УДК 553.08

РЕДКОЗЕМЕЛЬНО-УРАН-ТОРИЕВАЯ МИНЕРАЛИЗАЦИЯ В МОЛИБДЕНОВЫХ РУДАХ БУЛУКТАЕВСКОГО Мо-W МЕСТОРОЖДЕНИЯ (ЗАПАДНОЕ ЗАБАЙКАЛЬЕ, РОССИЯ)

© 2022 г. Б. Б. Дамдинов^{а,} *, Л. Б. Дамдинова^а, С. З. Тугутова^а

^аГеологический институт им. Н.Л. Добрецова СО РАН, ул. Сахьяновой, 6а, г. Улан-Удэ, 670047 Россия *e-mail: damdinov@mail.ru

Поступила в редакцию 03.08.2021 г. После доработки 15.10.2021 г. Принята к публикации 15.10.2021 г.

Булуктаевское молибден-вольфрамовое месторождение считается близким аналогом W-Mo месторождений крупного Джидинского рудного поля, в составе которого известны Первомайское молибденовое, Инкурское и Холтосонское вольфрамовые месторождения. В молибденовых рудах Булуктаевского месторождения диагностировано 15 рудных минералов, включающих, кроме молибденита, сульфиды (пирит, галенит, халькопирит), вольфраматы (вольфрамит, шеелит), молибдаты (повеллит, вульфенит) и относительно большое число минералов, содержащих редкоземельные элементы (РЗЭ), U и Th (Th-содержащий монацит, браннерит, торит, уранинит), в том числе ранее неизвестные минералы – фторсодержащий молибдат тория и минералы, соответствующие составам редких видов – ортобраннериту и кобеиту-(Y). В статье рассмотрены взаимоотношения и особенности химического состава уран-торий-редкоземельных минералов. Установлено, что эти минералы были сформированы в ходе гидротермального процесса, на раннем (молибденитовом) этапе развития Булуктаевского молибден-вольфрамового месторождения.

Ключевые слова: Булуктаевское Мо-W месторождение, минералогия, уран-торий-РЗЭ минералы **DOI:** 10.31857/S0016777022050045

введение

Булуктаевское Мо-W месторождение расположено в юго-западной части Западного Забайкалья, практически на российско-монгольской границе. В административном отношении находится в Закаменском районе Республики Бурятия, в 75 км к востоку от районного центра – г. Закаменск (в 285 км на юго-запад от г. Улан-Удэ). Месторождение открыто в 1933 г., эксплуатировалось с 1938 по 1942 гг. В начале отработки старательской артелью была организована добыча вольфрамового концентрата, а с 1941 г. Джидинским комбинатом производилась добыча молиблена. Запасы месторождения в количестве 9.2 тыс. т WO₃ и 1.48 тыс. т молибдена сняты с учета ГКЗ в 1990 г. (Гордиенко и др., 2018). Однако, несмотря на длительную историю изучения этого месторождения, многие вопросы, касающиеся состава и генезиса молибден-вольфрамовой минерализации, остаются нерешенными. Один из них – присутствие РЗЭ-U-Th-минерализации, ранее упоминавшейся в рудах некоторых Мо-W грейзеновых месторождений (например, Рехарский, 1973; Kiseleva et al., 1994). Исследование подобной минерализации представляет особый интерес в связи с возрастающей потребностью в рудах высокотехнологичных металлов (Бортников и др., 2016).

Булуктаевское молибден-вольфрамовое месторождение считается близким аналогом W-Mo месторождений крупного Джидинского рудного поля (Первомайское молибденовое месторождение, Инкурское и Холтосонское вольфрамовые месторождения). В частности, Булуктаевское месторождение так же, как и Джидинское, характеризуется многостадийным характером развития рудообразующего процесса, со сменой ранней молибденовой ассоциации относительно поздней – вольфрамовой, с жильно-штокверковой морфологией рудных тел, околожильной грейзенизацией. В то же время, есть и отличительные особенности: 1) пространственная приуроченность руд к полимиктовой брекчии: 2) более древний возраст месторождения. Проведенные нами исследования молибденовых руд Булуктаевского месторождения показали также некоторые отличия в минеральном составе. В первую очередь это наличие в рудах Булуктаевского месторождения U-Th-P3Э-содержащих минералов, относительно редко встречающихся в жильно-штокверковых грейзеновых W-Mo месторождениях (Рундквист и др., 1971). Присутствие нескольких разновидностей торий-уран-редкоземельных минералов в рудах Булуктаевского месторождения ставит вопрос об их происхождении и характере связи уранториевой минерализации с главными промышленными рудами. Кроме того, в рудах диагностированы редкие и неназванные U-Th-P3Э содержащие минералы, подробное описание которых позволит определить их видовую принадлежность.

ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Булуктай-Харацайский рудный узел. Булуктаевское месторождение приурочено к Булуктай-Харацайскому рудному узлу Джидинского рудного района в юго-западной части Саяно-Байкальского складчатого пояса (Гордиенко и др., 2018). Рудный узел расположен в восточном окончании Джидинского рудного района, частично уходит на территорию Монголии. Площадь рудного узла сложена в основном интрузивными породами разного состава, лишь в западной его части установлены выходы существенно осадочных известково-песчано-сланцевых отложений джидинской свиты, а в восточной – ограниченные фрагменты вулканогенных базальт-андезитовых и петропавловской трахитовых пород свиты (фиг. 1). Большая часть интрузивных пород – это гранитоиды джидинского комплекса среднепермского возраста, а также небольшие тела и дайки гранитов и лейкогранитов гуджирского комплекса. В составе джидинского комплекса выделены три фазы; преобладает ранняя габброгранитная ассоциация, представленная полным набором пород от кислого до основного состава. Также широко распространены сиениты и монцониты второй фазы, а в подчиненном количестве находятся граниты, лейкограниты, граносиениты третьей фазы. Рудная минерализация развита ограниченно: небольшие месторождения молибдена (Сохатинское), молибдена и вольфрама (Булуктаевское) и полиметаллов (Зун-Дабанское). Кроме того, в пределах Булуктай-Харацайского рудного узла широко распространены россыпные месторождения и проявления золота (Гаськов, 2019).

Булуктаевское месторождение. Рудное поле Булуктаевского месторождения сложено палеозойскими граносиенитами и аляскитовыми гранитами 2-й фазы гуджирского комплекса, также присутствуют дайки спессартитов, сиенитовых и диоритовых порфиритов, аплитов и гранит-порфиров (Бузкова, 1994) (фиг. 2). Особенностью месторождения является его приуроченность к полимиктовой брекчии, слагающей трубообразное тело размером 107 × 120 м (Батурина, Рипп, 1984). Тело круто падает (70°-75°) на северо-запад. Вмещающие граносиениты интенсивно грейзенизированы на 80-110 м. Обломки брекчии сложены гранитоилами, дайковыми и осадочно-метаморфическими породами. Цемент представляет собой раздробленный, частично окварцованный и минерализованный агрегат вышеперечисленных пород. Кроме гидротермального кварца в цементе присутствуют флюорит, мусковит, кальцит и рудные минералы (шеелит, пирит, сфалерит, вольфрамит и др.). К трубообразному телу примыкает брекчиевая зона кольцевого строения со штокверковой минерализацией, представляющая собой сеть разнонаправленных кварцево-рудных прожилков, молибденитовых и гюбнеритовых жил, а также даек основного и кислого составов, имеющих северо-западное простирание (Гордиенко и др., 2018).

На Булуктаевском месторождении выделено три морфологических типа руд – штокверковые, жильные и вкрапленные. Штокверковые руды пространственно приурочены к трубообразному телу брекчированных пород и в плане повторяют форму "трубы", имея согласное с ней падение на северо-запад. Штокверк сложен молибденитвольфрамит-кварцевыми прожилками с вкрапленной молибденитовой минерализацией в околопрожилковых грейзенизированных гранитах. Общий размер штокверкового тела 350 × 210 м. Среднее содержание Мо по штокверку составляет 0.031%, WO₃ - 0.162%. Жильные руды на месторождении имеют подчиненное значение. Жилы залегают как в пределах штокверка, так и протягиваются в северо-западном направлении от него. Содержание Мо составляет от первых сотых до 0.1 мас. % (при среднем значении 0.025 мас. %), WO₃ – от первых сотых до 6 мас. % (среднее – 0.2 мас. %). Вкрапленные руды имеют небольшое распространение и встречаются в околожильных грейзенизированных гранитоидах вблизи кварцмолибденитовых жил и прожилков. Здесь отмечаются отдельные зоны богатых вкрапленных руд с содержанием Мо до 6.12 мас. %.

На месторождении установлено два этапа минералообразования: ранний молибденитовый и поздний вольфрамитовый, разделенные внедрением даек аплитов (Рипп, 1966; Kosals, Dmytrieva, 1973). Молибденовый этап включает три стадии: раннюю эпимагматическую молибденитовую и гидротермальные молибденитовую и кварц-молибденитовую. Возраст руд оценивается в 144 ± 10 млн лет (Савченко и др., 2018). Вольфрамитовый этап включает кварц-микроколиновую, кварц-гюбнерит-шеелитовую и позднюю кварц-флюоритовую стадии (Рипп, 1966).

