УЛК 550.388.2

# АЭРОНОМИЧЕСКАЯ И ДИНАМИЧЕСКАЯ КОРРЕКЦИЯ ГЛОБАЛЬНОЙ МОДЕЛИ GTEC ДЛЯ ВОЗМУЩЕННЫХ УСЛОВИЙ

© 2023 г. В. Н. Шубин<sup>1, \*</sup>, Т. Л. Гуляева<sup>1</sup>, М. Г. Деминов<sup>1</sup>

<sup>1</sup>Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), Москва, Троицк, Россия

\*e-mail: shubin@izmiran.ru Поступила в редакцию 30.08.2022 г. После доработки 20.09.2022 г.

Принята к публикации 22.09.2022 г.

Предложена аэрономическая и динамическая коррекция медианной глобальной модели полного электронного содержания GTEC для возмущенных условий ( $Ap \ge 15$  нТл). Глобальная медианная модель GTEC построена для спокойных условий (Ap < 15 нТл) в зависимости от географических координат, мирового времени UT, дня года и уровня солнечной активности — потока солнечного радиоизлучения F10.7. Модель основана на сферическом гармоническом анализе глобальных ионосферных карт GIM-TEC (1996—2019 гг.), предоставленных лабораторией JPL (Jet Propulsion Laboratory, NASA). Предлагаемая глобальная динамическая модель GDMTEC (Global Dynamic Model of TEC) состоит из медианной модели GTEC и ряда динамических и аэрономических поправок к ней, связанных с образованием главного ионосферного провала, аврорального максимума ионизации, а также с изменениями температуры и состава термосферы. Преимущество предлагаемой коррекции медианной модели по сравнению с ассимиляцией текущих наблюдательных данных заключается в независимости прогноза от наличия этих данных в реальном времени. Апробация модели для возмущенных условий показывает улучшение результатов прогноза по сравнению со справочной ионосферной моделью IRI-Plas.

DOI: 10.31857/S0016794022600491, EDN: ADCXDC

#### 1. ВВЕДЕНИЕ

Все параметры ионосферы испытывают флуктуации относительно некоторого фона, за который обычно принимают спокойную медиану. Знание свойств ионосферы для спокойных условий важно при выделении и анализе возмущений любой природы, поскольку параметры ионосферы для спокойных условий служат фоном, относительно которого определяются эти возмущения. Флуктуации ионосферной плазмы обусловлены как постоянно существующими факторами (например, приливы, планетарные волны и внутренние гравитационные волны в атмосфере), так и эффектами, связанными с магнитосферными суббурями и бурями [Деминов, 2015]. Значительные по амплитуде флуктуации параметров ионосферы называют ионосферными возмущениями.

Основными механизмами ионосферных возмущений являются изменения состава нейтральной атмосферы, термосферные ветры и электродинамические процессы. Оценка и прогноз этих явлений в реальном времени все еще нуждаются в улучшении из-за ограниченности средств мониторинга и точных методов прогноза. Поэтому наиболее надежными средствами для их описа-

ния являются модели нейтральной атмосферы и ионосферы. Они находят широкое применение в космических навигационных и радиолокационных системах, которые требуют ионосферной коррекции для учета задержки сигнала или ошибок дальности. Широко известны 3-мерные эмпирические модели ионосферы, позволяющие выполнять долгосрочные (на месяцы и годы) прогнозы ключевых ионосферных параметров [Bilitza et al., 2017; Gulyaeva and Bilitza, 2012 и ссылки там]. Для более детальных краткосрочных ионосферных прогнозов (на часы и дни) применяются адаптивные модели, использующие ассимиляцию наблюдательных данных в реальном времени [Кринберг и др., 1986; Gulyaeva et al., 2013; Galkin et al., 2022]. В литературе представлены краткосрочные прогнозы карт полного электронного содержания GIM-TEC с применением нейронных сетей [Cesaroni et al., 2020; Liu et al., 2020]. Статистические методы успешно применяются для прогноза глобальных карт GIM-TEC с заблаговременностью от 1 до 10 дней [Lean, 2019; Iluore and Lu, 2022]. Однако для применения этих методов на практике требуется специальное вычислительное обеспечение, что не всегда возможно для заинтересованных пользователей.

Альтернативная возможность — адаптация медианной модели ионосферы по аэрономическим и динамическим параметрам, связанным с движением высокоширотных структур, выраженным аналитически, как это было принято в динамической модели критической частоты слоя F2 [Шубин и Деминов, 2019]. Преимущество такой коррекции медианной модели по сравнению с ассимиляцией текущих наблюдательных данных заключается в независимости от наличия этих данных в реальном времени.

Ошибки распространения радиосигнала в ионосфере пропорциональны общему содержанию электронов в ионосфере ТЕС на пути радиолуча. Поэтому удобная для пользователя модель ТЕС, охватывающая глобальный масштаб и все уровни солнечной и геомагнитной активности. может быть полезной в различных приложениях. В данной работе предложена аэрономическая и динамическая коррекция глобальной медианной модели полного электронного содержания GTEC (Shubin and Gulyaeva, 2022), подобно динамической модели критической частоты foF2 [Шубин и Деминов, 2019]. В разделе 2 представлены подробности аэрономической и динамической коррекции медианной модели GTEC. В разделе 3 приведены примеры применения адаптированной модели GDMTEC. В разделе 4 дано обсуждение результатов и в разделе 5 приведены выводы.

