками излучения ОН составил ~5 сут. Еще более высокая амплитуда 27-суточных вариаций температуры гидроксила (~20 К) была получена по зимним высокоширотным наблюдениям [Ярин, 1970]. Значительное расхождение результатов более ранних работ с результатами настоящего анализа может быть отнесено к недостаточно большой статистической выборке данных, использованных в предыдущих работах [Шефов, 1967; Ярин, 1970; Шефов и др., 2006]. Кроме того, высокая амплитуда вари-

ОТКЛИК СОБСТВЕННОГО ИЗЛУЧЕНИЯ ОБЛАСТИ МЕЗОПАУЗЫ

Характеристика атмосферного излучения	Коэффициент регрессии		D		
	<i>S</i> _{Ly-α} , Рл/sfu или K/sfu	$S_{Ly-\alpha}, \%/sfu$	временной лаг Δt , сут		
Лето					
Интенсивность O ₂ A(0-1)	30.9 ± 26.1	12.6 ± 10.6	12		
Зима					
Интенсивность O ₂ A(0-1)	65.4 ± 52.5	23.7 ± 19.0	15		
Интенсивность ОН(6-2)	136.6 ± 102.9	19.0 ± 14.3	14		
Температура ОН*	5.4 ± 3.9	2.6 ± 1.9	9		
Все сезоны					
Интенсивность О ₂ А(0-1)	42.4 ± 22.7	16.6 ± 8.9	16		
Интенсивность ОН(6-2)	72.5 ± 50.6	10.4 ± 7.3	16		
Температура ОН*	1.5 ± 2.0	0.8 ± 1.0	17		

Таблица 1. Результаты регрессионного анализа

Примечание. Значения в процентах даны относительно среднесезонных и среднегодовых значений характеристик атмосферного излучения. В качестве ошибки указан 95%-й доверительный интервал.

Таблица 2. Средние значения характеристик атмосферного излучения по наблюдениям в 2000-2021 гг.

Характеристика атмосферного излучения	Среднее значение для лета	Среднее значение для зимы	Среднегодовое значение
Интенсивность О ₂ А(0-1), Рл	245.4 ± 3.4	275.9 ± 3.1	255.4 ± 2.9
Интенсивность ОН(6-2), Рл	711.5 ± 9.4	720.0 ± 6.1	695.2 ± 5.9
Температура ОН*, К	166.3 ± 1.0	206.4 ± 0.5	191.7 ± 0.2

Примечание. В качестве ошибки показано стандартное отклонение среднего.

аций, обнаруженная в работе [Ярин, 1970], скорее всего обусловлена широтной неоднородностью отклика температуры OH* на изменения солнечной активности. В работе [Gao et al., 2016] показано, что такая зависимость наблюдается при влиянии 11-летнего солнечного цикла на эмиссии излучения мезосферы и нижней термосферы. Lednyts'kyy et al. [2017] также отмечают, что наибольший температурный отклик на 27-суточные осцилляции солнечной активности наблюдается в области полярной мезопаузы.

Коэффициенты регрессий $S_{Ly-\alpha}$, полученные в настоящем исследовании и при анализе отклика характеристик атмосферного излучения на 11-летние изменения солнечной активности [Перминов и др., 2014; Перминов и др., 2021; Регтіпоv et al., 2014; Dalin et al., 2020], являются сравнимыми по величине. Только в случае излучения $O_2A(0-1)$ можно отметить, что сезонные отклики на межгодовые изменения солнечной активности превышают настоящие приблизительно в 1.5 раза. Однако они не выходят за пределы стандартного отклонения среднего. Кроме того, можно отметить, что для всех характеристик атмосферного излучения их межгодовые вариации синфазны с 11-летними вариациями солнечной активности.

В случае 27-суточных осцилляций наблюдается в основном противофазность за исключением зимних колебаний температуры, когда фазовый сдвиг составляет около трети периода. Следует заметить, что von Savigny et al. [2012], используя спутниковые наблюдения Envisat/SCIAMACHY температуры ОН* в экваториальной области, определили нулевой фазовый сдвиг и величину отклика, сопоставимую с величиной отклика на 11-летний солнечный цикл. Это дало авторам основания полагать, что физический механизм влияния солнечной активности для 27-суточного и 11-летнего цикла один и тот же. Он заключается в том, что рост солнечного ультрафиолетового излучения ведет к изменению концентраций химического состава верхних слоев атмосферы и увеличению интенсивности экзотермических реакций. Согласно модельным исследованиям [Schmidt et al., 2006] этот механизм является основным. Кроме того, при изменении концентраций химического состава происходит рост атомарного кислорода (за счет увеличения диссоциации O_2), что приводит к росту интенсивности излучения молекулярного кислорода и гидроксила. Вследствие этого наблюдается синхронность 11-летних циклов солнечной активности и интенсивности атмосферного излучения.