Фиг. 1. Схема геологического строения Джидинского рудного района (Гордиенко и др., 2018). 1 – четвертичные отложения; 2 – неоген-четвертичные базальты; 3 – юрско-меловые осадочные и осадочно-вулканогенные образования; внутриплитные (рифтогенные) комплексы (4–7): 4 – мезозойские гранитоиды (бичурский – P_2 – T_1 , малокуналейский – T_{2-3} , гуджирский – J_3 – K_1 комплексы); 5 – раннепермские гранитоиды (дабанский – P_1 , шабартайский – P_1 комплексы); 6 – позднекарбоновые гранитоиды (битуджидинский – C_3 , улекчинский – C_3 комплексы); 7 – пермо-карбоновые осадочно-вулканогенные образования (гунзанская свита); 8 – кембро-ордовикские ранне- и позднеколлизионные гранитоиды (позднеджидинский комплекс); 9 – кембро-ордовикские осадочные отложения задугового и преддугового палеобассейнов (джидинская свита); 10 – нижне-среднекембрийские островодужные гранитоиды (джидинский офиолитового комплекса; 13 – неопротерозой-раннекембрийские вулканогенные породы Джидинской островной дуги (хохюртовская свита); 14 – неопротерозой-раннекембрийские осадочно-метаморфические породы Джидинского гайота (хасуртинская свита); 15 – неопротерозойские осадочно-метаморфические породы Хамардабанского микроконтинента (хамардабанская серия нерасчлененная); 16 – разрывные нарушения. Зубчатой жирной линией показана северо-восточная граница Джидинского рудного района. Звездочкой показано положение Булуктаевского месторождения.

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для проведения исследований, результаты которых представлены в настоящей статье, из имеющихся поверхностных горных выработок Булуктаевского молибден-вольфрамового месторождения была отобрана коллекция образцов руд. Были опробованы грейзенизированные граниты с вкрапленностью рудных минералов (преимущественно молибденита), кварцевые жилы и прожилки из рудного штокверка. Петрографические и минераграфические исследования проводились с использованием рудно-петрографических микроскопов марок Olympus BX-51 и Полар-3. Аналитические исследования выполнены в ЦКП "Геоспектр" ГИН СО РАН (г. Улан-Удэ). Химический состав минералов определялся Е.В. Ходыревой и С.В. Канакиным в ГИН СО РАН (г. Улан-Удэ) методом рентгеноспектрального микроанализа на сканирующем электронном микроскопе LEO-1430VP с энерго-дисперсионным спектро-

Фиг. 2. Схема геологического строения Булуктайского комплексного молибден-вольфрамового месторождения (Туговик, 1974). а – план, б – разрез по разведочному профилю А–Б., с изменениями: 1 – верхнепалеозойские кварцевые монцонит-сиениты (а) и их брекчированные разности (б). Дайки верхнего палеозоя: 2 – лампрофиры (одинит-спессартиты); 3 – диорит-порфириты; 4 – раннемезозойские аляскитовые граниты и их дайки: 5 – аплиты; 6 – гранитпорфиры; 7 – рудно-эксплозивные брекчии; 8 – полимиктовая брекчия эксплозивного сооружения. Жилы: 9 – кварцмолибденитовые; 10 – кварц-гюбнеритовые; 11 – безрудные кварцевые; 12 – тектонические нарушения; 13 – геологические границы; 14 – элементы залегания; 15 – скважины на схеме (а), на разрезе (б).

метром INCA Energy 350. Содержания U и Th в рудах были определены методом РФА Б.Ж. Жалсараевым, Ж.Ш. Ринчиновой, С.В. Бартановой. Концентрации редкоземельных элементов определялись методом ICP-AES, аналитик И.В. Звонцов.

МИНЕРАЛЬНЫЙ СОСТАВ МОЛИБДЕНОВЫХ РУД

Жильные минералы кварц-молибденитовых руд представлены преимущественно кварцем, в меньшем количестве присутствуют флюорит, мусковит, берилл и карбонат (сидерит) (фиг. 3а). Кроме того, кварц, альбит, калиевый полевой шпат, биотит и мусковит слагают околожильные грейзенизированные граниты, содержащие вкрапленную молибденитовую минерализацию (фиг. 3б).

Кроме жильных минералов, в молибденовых рудах нами диагностировано 15 рудных минералов, включающих, кроме собственно молибденита, сульфиды (пирит, галенит, халькопирит), вольфраматы (вольфрамит, шеелит), молибдаты (повеллит, вульфенит) и уран-торий-редкоземельные минералы, включая не идентифицированные, возможно, новые минеральные виды. Также в рудах присутствуют акцессорные минералы – апатит, циркон, рутил. Главный рудный минерал — молибденит образует радиально-лучистые, пластинчатые агрегаты, реже отдельные изогнутые пластинки и сростки (фиг. 3в). Он развивается как в кварцевых прожилках, так и во вмещающих грейзенизированных гранитоидах. Часто молибденит находится в ассоциации с мусковитом, иногда мусковит-молибденитовые агрегаты характеризуются структурой совместного роста, что говорит об их близодновременном образовании. Встречается также в совместных агрегатах с калиевым полевым шпатом между зернами кварца. В кварцевых прожилках молибденит развивается как в центральных частях прожилков, так и в зальбандах, иногда пространственно ассоциирует с пиритом.