# 2. АДАПТАЦИЯ МЕДИАННОЙ МОДЕЛИ GTEC К ВОЗМУШЕННЫМ УСЛОВИЯМ

Для построения адаптированной модели GDMTEC нами применен аэрономический подход к описанию ионосферной бури. Он основан на учете физических процессов, происходящих в термосфере. Впервые попытка использовать этот подход для моделирования foF2 была предпринята в работе [Шубин и Аннакулиев, 1995]. В даль-

нейшем с появлением более совершенных термосферных моделей типа NRLMSISE-00 [Picone et al., 2002] и более надежных лабораторных измерений констант скоростей основных ионно-молекулярных реакций [Hierl et al., 1997] данный подход получил свое развитие [Шубин и Аннакулиев, 1997; Аннакулиев и др., 2005]. Результаты его применения для прогноза foF2 изложены в работе [Шубин и Деминов, 2019]. Использование эмпирической модели термосферы NRLMSISE-00 [Picone et al., 2002] в качестве составной части полуэмпирической модели бури в ионосфере позволяет отразить важное свойство ионосферы, а именно, зависимость TEC(t) от предыстории изменения геомагнитной активности через соответствующую зависимость параметров термосферы.

В медианной модели GTEC [Shubin and Gulyaeva, 2022] для того, чтобы отразить предысторию изменения TEC(t) мы ввели новый индекс солнечной активности в виде соотношения:

$$FF = (2F10.7(\tau) + F10.7)/3,$$
 (1)

где интегральный индекс  $F10.7(\tau=0.96)$  представляет собой ряд суточных значений F10.7 с экспоненциальным сглаживанием, предшествующих заданному дню [Шубин и Деминов, 2019]. Индекс F10.7 — это поток солнечного радиоизлучения на длине волны 10.7 см в заданный день. Индексы F10.7 измеряются в единицах  $10^{-22}$  Вт/(Гц м²). Из  $\tau=\exp(-3/T)$  следует, что характерное время T индекса FF составляет около 27 дней, что соответствует одному обороту Солнца.

Модель GTEC для геомагнитно-спокойных условий с Ap < 15 нТл, где Ap — суточный индекс геомагнитной активности, была построена на географической сетке с ячейками  $5^{\circ}$  по долготе и  $2^{\circ}$  по широте. Зависимость GTEC от географических координат в фиксированный момент мирового времени UT для двух уровней солнечной активности — низкой L ( $F10.7 \le 80$ ) и высокой H ( $F10.7 \ge 120$ ) представляется в виде:

$$\begin{cases} GTEC(\varphi, \lambda, FF, UT) = \sum_{m=0}^{M} \sum_{n=m}^{N} P_{n}^{m}(\cos(\vartheta)) \left[ g_{n}^{m}(UT)_{L}\cos(m\lambda) + h_{n}^{m}(UT)_{L}\sin(m\lambda) \right] \\ GTEC(\varphi, \lambda, FF, UT) = \sum_{m=0}^{M} \sum_{n=m}^{N} P_{n}^{m}(\cos(\vartheta)) \left[ g_{n}^{m}(UT)_{H}\cos(m\lambda) + h_{n}^{m}(UT)_{H}\sin(m\lambda) \right], \end{cases}$$
(2)

где  $\vartheta = 90^{\circ} - \varphi$ ;  $\varphi$  —широта;  $\lambda$  — долгота;  $g_n^m$  и  $h_n^m$  — коэффициенты разложения, а  $P_n^m$  ( $\cos \vartheta$ ) — присоединенные функции Лежандра. Для интерполяции по времени было использовано разложение Фурье с периодом T = 24 ч. Для пространственного разложения было использовано N = 15 по ши-

роте и M=10 по долготе сферических гармоник. Количество коэффициентов в разложениях (2) определяется соотношением: J=M(2N-M+1)+N+1. Таким образом, для каждого уровня солнечной активности, месяца и часа UT было получено J=226 коэффициентов. Модель основана на анализе сферических гармоник глобальных карт

полного электронного содержания ионосферы GIM-TEC, построенных в Лаборатории реактивного движения Калифорнийского технологического института, Пасадена, США (https://sideshow.jpl.nasa.gov/pub/iono\_daily/).

Метод построения адаптированной модели GDMTEC аналогичен построению модели GDMF2 [Шубин и Деминов, 2019]. В ней модель отрицательной фазы ионосферной бури для критической частоты foF2 выражена в зависимости от спокойного фонового уровня с помощью коэффициента коррекции  $C_{\text{storm}}$ . Соответствующее соотношение для отрицательной фазы ионосферной бури полного электронного содержания имеет вид:

$$TEC(t) = C_{storm}GTEC,$$
 (3)

где  $C_{\text{storm}} = R(t)/R_{\text{q}}(t)$ , с функциями из (4) представляет собой отношение параметров термосферы на высоте 300 км для геомагнитно-возмущенных R(t) и спокойных  $R_{\text{q}}(t)$  условий, а GTEC — глобальная медианная модель (2) [Shubin and Gulyaeva, 2022]:

$$R(t) = \left(\frac{n(O)}{\beta^{\mu}}\right)^{1.30}, \quad \beta = k_1 n(N_2) + k_2 n(O_2),$$

$$\mu = \frac{m(O)(x+1)}{[m(N_2)x + m(O_2)]}.$$
(4)

Здесь n(O),  $n(N_2)$  и  $n(O_2)$  — концентрации нейтральных составляющих верхней атмосферы; m(O),  $m(N_2)$  и  $m(O_2)$  — молекулярные веса нейтральных составляющих;  $\beta$  — коэффициент линейной рекомбинации ионов  $O^+$ ;  $k_1$  и  $k_2$  — коэффициенты ионно-молекулярных реакций  $O^+$  с  $N_2$  и  $O_2$  [Hierl et al., 1997]. Так как  $TEC(t) \sim (foF2)^2(t)$ , показатель степени в выражении для R(t) уравнения (4) равен 1.30, в отличие от показателя 0.65, полученного для foF2 [Аннакулиев и др., 2005].

Для определения R(t) используется эмпирическая модель NRLMSISE-00 [Picone et al., 2002], которая является глобальной моделью термосферы, применимой при любом уровне солнечной и геомагнитной активности. В ней косвенно учтено, что основной причиной изменений параметров термосферы в периоды геомагнитных бурь является Джоулев нагрев термосферы высоких широт.