Подобно исследованиям von Savignv et al. [2012] нулевой слвиг фаз максимумов получен по высокоширотным спутниковым наблюдениям AIM/SOFIE температуры в области верхней мезосферы и нижней термосферы [Thomas et al., 2015]. Также близкий к нулевому сдвигу фаз (лаг 3-7 сут) дает модель HAMMONIA для температуры и атомарного кислорода в области мезопаузы [Gruzdev et al., 2009]. Противофазные осцилляции в содержании атомарного кислорода в нижней термосфере обнаружены в работе Lednyts'kyv et al. [2017] по спутниковым наблюдениям Envisat/SCIAMACHY в экваториальной области. Они же отметили, что атомарный кислород в данной области атмосферы синхронно меняется с 11-летним солнечным циклом, и обратили внимание на необходимость рассматривать различные механизмы влияния солнечной активности при ее короткопериодных и длиннопериодных вариациях. Было предположено, что 27-суточная осцилляция в концентрации атомарного кислорода может вызываться изменениями в динамике. В этом случае необходимо рассматривать изменения соответствующего временного масштаба скорости вертикального и меридионального ветра, ответственного за пространственное перераспределение атомарного кислорода. Эти изменения, например, могут быть следствием модуляции амплитуд гармоник суточного прилива 27-суточной солнечной осцилляцией в нижних слоях атмосферы [Pancheva et al., 2003], либо следствием проникновения 27-суточных планетарных волн (типа Россби) из тропосферы, где они возникают из-за модуляции конвективной активности 27-суточной солнечной осцилляцией [Huang et al., 2015].

Обнаруженные сезонные различия влияния солнечной активности возможно связаны с тем, что летом возникает конкуренция межлу его динамическими и фотохимическими механизмами. Понижению влияния динамического фактора могут способствовать неблагоприятные условия для вертикального перераспределения атомарного кислорода. Так, в это время года фоновый вертикальный ветер направлен вверх [Brasseur and Solomon, 2005], тем самым препятствуя поступлению атомарного кислорода из термосферы в область мезопаузы. Модельные исследования [Gruzdev et al., 2009] также показали, что вне тропической области должна возникать сезонность в поведении отклика на 27-суточные солнечные осцилляции: зимой больше, чем летом.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе исследовано влияние 27-суточной солнечной осцилляции на темпера-

туру и интенсивность излучения области мезопаузы по одночасовым полуночным наблюдениям на Звенигородской научной станции полос $O_2A(0-1)$ и OH(6-2) в период 2000—2021 гг. Установлено, что отклик на изменение солнечной активности наблюдается во всех характеристиках атмосферного излучения. Статистически значимые значения отклика получены как для годовых данных, так и для сезонных значений: в зимний период для всех характеристик атмосферного излучения и летом для интенсивности $O_2A(0-1)$. Количественные результаты следующие.

1. Для годовых данных положительные отклики (коэффициенты регрессии) составляют около 17%/sfu для излучения молекулярного кислорода, 10%/sfu для излучения гидроксила и 1.5 K/sfu для температуры OH* при временном лаге 16–17 сут.

2. Для зимнего периода значения откликов выше и составляют около 24%/sfu и 19%/sfu соответственно для излучения молекулярного кислорода и гидроксила при лагах 14—15 сут. Для температуры отклик достигает 5.4 K/sfu при лаге 9 сут.

3. В летний период положительный отклик для излучения молекулярного кислорода ниже зимнего в ~2 раза и составляет около 13%/sfu при лаге 12 сут.

Полученные значения временно́го лага для солнечного отклика или иначе фазового сдвига между максимумами осцилляций солнечного потока Лайман-альфа и характеристиками атмосферного излучения свидетельствуют в пользу динамического механизма солнечного влияния в области мезопаузы.