Пирит присутствует в относительно небольшом количестве, встречается в виде гнезд, вкрапленности в гранитах и кварц-молибденитовых прожилках, образует трещиноватые агрегаты зерен кубической формы. В трещинках в пирите встречаются выделения молибденита и рутила (фиг. 3г). Из примесей в составе пирита в единичных анализах присутствует Со – до 0.66 мас. %, хотя в большинстве случаев пирит примесей (на уровне чувствительности анализа) не содержит.

Халькопирит преимущественно развивается в виде редких прожилков по трещинам в пирите. В единичном случае слагает каплевидное выделе-

Фиг. 3. Фотографии образцов и морфология рудных минералов.

а – фотография образца молибденит-гюбнерит-кварцевой жилы с флюоритом; б – фотография образца вкрапленной молибденитовой руды в грейзенизированном граните; в – морфология выделений молибденита (фото в обратно-рассеянных электронах); г – молибденит развивается по трещинам в пирите (фото в отраженном свете); д – кристаллы вольфрамита в кварц-молибденитовом агрегате; е – ксеноморфное выделение вульфенита в молибденитовом агрегате; е – ксеноморфное выделение вульфенита в молибденитовом агрегате, микровключения шеелита во флюорите; ж – кристалл повеллита в ассоциации с вульфенитом в зерне монацита-(Ce), по трещинкам в монаците-(Ce) развит кварц; з – неоднородные зерна рутила в срастании с флюоритом, содержат микровключения шеелита. Сокращения минералов: Мо – молибденит, Qz – кварц, Ру – пирит, Hub – вольфрамит (гюбнерит), Wlf – вульфенит, Fl – флюорит, Ms –мусковит, Mz – монацит-(Ce), Pw – повеллит, Rt – рутил.

ние в кварце, в ассоциации с галенитом и вольфрамитом.

Галенит установлен только в виде микросрастания с халькопиритом и вольфрамитом.

Вольфрамит-гюбнерит ((Fe, Mn)WO₄) находится в ассоциации с молибденитом (фиг. 3д). Образует гипидиоморфные зерна округлой формы в кварце, иногда в срастании с халькопиритом и галенитом. В рудах присутствуют как минералы вольфрамит-гюбнеритовой серии с близкими содержаниями FeO и MnO (11.02 и 12.80 мас. % соответственно), так и минерал, соответствующий гюбнериту, с содержанием FeO менее 4.59 мас. % (табл. 1).

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 64 № 5 2022

№ п/п	Образец	FeO	MnO	MgO	CaO	ThO ₂	MoO ₃	WO ₃	PbO	P_2O_5	Сумма
1	Bul_14	4.59	19.88					75.43			99.89
2	Bul_14	4.02	18.95					76.43			99.40
3	Bul_12	11.02	12.80					76.51			100.34
4	Bul_18						35.83		64.65		100.48
5	Bul_18						36.19		63.55		99.74
6	Bul_23						37.81		60.89		99.89
7	Bul_18						35.67		64.20		99.87
8	Bul_23						36.49		63.03		99.54
9	Bul_18						36.39		62.93		99.31
10	Bul_18						34.52		65.79		100.30
11	Bul_23						36.98		63.16		100.14
12	Bul_23						34.93		65.09		100.02
13	Bul_6						33.80		66.05		99.84
14	Bul_6						35.33		64.35		99.68
15	Bul_23				29.20		70.92				100.12
16	Bul_23	0.40			30.02		68.68				99.08
17	Bul_23	1.58			20.78	6.48	64.76		4.10	1.46	99.15
18	Bul_18				20.99			79.24			100.23
19	Bul_18				20.27			79.56			99.83

Таблица 1. Химические составы молибдатов и вольфраматов

Примечание. 1–3 – вольфрамит; 4–14 – вульфенит; 15–17 – повеллит; 18–19 – шеелит. Пустые ячейки – ниже предела обнаружения.

Вульфенит (PbMoO₄) практически всегда ассоциирует с молибденитом, образуя выделения ксеноморфной формы, в пластинчатых агрегатах молибденита, редко встречается вблизи зерен молибденита, в кварц-хлоритовом агрегате (фиг. 3е). Минерал соответствует своему теоретическому составу, примесей не обнаружено (см. табл. 1).

Повеллит (CaMoO₄) встречается в виде единичных зерен в ассоциации с молибденитом, вульфенитом и монацитом-(Ce) (фиг. 3ж). Вблизи зерна повеллита также присутствуют кварц и молибденит.

Шеелит (CaWO₄) встречается редко, преимущественно в минерализованных грейзенизированных гранитах, в виде микровключений в рутиле и флюорите (фиг. 3е, 3).

В рудах обнаружены и акцессорные минералы – апатит, циркон, монацит-(Се), рутил, часто ассоциирующие с U-Th минералами. Однако монацит-(Се) и рутил встречаются как в грейзенизированных гранитах, так и непосредственно в кварц-молибденитовых прожилках. Состав монацита-(Се), как Th-P3Э-содержащей фазы, рассмотрен в следующем разделе.