В субавроральной и авроральной ионосфере мы вводим динамические поправки к медианному распределению GTEC. Тогда адаптированная модель GTEC будет иметь следующий вид:

GDMTEC = 
$$C_{\text{MIT}} \left[ \left( C_{\text{storm}} \text{GTEC} \right)^2 + C_{\text{AVR}} \exp \left( - \left[ \left( \Phi - \Phi_{\text{AVR}} \right) / \Delta \Phi_1 \right]^2 \right)^{1/2} \right]$$
 (5)

Поправка к GTEC в области главного ионосферного провала (ГИП) обозначена  $C_{\rm MIT}$ , а в авроральном овале —  $C_{\rm AVR}$ . Поправка  $C_{\rm AVR}$  вычисляется по известным исправленным геомагнитным широтам аврорального пика —  $\Phi_{\rm AVR}$  и минимума ГИП —  $\Phi_{\rm MIT}$ . Модели положений минимума провала  $\Phi_{\rm MIT}$ , аврорального максимума  $\Phi_{\rm AVR}$ , а также аэрономические поправки  $C_{\rm MIT}$  и  $C_{\rm AVR}$  в уравнении (5) представлены в виде аналитических зависимостей от местного геомагнитного времени, геомагнитной активности и географической долготы. Выражения для  $\Delta\Phi_{\rm I}$  имеют вид:

$$\Delta\Phi_{1}=1.0(\Phi_{\mathrm{AVR}}-\Phi_{\mathrm{MIT}})/2,$$
 если  $\Phi\leq\Phi_{\mathrm{AVR}},$   $\Delta\Phi_{1}=1.5(\Phi_{\mathrm{AVR}}-\Phi_{\mathrm{MIT}})/2,$  если  $\Phi>\Phi_{\mathrm{AVR}}$ 

(более подробно см. в статьях [Деминов и Шубин, 2018 и Шубин и Деминов, 2019]). Инвариантные геомагнитные широты в уравнениях аэрономических поправок находятся из модели IGRF-13 [Alken et al., 2021]. В качестве индикатора геомагнитной активности нами был введен средневзвешенный по времени индекс  $K^*(t,\tau)=2.1\ln(0.2a_{\rm p}(t,\tau)+1.0)$ , где коэффициент  $\tau=0.6$  определен из условия минимума отклонения моделей от экспериментальных данных,  $a_{\rm p}-3$ -часовой индекс геомагнитной активности. Из  $\tau=\exp(-3/T)$  следует, что характерное время T для индекса  $K^*(t,\tau)$  составляет около 6 ч.

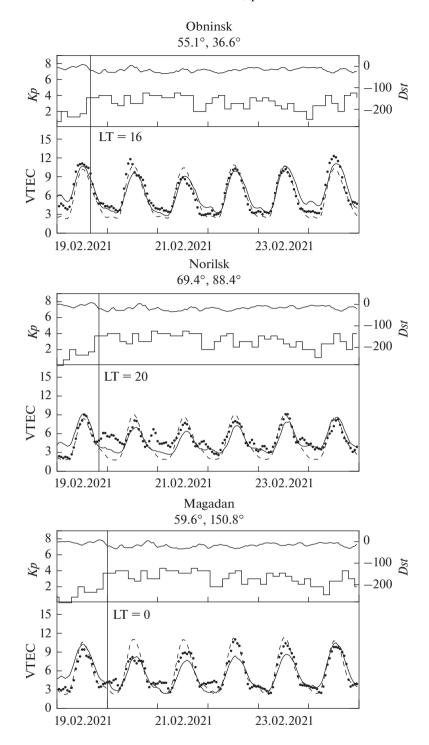
Величина  $C_{\text{storm}}$  также зависит от геомагнитной активности, но с характерным временем  $T \sim 11$  ч, что следует из модели NRLMSISE-00 в уравнениях (3, 4). Таким образом, косвенно учитывается, что реакция аврорального пика ионизации на изменение геомагнитной активности происходит с двумя характерными временами. Вначале изменяется положение и величина этого пика, связанная с изменениями потока высыпающихся авроральных электронов и области локализации этих высыпаний, затем происходит дополнительное изменение величины аврорального пика ионизации, связанное с изменениями температуры и состава термосферы [Деминов и Шубин, 2019; Деминов и др., 2021]. Поправки  $C_{\text{AVR}}$  и  $C_{\text{MIT}}$  существенны только в области аврорального максимума ионизации и ГИП, соответственно они применяются в этих областях наряду с корректирующим выражением  $C_{\text{storm}}$  GTEC в уравнении (5). Вне этих областей  $C_{\text{AVR}} \exp \left(-\left[(\Phi - \Phi_{\text{AVR}})/\Delta \Phi_1\right]^2\right) \ll 1$ и  $C_{\text{MIT}} = 1$ , поэтому  $\text{TEC}(t) = C_{\text{storm}}$  GTEC (уравнение 3) на широтах, расположенных к экватору от ГИП [Деминов и Шубин, 2018].