Предполагается, что сезонные различия влияния солнечной активности обусловлены тем, что зимой доминирует динамический механизм, а летом вследствие конкуренции между фотохимическим и динамическим механизмами, действующими в противофазе, солнечный отклик ослабевает или становится незначимым.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации по проекту № 129-2022-0018.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Перминов В.И., Семенов А.И., Медведева И.В., Перцев Н.Н. Изменчивость температуры в области мезопаузы по наблюдениям гидроксильного излучения на средних широтах // Геомагнетизм и аэрономия. Т. 54. № 2. С. 246-256. 2014. – Перминов В.И., Перцев Н.Н., Далин П.А., Железнов Ю.А., Суходоев В.А., Орехов М.Д. Сезонные и многолетние изменения интенсивности атмосферного излучения $O_2(b^{1}\Sigma)$ и ОН($X^{2}\Pi$) области мезопаузы // Геомагнетизм и аэрономия. Т. 61. № 4. С. 532–543. 2021.

- Семенов А.И., Баканас В.В., Перминов В.И., Железнов Ю.А., Хомич В.Ю. Спектр излучения ночной верхней атмосферы Земли в ближней инфракрасной области // Геомагнетизм и аэрономия. Т. 42. № 3. С. 407– 414. 2002.

— Шефов Н.Н. Некоторые свойства гидроксильного излучения // Полярные сияния и свечение ночного неба. № 13. С. 37–43. 1967.

— Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы — индикатор ее структуры и динамики. М.: ГЕОС, 740 с. 2006.

- Шпынев Б.Г., Ойнац А.В., Лебедев В.П., Черниговская М.А., Орлов И.И., Белинская А.Ю., Грехов О.М. Проявление гравитационных приливов и планетарных волн в долговременных вариациях геофизических параметров // Геомагнетизм и аэрономия. Т. 54. № 4. С. 540–552. 2014.

- Ярин В.И. Связь гидроксильного излучения с метеорологическими условиями над Якутском // Полярные сияния и свечение ночного неба. № 18. С. 18–20. 1970.

− Bittner M., Offermann D., Graef H.H. Mesopause temperature variability above a midlatitude station in Europe // J. Geophys. Res. V. 105. \mathbb{N}° D2. P. 2045–2058. 2000.

- *Brasseur G., Solomon S.* Aeronomy of the middle atmosphere. Dordrecht: Springer, 646 p. 2005.

- Dalin P., Pertsev N., Perminov V. et al. Response of noctilucent cloud brightness to daily solar variations // J. Atmos. Sol.-Terr. Phys. V. 169. P. 83–90. 2018.

- Dalin P., Perminov V., Pertsev N., Romejko V. Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds // J. Geophys. Res. – Atmos. V. 125. e2019JD0308142020.

https://doi.org/10.1029/2019JD030814

– Dyrland M.E., Sigernes F. An update on the hydroxyl airglow temperature record from the Auroral Station in Adventdalen, Svalbard (1980–2005) // Can. J. Phys. V. 85. P. 143–151. 2007.

- Gao H., Xu J., Chen G.-M. The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation // J. Geophys. Res. – Space. V. 121. P. 1627–1642. 2016.

- *Gruzdev A.N., Schmidt H., Brasseur G.P.* The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model // Atmos. Chem. Phys. V. 9. P. 595–619. 2009.

- Guharay A., Batista P.P., Buriti R.A., Schuch N.J. Signature of the 27-day oscillation in the MLT and its relation with solar irradiance and convection // J. Atmos. Sol.-Terr. Phys. V. 161. P. 1–7. 2017.

- Fytterer T., Santee M.L., Sinnhuber M., Wang S. The 27 day solar rotational effect on mesospheric nighttime OH and O_3 observations induced by geomagnetic activity // J. Geophys. Res. V. 120. P. 7926–7936. 2015.

- Hall C.M., Aso T., Tsutsumi M., Hoffner J., Sigernes F., Holdsworth D.H. Neutral air temperature at 90 km and 70° N and 78° N // J. Geophys. Res. V. 111. D14105. 2006. https://doi.org/10.1029/2005JD006794

- Hood L.L., Huang Z., Bougher S.W. Mesospheric effects of solar ultraviolet variations: Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data // J. Geophys. Res. V. 96. № D7. P. 12989–13002. 1991.