Рутил образует кристаллы, кристаллические агрегаты угловатой формы, часто неоднороден за счет неравномерного распределения примесей

(фиг. 33). Характерной особенностью рутила является почти постоянное присутствие примесей Nb и V, содержания которых достигают 5.36 и 1.76 мас. % соответственно (табл. 2).

Циркон слагает гипидиоморфные зерна округлой, прямоугольной формы, реже хорошо образованные кристаллы призматической формы. В некоторых зернах обнаружены примеси Hf (1.36–2.41 мас. %) (см. табл. 2).

Апатит слагает единичные кристаллы прямоугольного сечения, размером до 30 мкм. Рентгеноспектральный микроанализ апатита показал наличие F – до 5.33 мас. %.

МИНЕРАЛЫ РЗЭ, УРАНА И ТОРИЯ

Характерной особенностью руд месторождения является широкое развитие и относительно большое количество U-Th-P3Э-минералов. Среди них диагностированы такие минералы, как торий-содержащий монацит-(Ce), браннерит, торит, уранинит, а также ранее неизвестные и редкие минералы — фторсодержащий молибдат тория, ортобраннерит и кобеит-(Y).

Из U-Th-P3Э-минералов, наиболее распространен монацит-(Се). Он приурочен преимущественно к грейзенизированным гранитам, хотя встречается и в кварц-молибденитовых прожил-

№ п/п	Образец	SiO ₂	TiO ₂	FeO	V ₂ O ₃	ZrO ₂	HfO ₂	Nb ₂ O ₅	Сумма
1	Bul_14		98.78	1.00					99.76
2	Bul_14		99.24	0.53					99.76
3	Bul_23	0.79	91.13	1.35	1.61			5.36	100.23
4	Bul_14		99.17	0.61	0.00				99.78
5	Bul_18		95.12	1.66	0.66			2.15	99.59
6	Bul_14		96.09	2.65	0.80				99.54
7	Bul_23		93.83	1.12	0.99			3.23	99.18
8	Bul_12		94.21	1.89	0.99			1.71	98.81
9	Bul_21		98.36	0.49	0.70			1.19	100.73
10	Bul_14		96.52	3.28				0.84	100.65
11	Bul_23		94.78	0.92	1.34			3.58	100.63
12	Bul_21		97.65	0.74	0.70			1.03	100.11
13	Bul_14		94.83	3.58	0.00			1.70	100.10
14	Bul_23		93.76	1.13	1.43			3.29	99.60
15	Bul_21		94.54	0.52	1.76			2.72	99.54
16	Bul_12		96.47	1.29				1.40	99.15
17	Bul_12		93.84	2.55				4.15	100.54
18	Bul_14		94.01	3.82				1.56	99.39
19	Bul_18	32.86				67.77	1.36		101.99
20	Bul_21	32.35				67.66	1.42		101.42
21	Bul_6	32.86				65.68	2.41		100.94
22	Bul_18	32.65				67.19			99.84
23	Bul_21	31.98				65.85	1.9		99.73
24	Bul 21	30.96				68.32			99.28

Таблица 2. Химические составы акцессорных минералов Булуктаевского месторождения

Примечание. 1–18 – рутил; 19–24 – циркон. Пустая ячейка – ниже предела обнаружения

ках. Минерал слагает изометричные зерна неправильной или гипидиоморфной формы. Он часто пространственно ассоциирует с рутилом, апатитом и цирконом, иногда замещается флюоритом (фиг. 4а) или молибденитом. По химическому составу монацит-(Се) характеризуется преобладанием Се и значительными вариациями в содержаниях РЗЭ. Содержание Се₂О₃ в минерале изменяется от 27.49 до 36.56 мас. %, La₂O₃ – от 12.89 до 23.98 мас. % (табл. 3). Также в составе минерала присутствуют Nd₂O₃ 7.19-14.86 мас. %, Pr₂O₃ 1.50-3.71 мас. % и в некоторых зернах Sm₂O₃ – 1.32-2.01 мас. %. Содержания остальных РЗЭ ниже предела обнаружения. Концентрации ThO₂ сильно изменчивы — от 1.43 до 14.86 мас. %, причем высокоториевый монацит-(Се) образует включения в относительно низкоториевом (фиг. 46). В некоторых проанализированных зернах отмечается примесь серы, содержания SO₃ в них варьируют в пределах 0.68-1.2 мас. %.

Торит присутствует в виде тонких вкрапленников во флюорите и монаците-(Се) (см. фиг. 4а, б). Минерал содержит редкоземельные элементы – Ce_2O_3 (5.10–11.51 мас. %), La_2O_3 (2.38–6.46 мас. %) и Nd_2O_3 (2.04–4.06 мас. %), а также P_2O_5 (5.67–9.23 мас. %) и CaO (0.52–1.38 мас. %) (см. табл. 3). Содержания UO_2 – ниже предела обнаружения.