#### 3. ПРИМЕРЫ ПРИМЕНЕНИЯ АДАПТИРОВАННОЙ МОДЕЛИ GDMTEC

Рассмотрим несколько примеров применения адаптированной модели GDMTEC в периоды геомагнитных возмущений. Для качественной и количественной оценки корректности GDMTEC нами были выбраны три геомагнитные бури в разные сезоны 2021 г: 19.02-24.02.2021 г. (Kp=4.3 и Dst=-32 нТл), 27.08-01.09.2021 г. (Kp=5.0 и Dst=-82 нТл) и 17.10-22.10.2021 г. (Kp=4.0 и Dst=-55 нТл), где в скобках приведены максимальное значение Kp-индекса и минимальное значение Ep-индекса и минимальное значение Ep-индекса

Более детально параметры геомагнитной активности и ионосферы для геомагнитной бури 19.02-24.02.2021 г. представлены на рис. 1-3. На верхней панели рис. 1 представлены изменения геомагнитных индексов *Кр* и *Dst* с местным временем. На нижней панели точками показаны суточные вариации VTEC (вертикального полного содержания электронов) на трех станциях глобальной навигационной спутниковой системы (ГНСС). Нами были выбраны станции в разных долготных и широтных зонах. Станция Обнинск располагается на средних широтах. Станция Норильск относится к высокоширотной зоне и, как будет показано ниже во время выбранных для тестирования ионосферных бурь она находилась в авроральном овале. Станция Магадан лежит в субавроральной зоне вблизи минимума ГИП. Разработанная нами модель GDMTEC представлена сплошными кривыми, модель IRI-Plas [Gulvaeva and Bilitza, 2012], используемая без адаптации к текущим измерениям ТЕС, отмечена штриховыми линиями. Международная справочная модель ионосферы IRI, расширенная до плазмосферы – IRI-Plas, является одной из наиболее известных эмпирических моделей ионосферы и плазмосферы. Интегрирование электронной плотности в модели IRI-Plas производится от 60 км до 20200 км, которая примерно соответствует высоте орбиты ГНСС. Следует отметить, что при вычислениях VTEC в медианной модели IRI-Plas нами были использованы коэффициенты "URSI" с опцией "STORM". На осях абсцисс отложено местное время LT, на осях ординат величины VTEC в единицах 1 TECU =  $10^{16}$  эл/см<sup>2</sup>. На рис. 1 вертикальными линиями выделены местные времена, для которых на рис. 2 для фиксированного времени 14 UT показаны широтные изменения VTEC на долготах, соответствующих трем выбранным наземным станциям ГНСС. На рис. 2 сплошные линии соответствуют модели GDMTEC, штриховые линии — модели IRI-Plas, точки — значения VTEC, полученные из GIM-TEC, крестики – зна-

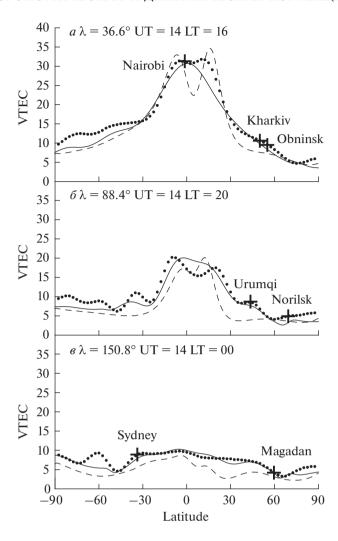
чения VTEC на соответствующих станциях ГНСС. Значения VTEC на этом и последующих рисунках приведены с точностью  $\pm 1^{\circ}$  по долготе и  $\pm 0.3$ h по UT. Отметим, что использованные для тестирования модели GDMTEC данные VTEC из GIM за 2021 г. не входили в построенную нами ранее медианную модель GTEC [Shubin and Gulvaeva, 2022]. Для наглядности на рис. 3 показаны положения анализируемых станций относительно границ аврорального овала ионизации и минимума ГИП в географических координатах в то же самое фиксированное мировое время, что на рис. 2. Эти границы являются элементами модели GDMTEC. Сплошной кривой обозначено положение минимума ГИП, штриховой кривой – положение экваториальной границы, точками положения полярной границы аврорального овала, штрихпунктирной кривой – положение максимума ионизации в авроральном овале. Крестиками обозначены положения станций ГНСС, полюс. Видно, что согласно модели GDMTEC ст. Норильск в 14 UT оказывается в авроральной области, точнее, вблизи экваториальной границы этой области. Станция Магадан расположена в субавроральной области, ст. Обнинск – на средних широтах.


Аналогичные параметры геомагнитной активности, ионосферы, а также модели GDMTEC и IRI-Plas для бури 27.08—01.09.2021 г. представлены на рис. 4—6, а для бури 17.10—22.10.2021 г. — на рис. 7—9. Из данных на рис. 6 и 9 можно видеть, что ст. Норильск находилась почти в центре авроральной области, ст. Магадан — в области минимума ГИП для фиксированных моментов мирового времени в эти геомагнитные бури.

Для оценки эффективности модели GDMTEC были проведены ее сопоставления с величинами VTEC, полученными с помощью наземных приемников ГНСС и из GIM-TEC, а также с моделью IRI-Plas. В качестве количественных оценок результатов сопоставления моделей с наблюдавшимися величинами VTEC используются среднеквадратическая ошибка RMSE (TECU) и среднее относительное отклонение MRD (%) модельных значений VTEC<sub>mod</sub> от наблюдаемых данных VTEC<sub>obs</sub>:

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left( VTEC_{mod}^{i} - VTEC_{obs}^{i} \right)^{2}},$$

$$MRD = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| VTEC_{mod}^{i} - VTEC_{obs}^{i} \right|}{VTEC_{obs}^{i}} \times 100\%,$$


где N — число часовых значений VTEC наземных приемников ГНСС и GIM-TEC, которые были использованы для оценок в каждой геомагнитной буре. Результаты представлены в табл. 1 и 2.



**Рис. 1.** Буря 19.02—24.02.2021 г. На верхних панелях приведены изменения геомагнитных индексов *Кр* и *Dst.* На нижних панелях — суточные вариации VTEC на станциях ГНСС, которые обозначены точками, сплошными линиями — модель GDMTEC, штриховыми линиями — модель IRI-Plas. По оси абсцисс отложено локальное время LT.