- Huang K.M., Liu A.Z., Zhang S.D., Yi F., Huang C.M., Gan Q., Gong Y., Zhang Y.H., Wang R. Observational evidence of qusi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N // Ann. Geophysicae. V. 33. P. 1321–1330. 2015.

- Köhnke M.C., von Savigny C., Robert C.E. Observation of a 27-day solar signature in noctilucent cloud altitude // Adv. Space Res. V. 61. № 10. P. 2531–2539. 2018.

– Lainer M., Hocke K., Kämpfer N. Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle // J. Atmos. Sol.-Terr. Phys. V. 143–144. P. 71–87. 2016.

- Lednyts'kyy O., von Savigny C., Weber M. Sensitivity of equatorial atomic oxygen in the MLT region to the 11-year and 27-day solar cycles // J. Atmos. Sol.-Terr. Phys. V. 162. P. 136–150. 2017.

- Lomb N.R. Least-squares frequency analysis of unequally spaced data // Astrophys. Space Sci. V. 39. No 2. P. 447–462. 1976.

– Luo Y., Manson A.H., Meek C.E., Igarashi K., Jacobi Ch. Extra long period (20–40 day) oscillations in the meso-spheric and lower thermospheric winds: observations in Canada, Europe and Japan, and considerations of possible solar influences // J. Atmos. Sol.-Terr. Phys. V. 63. № 9. P. 835–852. 2001.

- Pancheva D., Mitchell N., Middleton H., Muller H. Variability of the semidiurnal tide due to fluctuations in solar activity and total ozone // J. Atmos. Sol.-Terr. Phys. V. 65. P. 1–19. 2003.

− Perminov V.I., Semenov A.I., Medvedeva I.V., Zheleznov Yu.A. Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia // Adv. Space Res. V. 54. N° 12. P. 2511–2517. 2014.

- Pertsev N., Perminov V. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia// Ann. Geophysicae. V. 26. № 5. P. 1049– 1056. 2008.

- Reisin E.R., Scheer J., Dyrland M.E. et al. Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesopheric Change (NDMC) // J. Atmos. Sol.-Terr. Phys. V. 119. P. 71–82. 2014.

- Robert C.E., von Savigny C., Rahpoe N., Bovensmann H., Burrows J.P., DeLand M.T., Schwartz M.J. First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency // J. Geophys. Res. V. 115. D00I12. 2010. https://doi.org/10.1029/2009JD012359

Scargle J.D. Studies in astronomical time series analysis.
II. Statistical aspects of spectral analysis of unevenly spaced data // Astrophys. J. V. 263. P. 835–853. 1982.

- Schmidt H., Brasseur G., Charron M., Manzini E., Giorgetta M.E., Fomichev V., Kinnison D., Marsh D., Walters S. The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling // J. Climate. V. 19. P. 3903–3931. 2006. Shapiro A.V., Rozanov E., Shapiro A.I., Wang S., Egorova T., Schmutz W., Peter Th. Signature of the 27-day solar rotation cycle in mesospheric OH and H₂O observed by the Aura Microwave Limb Sounder // Atmos. Chem. Phys. V. 12. P. 3181–3188. 2012.

- Thurairajah B., Thomas G.E., von Savigny C., Snow M., Hervig M.E., Bailey S.M., Randall C.E. Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments // J. Atmos. Sol.-Terr. Phys. V. 162. P. 122–135. 2017.

- Thomas G.E., Thurairajah B., Hervig M.E., von Savigny C., Snow M. Solar induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: drivers of polar mesospheric cloud variability // J. Atmos. Sol.-Terr. Phys. V. 134. P. 56–68. 2015. - von Savigny C., Eichmann K.-U., Robert C.E., Burrows J.P., Weber M. Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle // Geophys. Res. Lett. V. 39. L21804. 2012.

https://doi.org/10.1029/2012GL053563

- von Savigny C., Peters D.H.V., Entzian G. Solar 27-day signatures in standard phase height measurements above central Europe // Atmos. Chem. Phys. V. 19. P. 2079–2093. 2019.

- Wang S., Zhang Q., Millan L., Li K.-F., Yung Y.L., Sander S.P., Livesey N.J., Santee M.L. First evidence of middle atmospheric HO₂ response to 27 day solar cycles from satellite observations // Geophys. Res. Lett. V. 42. P. 10004-10009. 2015.