Браннерит диагностирован как в кварцевых прожилках, так и в околожильных грейзенизированных гранитах. Минерал образует микровключения неправильной ксеноморфной формы в рутиле (фиг. 4в). Химический состав минерала, по данным рентгеноспектрального микроанализа двух зерен, характеризуется наличием Nb₂O₅ (8.93–10.13 мас. %), Y₂O₃ (4.05–4.53 мас. %) и ThO₂ (3.04–3.28 мас. %) (табл. 4). В одном случае установлена примесь железа (FeO = 1.04 мас. %).

В ассоциации с мусковитом и молибденитом диагностирован также минерал, близкий по составу к браннериту (фиг. 4г), но отличающийся недостатком суммы и наличием примесей F (1.92–2.57 мас. %), относительно повышенным содержанием UO₂ (48.32–53.98 мас. %) и пониженным – TiO₂ (31.93–32.21 мас. %) (см. табл. 4).

2022

Фиг. 4. Морфология выделения U-Th-P3Э-содержащих минералов.

a – монацит-(Ce) замещается флюоритом, содержащим тонкую вкрапленность торита. Квадратом показано положение фиг. 26; б – микровключения торита в монаците-(Ce), участки монацита-(Ce), обогащенные торием; в – зерно рутила, расположенное вблизи молибденитового агрегата, содержит микровключения браннерита и зерна уранинита, уранинит образует также срастание с вульфенитом; г – зерна ортобраннерита в ассоциации с мусковитом, флюоритом и молибденитом; д – неоднородный агрегат кобеита-(Y), обрастает зерно рутила, серый агрегат – вторичные минералы Ti и Nb, содержащие примеси U и Th; е – метакристалл(?) молибдата тория (Th-Mo) развит на границе зерен рутила, молибденита и монацита. Фотографии в обратно-рассеянных электронах.

Сокращения минералов: Мо – молибденит, Qz – кварц, Ру – пирит, Ms – мусковит, Fl – флюорит, Bt – биотит, Mz – монацит-(Ce), Th – торит, Th-Mz – обогащенный торием монацит-(Ce), Rt – рутил, Wlf – вульфенит, Br – браннерит, Ur – уранинит, Obr – ортобраннерит, Y-Ko – кобеит-(Y), Th-Mo – молибдат тория, Zrc – циркон.

Отклонение суммы от 100% можно объяснить присутствием в минерале элементов, которые не могут быть определены с помощью РСМА. Предположительно это О и Н, которые могут входить в минерал в виде гидроксильной группы ОН. По химическому составу данный минерал соответствует гидроксил-содержащему титанату урана – **ортобраннериту**, однако отсутствие рентгеновских данных не позволяет достоверно диагностировать этот минерал. Расчет содержаний H₂O в

№ п/п	Образец	SiO ₂	CaO	Ce ₂ O ₃	La ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	P_2O_5	SO ₃	Сумма
1.	Bul_12		0.74	30.52	21.29	1.50	7.48		11.18	26.15	1.20	100.06
2.	Bul_12			30.80	21.61	3.31	7.19		11.90	24.50	0.98	100.28
3.	Bul_23		0.46	36.56	21.73	2.26	8.12		1.62	30.06		100.81
4.	Bul_18	0.79	0.39	35.00	23.98	1.60	7.33		2.08	28.60		99.77
5.	Bul_12		0.55	35.19	21.70	1.97	8.78		1.52	29.51		99.21
6.	Bul_23			33.91	20.54	2.62	8.77	1.32	2.24	29.56		98.96
7.	Bul_14		1.10	32.58	12.89	3.71	14.09	2.01	2.39	30.78	0.68	100.25
8.	Bul_14		1.53	32.66	12.97	3.60	14.86	1.96	1.36	31.15		100.11
9.	Bul_14		0.64	34.94	22.38	2.58	8.68		1.54	28.70		99.47
10.	Bul_21		2.00	27.49	14.87	1.60	8.95		14.86	29.41		99.16
11.	Bul_12		0.52	35.64	18.29	2.38	11.62		1.43	30.16		100.03
12.	Bul_12		0.62	36.30	21.03		8.64		2.37	29.81	1.10	99.87
13.	Bul_12	15.51	1.38	5.10	2.38		2.21		67.90	5.67		100.15
14.	Bul_12	13.73	0.95	11.51	6.46		4.06		54.24	9.23		100.20
15.	Bul_12	14.49	0.52	8.80	4.31		2.04		62.08	7.21		99.46

Таблица 3. Химические составы и эмпирические формулы монацита-(Се) и торита из руд Булуктаевского месторождения