В таблице 1 приведены результаты расчета по модели IRI-Plas с двумя разными файлами IG\_RZ.dat (с прогнозом до 11.2023 г.), созданными 09.2021 г. (IRI-Plas 1) и 02.2022 г. (IRI-Plas 2). Как видно из этой таблицы, ошибки с IG\_RZ.dat от 09.2021 г. (IRI-Plas 1) существенно больше

ошибок с IG\_RZ.dat от 02.2022 г. (IRI-Plas 2). Файл IG\_RZ.dat со скользящими средними за 12 месяцев индексами IG12 и R12 используется в моделях IRI-Plas [Gulyaeva and Bilitza, 2012] и IRI-2016 [Bilitza et al., 2017]. Наибольшие ошибки в моделях IRI-Plas 1 и IRI-Plas 2 достигаются для



**Рис. 2.** Буря 19.02—24.02.2021 г. Широтные изменения модели GDMTEC в географической системе координат обозначены сплошными линиями, модели IRI-Plas на долготах станций ГНСС — штриховыми линиями. Крестиками обозначены значения VTEC на соответствующих станциях ГНСС, точками обозначены VTEC полученные из карт GIM-TEC.

**Таблица 1.** Среднеквадратичные RMSE (в TECU) и средние MRD (в %) отклонения данных VTEC по моделям GDMTEC, IRI-Plas 1, IRI-Plas 2 от наблюдаемых VTEC на станциях ГНСС (рис. 1, 4, 7). Количество значений N = 144

| События             | Станции<br>ГНСС | GDMTEC         |         | IRI-Plas 1     |         | IRI-Plas 2     |         |
|---------------------|-----------------|----------------|---------|----------------|---------|----------------|---------|
|                     |                 | RMSE<br>(TECU) | MRD (%) | RMSE<br>(TECU) | MRD (%) | RMSE<br>(TECU) | MRD (%) |
| 19.02—24.02<br>2021 | Обнинск         | 1.05           | 15.73   | 1.10           | 16.96   | 1.10           | 16.95   |
|                     | Норильск        | 1.20           | 21.33   | 1.42           | 22.82   | 1.43           | 22.80   |
|                     | Магадан         | 1.16           | 19.27   | 1.11           | 16.44   | 1.10           | 16.33   |
| 27.08—31.08<br>2021 | Обнинск         | 1.39           | 12.39   | 1.32           | 12.92   | 1.90           | 17.97   |
|                     | Норильск        | 1.40           | 15.14   | 1.41           | 11.78   | 2.02           | 18.38   |
|                     | Магадан         | 1.03           | 11.27   | 1.54           | 15.91   | 1.15           | 11.97   |
| 17.10—22.10<br>2021 | Обнинск         | 2.42           | 22.23   | 4.71           | 35.25   | 2.59           | 22.75   |
|                     | Норильск        | 1.61           | 26.41   | 3.28           | 39.31   | 1.86           | 21.47   |
|                     | Магадан         | 2.16           | 36.12   | 5.18           | 70.66   | 3.22           | 42.02   |

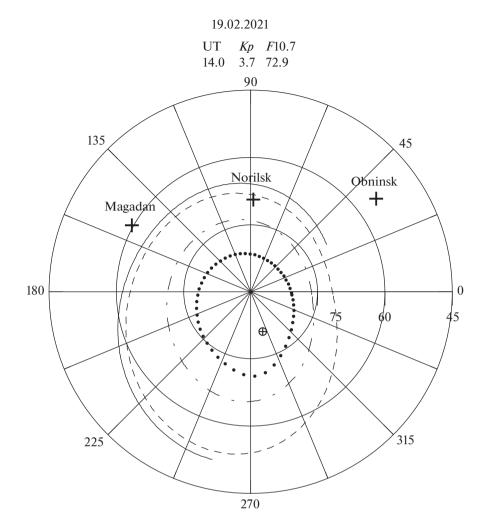



Рис. 3. Буря 19.02—24.02.2021 г. Расположения границ аврорального овала ионизации и минимума ГИП в Северном полушарии в географических координатах. Сплошной кривой обозначено положения минимума ГИП, штриховой кривой — положение экваториальной границы аврорального овала, точками — положение полярной границы аврорального овала, штрихпунктирной кривой — положение максимума ионизации в авроральном овале. Крестиками обозначены положения станций ГНСС, символом ⊕ обозначен Северный магнитный полюс.

геомагнитной бури 17.10—22.10.2021 г., так как для этого периода индексы IG12 и R12 являются прогнозными. Результаты количественной оценки, как видно из табл. 1, свидетельствуют о том, что производительность модели GDMTEC, за исключением событий выделенных жирным шрифтом, лучше модели IRI-Plas для всех сезонов.

Количественная оценка точности широтного поведения моделей GDMTEC и IRI-Plas приведена в табл. 2.

В качестве примера на рис. 10 приведено глобальное распределения VTEC для 00 UT 20.02.2021 г., рассчитанное по GDMTEC. Пример показан для возмущенных условий ( $a_p = 15$  нТл, Kp = 3.0). Белыми линиями показано асимметричное положение главного ионосферного провала в Северном и Южном полушариях.

## 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ранее в работе [Шубин и Деминов, 2019] было показано применение аэрономической и динамической коррекции *foF2* во время геомагнитных бурь на средних и высоких широтах. В данном исследовании такая коррекция была осуществлена к VTEC. Применение адаптированной модели GDMTEC продемонстрировано на трех геомагнитных бурях в условиях низкой солнечной активности, в разные сезоны. Валидация модели GDMTEC была проведена на 3 наземных станциях ГНСС в разных долготных и широтных зонах: среднеширотной ст. Обнинск (55.1° N, 36.6° E), авроральной ст. Норильск (69.4° N, 88.4° E) и субавроральной ст. Магадан (59.6° N, 150.8° E).