1. $(Ce_{0.481}La_{0.338}Nd_{0.115}Th_{0.110}Pr_{0.023}Ca_{0.034}) \Sigma = 1.102(P_{0.954}S_{0.039}) \Sigma = 0.993O_{3.905}$ 2. $(Ce_{0.497}La_{0.351}Th_{0.119}Nd_{0.113}Pr_{0.053}) \Sigma = 1.134(P_{0.914}S_{0.032}) \Sigma = 0.946O_{3.920}$ 3. $(Ce_{0.581}La_{0.348}Nd_{0.126}Pr_{0.036}Ca_{0.022}Th_{0.016}) \Sigma = 1.129P_{1.104}O_{3.769}$ 4. $(Ce_{0.542}La_{0.374}Nd_{0.110}Si_{0.034}Pr_{0.025}Th_{0.020}Ca_{0.018}) \Sigma = 1.122P_{1.024}O_{3.854}$ 5. $(Ce_{0.548}La_{0.340}Nd_{0.133}Pr_{0.031}Ca_{0.025}Th_{0.015}) \Sigma = 1.091P_{1.063}O_{3.846}$ 6. $(Ce_{0.566}La_{0.345}Nd_{0.143}Pr_{0.044}Th_{0.023}Sm_{0.021}) \Sigma = 1.122P_{1.141}O_{3.718}$

6. $(Ce_{0.566}La_{0.345}Nd_{0.143}Pr_{0.044}Th_{0.023}Sm_{0.021}) \Sigma = 1.142P_{1.141}O_{3.718}$ 7. $(Ce_{0.525}Nd_{0.221}La_{0.209}Pr_{0.059}Ca_{0.052}Sm_{0.031}Th_{0.024})_{1.121}(P_{1.147}S_{0.023}) \Sigma = 1.170O_{3.709}$ 8. $(Ce_{0.503}Nd_{0.223}La_{0.202}Ca_{0.069}Pr_{0.055}Sm_{0.028}Th_{0.013}) \Sigma = 1.094P_{1.110}O_{3.796}$ 9. $(Ce_{0.611}La_{0.395}Nd_{0.148}Pr_{0.045}Ca_{0.033}Th_{0.017}) \Sigma = 1.249P_{1.162}O_{3.589}$ 10. $(Ce_{0.429}La_{0.234}Th_{0.144}Nd_{0.136}Ca_{0.091}Pr_{0.025}) \Sigma = 1.059P_{1.061}O_{3.880}$ 11. $(Ce_{0.555}La_{0.324}Nd_{0.178}Pr_{0.037}Ca_{0.024}Th_{0.014}) \Sigma = 1.100P_{1.093}O_{3.807}$ 12. $(Ce_{0.555}La_{0.324}Nd_{0.129}Ca_{0.028}Th_{0.022}) \Sigma = 1.058(P_{1.054}S_{0.035}) \Sigma = 1.089O_{3.854}$ 13. $(Th_{0.641}Ce_{0.077}Ca_{0.061}La_{0.037}Nd_{0.033}) \Sigma = 0.849[(Si_{0.643}P_{0.199}) \Sigma = 0.842O_{4.309}$ 14. $(Th_{0.565}Ce_{0.193}La_{0.109}Nd_{0.067}Ca_{0.021}) \Sigma = 0.981[(Si_{0.628}P_{0.358}) \Sigma = 0.986O_{4.035}$ 15. $(Th_{0.603}Ce_{0.137}La_{0.068}Nd_{0.031}Ca_{0.023}) \Sigma = 0.862[(Si_{0.619}P_{0.26}) \Sigma = 0.879O_{4.258}$ Примечание. 1-12 – монацит-(Ce); 13-15 – торит. Пустая ячейка – ниже предела обнаружения.

минерале по недостатку суммы показывает значения порядка 8.6-9.89 мас. %. Эмпирическая формула минерала, рассчитанная по данным рентгеноспектрального микроанализа, соответствует теоретической – $(U^{4+}U^{6+}Ti_4O_{12}(OH)_2)$, отличается только наличием фтора, что предполагает изоморфизм в ряду OH–F, характерный для ряда урановых минералов (бетафит, уранопирохлор и др.).

Наряду с браннеритом и ортобраннеритом в составе молибденовых руд присутствует еще один Nb-Ti-U-минерал, с содержанием Nb₂O₃ 7.78-19.46 мас. %, Y2O3 - 6.34-8.10 мас. % и ThO2 -3.22-4.80 мас. %, а также с дефицитом суммы, что позволяет предполагать наличие гидроксильной группы в его составе (см. табл. 4). Расчет содержания H₂O по дефициту суммы показывает значения 8.0-13.81 мас. %. Минерал характеризуется наличием относительно большого количества примесных компонентов: SiO_2 (1.5–1.84 мас. %), FeO (1.26-2.02 мас. %), CaO (0.43-1.26 мас. %),

SrO (1.09–1.49 мас. %), Al₂O₃ (0.53–0.85 мас. %), в некоторых зернах – Nd₂O₃ (1.14–1.27 мас. %). Смешанный агрегат. состояший из тонких срастаний агрегата ниобий-титан-уран-содержащего минерала, обрастает зерно рутила (фиг. 4д). По химическому составу минерал, слагающий агрегат, соответствует кобеиту-(Y) ЭТОТ (Y,U)(Ti,Nb)₂(O,OH)₆, но характеризуется значительными вариациями содержаний главных и примесных элементов. Тем не менее, несмотря на некоторые неоднородности химического состава, расчет эмпирических формул минерала, показывает их сходство с теоретической формулой кобеита-(Ү), однако отсутствие рентгеновских данных не позволяет уверенно идентифицировать этот минерал.