Выше отмечалось, что для входных геофизических индексов IG12 и R12 в моделях IRI-Plas и

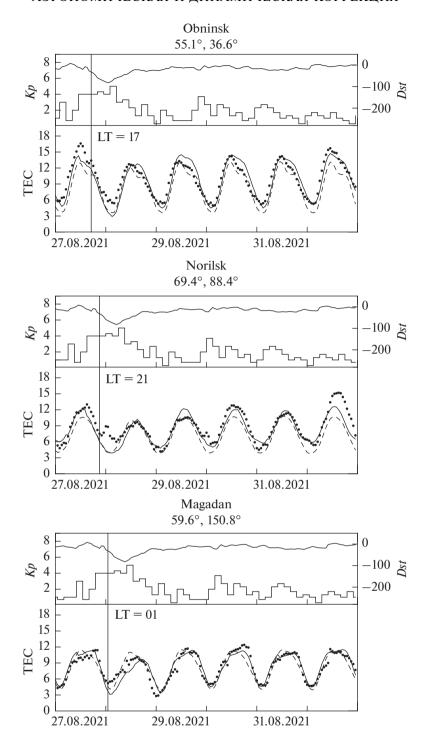



Рис. 4. Буря 27.08—01.09.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 1.

IRI-2016 используется файл IG\_RZ.dat. Этот файл обновляется примерно 2 раза в год. Поэтому эти модели применяются в основном для научных исследований или для долговременного прогноза параметров ионосферы в качестве климатических моделей. Преимущество введенного нами индекса FF (уравнение 1) состоит в том, что в нем учитывается предыстории изменения F10.7.

Из этого следует, что построенная нами адаптированная модель GDMTEC может использоваться для краткосрочного прогноза VTEC.

В каждой геомагнитной буре, выбранной для проверки модели GDMTEC, для событий 14 UT 19.02.2022 г., 15 UT 27.08.2022 г. и 20 UT 17.10.2022 г. нами были проведены сравнения GDMTEC

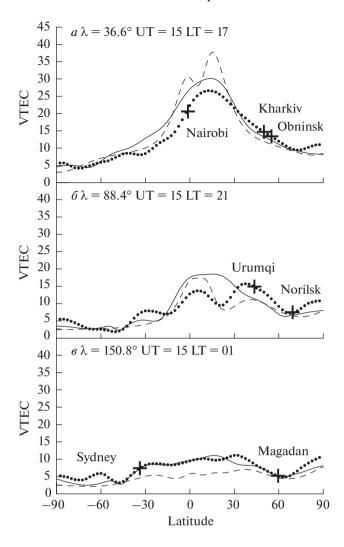



Рис. 5. Буря 27.08—01.09.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 2.

**Таблица 2.** Среднеквадратичные RMSE (в TECU) и средние MRD (в %) отклонения VTEC по моделям GDMTEC, IRI-Plas (с файлом IG\_RZ.dat от 02.2022 г.) от наблюдаемых данных GIM-TEC (рис. 2, 5, 8). Количество значений N=71

| События            | Долгота, время, ч                  | GDM         | ITEC    | IRI-Plas    |         |
|--------------------|------------------------------------|-------------|---------|-------------|---------|
| СОБПИЯ             | долгота, время, ч                  | RMSE (TECU) | MRD (%) | RMSE (TECU) | MRD (%) |
| 19.02.2021<br>14UT | $\lambda = 36.6^{\circ}, LT = 16$  | 2.07        | 12.32   | 3.05        | 17.21   |
|                    | $\lambda = 88.4^{\circ}, LT = 20$  | 1.88        | 18.33   | 3.93        | 19.40   |
|                    | $\lambda = 150.8^{\circ}, LT = 00$ | 1.13        | 11.27   | 2.91        | 35.89   |
| 27.00.2021         | $\lambda = 36.6^{\circ}, LT = 17$  | 3.45        | 21.18   | 4.19        | 21.41   |
| 27.08.2021<br>15UT | $\lambda = 88.4^{\circ}, LT = 21$  | 2.87        | 28.12   | 2.65        | 26.47   |
| 1301               | $\lambda = 150.8^{\circ}, LT = 01$ | 1.26        | 14.31   | 2.98        | 36.27   |
| 17.10.2021         | $\lambda = 36.6^{\circ}, LT = 22$  | 2.95        | 26.33   | 3.69        | 30.35   |
| 17.10.2021<br>20UT | $\lambda = 88.4^{\circ}, LT = 02$  | 1.48        | 17.21   | 2.64        | 28.14   |
|                    | $\lambda = 150.8^{\circ}, LT = 06$ | 1.03        | 11.25   | 1.23        | 13.10   |

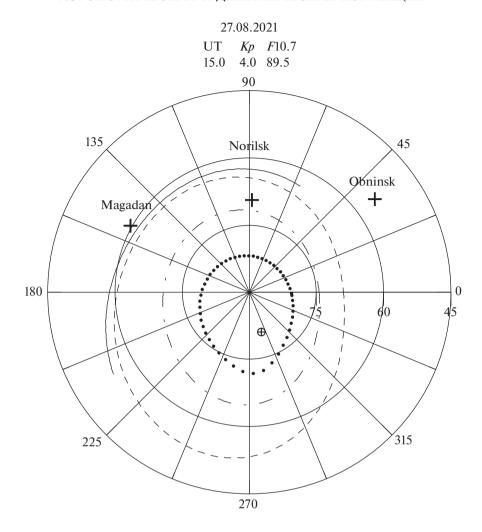



Рис. 6. Буря 27.08—01.09.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 3.

вдоль долгот соответствующих станциям ГНСС — Обнинск, Норильск, Магадан. Соответствующие широтные изменения модельных и экспериментальных VTEC показаны на рис. 2, 5 и 8. На рис. 3, 6 и 9 расположение этих станций относительно высокоширотных границ представлено в полярной системе координат. На этих рисунках нами была использована модель IRI-Plas с файлом IG\_RZ.dat от 02.2022 г.

Как видно из рис. 2 и 3 ст. Обнинск находилась на средних широтах, ст. Магадан — на экваториальной границе ГИП, а ст. Норильск — на экваториальной границе аврорального овала. При этом модель GDMTEC адекватно описывает широтные изменения как значений VTEC, полученных из GIM-TEC, так и VTEC на станциях ГНСС. Заметные расхождения наблюдаются в Южном полушарии и в области экваториальной аномалии. Модель IRI-Plas, за исключением 16 LT вблизи экватора, практически везде недооценивает VTEC.

Как изображено на рис. 5 и 6 в 15 UT 27.08.2022 г. ст. Магадан за счет смещения высокоширотных границ оказалась практически в минимуме ГИП, а ст. Норильск — в максимуме аврорального овала. Из рис. 5 следует, что модель GDMTEC более адекватно отражает поведение VTEC на долготах ст. Обнинск и ст. Магадан на средних широтах и переоценивает VTEC в области экватора. Модель IRI-Plas по-прежнему почти везде, за исключением области экватора на долготах Обнинска и Норильска, недооценивает VTEC.

Во время бури 17.10—22.10.2021 г. ст. Норильск остается вблизи максимума аврорального овала, ст. Магадан — на экваториальной границе ГИП и ст. Обнинск — в среднеширотной ионосфере. Модель GDMTEC достаточно точно оценивает величины VTEC на всех наземных станциях ГНСС, положение которых в пространстве и времени удовлетворяли условиям  $\Delta\lambda = \pm 1^\circ$  и  $\Delta UT = 0.3$  ч.

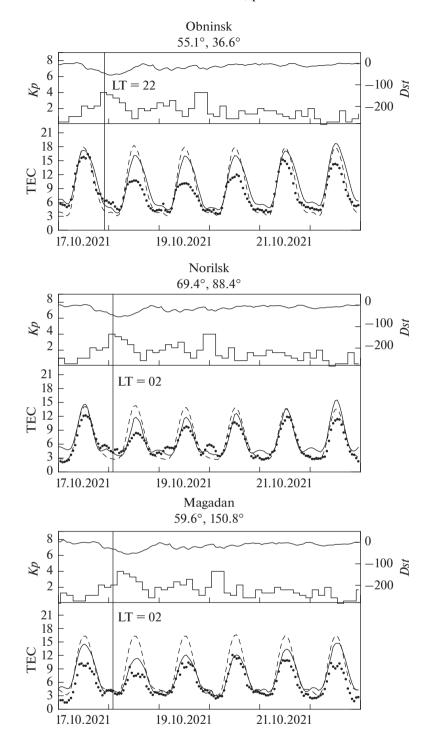



Рис. 7. Буря 17.10—22.10.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 1.

Как видно из табл. 2, ошибки GDMTEC значительно на 20–60% меньше, чем ошибки IRI-Plas, за исключением широтного хода VTEC в 21 LT 27.08.2022 г. на долготе Норильска (рис. 5). Соответствующие значения RMSE и MRD в табл. 2 выделены жирным шрифтом. Основные расхождения наблюдаются на субавроральных и

авроральных широтах, где ионосфера наиболее изменчива.

Как следует из проведенной проверки модели GDMTEC, аэрономическая поправка позволяет адекватно моделировать отрицательные возмущения VTEC во время геомагнитных возмущений. Вместе с этим используемые в ней изменяю-

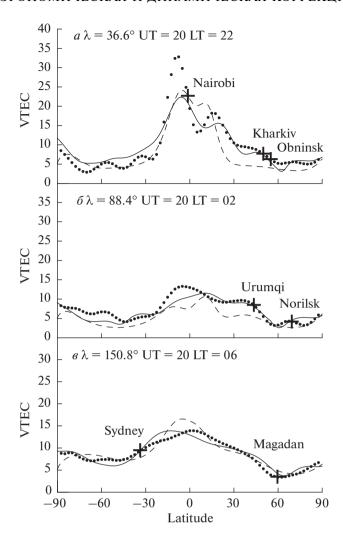



Рис. 8. Буря 17.10—22.10.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 2.

щиеся границы аврорального овала и положения минимума ГИП во время геомагнитных возмущений достаточно точно описывают изменения VTEC на разных широтах и долготах, а также в разные сезоны. Следует отметить, что точность GDMTEC определяется также точностью используемой медианной модели GTEC в качестве фона для геомагнитно-спокойных условий и модели термосферы NRLMSISE-00 во время геомагнитных бурь.

Следует отметить, что в GDMTEC учтена аэрономическая поправка на изменение температуры, а также состава термосферы и не учтена поправка на изменение скорости термосферного ветра во время геомагнитных бурь. По этой причине модель GDMTEC может недооценивать возможное увеличение VTEC в периоды геомагнитной бури, когда скорость ветра может сильно изменяться. Учет дополнительной поправки в VTEC на изменение скорости термосферного ветра во время геомагнитной бури требует специального

рассмотрения, что выходит за рамки данной работы.

## 5. ЗАКЛЮЧЕНИЕ

Динамические пространственно-временные вариации ионосферы, в конечном счете, зависят от солнечного ультрафиолетового излучения и геомагнитных возмущений. Преимущество аэрономической и динамической коррекции медианной модели по сравнению с ассимиляцией текущих наблюдательных данных заключается в независимости прогноза от наличия этих данных в реальном времени.

Использование в качестве входных параметров модели GDMTEC интегральных индексов солнечной F10.7 и геомагнитной  $a_p$  активности, которые учитывают предысторию их изменения, позволят осуществлять краткосрочный прогноз TEC. При этом продолжительность и качество прогноза TEC будет определяться точностью про-

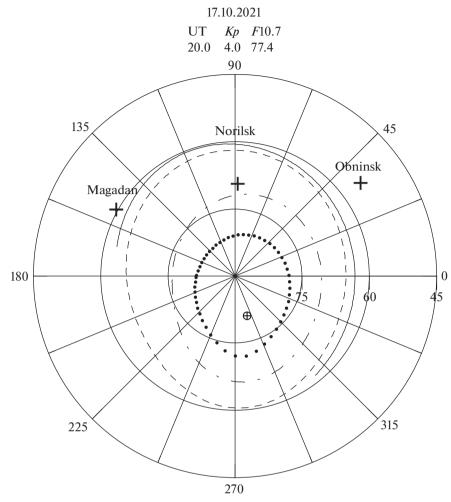
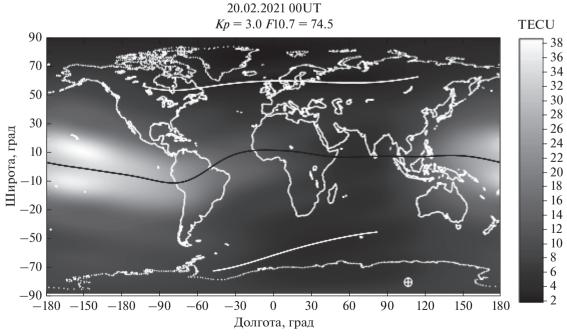




Рис. 9. Буря 17.10—22.10.2021 г. Обозначения соответствуют обозначениям, приведенным на рис. 3.



**Рис. 10.** Глобальное распределения VTEC для 00 UT 20.02.2021 г., рассчитанное по GDMTEC. Белые линии — положения минимума ГИП. Черной линией обозначен геомагнитный экватор.

гнозов солнечных F10.7- и геомагнитных  $a_{\rm p}$ -индексов.

#### СПИСОК ЛИТЕРАТУРЫ

- Аннакулиев С.К., Деминов М.Г., Шубин В.Н. Полуэмпирическая модель бури в ионосфере средних широт // Солнечно-земная физика. Вып. 8. С. 145—146. 2005.
- Деминов М.Г. Ионосфера Земли: закономерности и механизмы // Электромагнитные и плазменные процессы от недр Солнца до недр Земли. Ред. В.Д. Кузнецов. М.: ИЗМИРАН. С. 295—346. 2015. https://www.izmiran.ru/IZMIRAN75/
- Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366-373. 2018. https://doi.org/10.7868/S0016794018030070
- Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610—617. 2021. https://doi.org/10.31857/S0016794021050059
- *Кринберг И.А., Выборов В.И., Кошелев В.В., Попов В.В., Сутырин Н.А.* // Адаптивная модель ионосферы. Ред. Л.А. Щепкин. М.: Наука. С. 1—133. 1986.
- Шубин В.Н., Аннакулиев С.К. Модель отрицательной фазы ионосферной бури на средних широтах // Геомагнетизм и аэрономия. Т. 35. № 3. С. 79—87. 1995.
- Шубин В.Н., Аннакулиев С.К. Полуэмпирическая модель foF2 ночной субавроральной ионосферы в период отрицательной фазы интенсивных ионосферных бурь // Геомагнетизм и аэрономия. Т. 37. № 4. С. 26—34. 1997.
- Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты F2 слоя ионосферы // Геомагнетизм и аэрономия. Т. 59. № 4. С. 461—473. 2019.

https://doi.org/10.1134/S0016794019040151

- Alken P., Thébault E., Beggan C. et al. International Reference Geomagnetic Field: the thirteenth generation // Earth Planets Space. V. 73. 2021. https://doi.org/10.1186/s40623-020-01288-x
- Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predic-

- tions // Space Weather. V. 15. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
- Cesaroni C., Spogli L., Aragon-Angel A., Fiocci M., Dear V., De Franceschi G., and Tomano V. Neural network based model for global total electron content forecasting // J. Space Weather Space Clim. V. 10. 11. 2020. https://doi.org/10.1051/swsc/2020013
- Galkin I., Fron A., Reinisch B. et al. Global monitoring of ionospheric weather by GIRO and GNSS data fusion // Atmosphere. V. 13. 371. 2022.
- https://doi.org/10.3390/atmos13030371
- Gulyaeva T. L., Bilitza D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model // New Developments in the Standard Model. Ed. R. J. Larsen. N.Y.: NOVA Sci. Pub. P. 1–39. 2012.
- Gulyaeva T. L., Arikan F., Hernandez-Pajares M., Stanislawska I. GIM-TEC adaptive ionospheric weather assessment and forecast system // J. Atmos. Solar-Terr. Phys. V. 102. P. 329–340. 2013.
- Hierl P.M., Dotan I., Seeley J.V., Van Doren J.M., Morris R.A., Viggiano A.A. Rate constants for the reactions of O+ with  $N_2$  and  $O_2$  as a function of temperature (300–1800 K) // J. Chem. Phys. V. 106. P. 3540–3544. 1997.
- *Iluore K., Lu J.* Long short-term memory and gated recurrent neural networks to predict the ionospheric vertical total electron content // Adv. Space Res. V. 70. № 3. P. 652–665. 2022.

https://doi.org/10.1016/j.asr.2022.04.066

- − Lean J.L. One- to 10-day forecasts of ionospheric total electron content using a statistical model // Space Weather.
   V. 17. P. 313–338. 2019.
- https://doi.org/10.1029/2018SW002077
- Liu L., Zou S., Yao Y., Wang Z. Forecasting global ionospheric TEC using deep learning approach // Space Weather. V. 18. № 11. 2020.

https://doi.org/10.1029/2020SW002501

- Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLM-SISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. V. 107. P. 1468–1483. 2002.
- Shubin V.N., Gulyaeva T.L. Global mapping of Total Electron Content from GNSS observations for updating IRI-Plas model // Adv. Space Res. V. 69. № 1. P. 168–175. 2022

https://doi.org/10.1016/j.asr.2021.09.032