Уранинит образует включения в рутиле и кварце, а также срастания с молибденитом и повеллитом, пространственно тяготеющие к выделениям рутила (см. фиг. 4в). Минерал характеризуется

2022

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.74 55.43 37.83 1.30 4.75 100.05 0.64 52.96 41.57 2.08 2.20 99.46 0.39 49.61 48.53 1.18 99.70
0.64 52.96 41.57 2.08 2.20 99.46 0.39 49.61 48.53 1.18 99.70
0.39 49.61 48.53 1.18 99.70 0.00 40.65 48.73 1.01 00.41

480

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 64 № 5 2022

РЕДКОЗЕМЕЛЬНО-УРАН-ТОРИЕВАЯ МИНЕРАЛИЗАЦИЯ

№ п/п	№ пробы	Порода	Th	U	ΣРЗЭ
1.	Бул 18	Гранит с вкрапленностью молибденита		14	317.6
2.	Бул 16	Гранит с вкрапленностью молибденита		10	_
3.	Бул 15	Гранит с вкрапленностью молибденита		31	89.5
4.	Бул 10	Гранит с кварц-берилловым прожилком	29	20	25.0
5.	Бул 19	Гранит с кварц-молибденитовым прожилком	4.5	11	_
6.	Бул 21	Гранит с кварц-молибденитовым прожилком	32	21	_
7.	Бул 22	Кварц с сульфидами	2	14	_
8.	Бул 11	Кварц с сульфидами	20	7.8	175.3
9.	Бул 12-1	Кварц с сульфидами	18	7.4	_
10.	Бул 12-2	Кварц с сульфидами	20	11	_
11.	Бул б	Кварц с сульфидами		27	152.8
12.	Бул 7	Кварц с сульфидами		9.1	6.1
13.	Бул 2	Кварц с флюоритом и бериллом	13	13	77.1
14.	Бул 9	Кварц-молибденовый прожилок	6.7		145.1
15.	Бул 9а	Кварц-молибденовый прожилок	5.0	2.1	_
16.	Бул 13	Сплошной молибденовый прожилок		28	_

Таблица 5. Содержания U, Th и суммы РЗЭ (г/т) в рудах Булуктаевского месторождения

Примечание. Пустая ячейка — ниже предела обнаружения, прочерк — элемент не анализировался. Анализы U и Th выполнены методом РФА, аналитик Б.Ж. Жалсараев, суммы РЗЭ — методом ICP-AES, аналитик И.В. Звонцов.

№ 5

2022

присутствием примесей ThO₂ (5.49–9.11 мас. %) и PbO (1.16–1.33 мас. %) (см. табл. 4). В одном случае в составе уранинита отмечаются примеси Y_2O_3 (3.15 мас. %) и FeO (0.99 мас. %) и нарушено соотношение U и O, возможно за счет эпитаксиального роста и превращения UO₂ в UO_{2+x} (Дымков, 1964).

Наряду с уран-торий-редкоземельными минералами в кварц-молибденитовом прожилке диагностирован ранее неизвестный минеральный вид — фторсодержащий молибдат тория. Минерал содержит 49.66-55.43 мас. % ThO₂ и 37.83-48.74 мас. % MoO₃ (см. табл. 4). Этот минерал обнаружен в виде идиоморфного метакристалла, частично корродирующего зерно монацита-(Се), вблизи кристаллов рутила и ширкона, сам метакристалл, в свою очередь, частично замещается молибденитом (фиг. 4е). Рентгеноспектральный микроанализ минерала в разных точках показал его некоторую неоднородность, обусловленную, главным образом, вариациями содержаний как главных элементов (Th, Mo), так и элементовпримесей – F (1.01-4.75 мас. %), CaO (0.0-0.74 мас. %) и Р₂О₅ (0.0-2.08 мас. %). При отсутствии примесей Са и Р химический состав минерала наиболее соответствует формуле $Th(MoO_4)_2$ двойному молибдату тория с примесью F.

Таким образом, молибденовые руды Булуктайского месторождения характеризуются относительно широким распространением U-ThРЗЭ-содержащих минералов, среди которых установлен ранее неизвестный, возможно, новый минеральный вид.

Валовые концентрации U и Th в рудах, по данным рентгено-флюоресцентного анализа, невысокие, достигают значений 28 и 32 г/т соответственно, причем содержания этих элементов значительно варьируют (табл. 5). Максимальные содержания урана установлены в кварц-молибденитовых прожилках, тогда как относительно повышенные концентрации тория более характерны для околожильных грейзенизированных гранитов, содержащих вкрапленную молибденитовую минерализацию. В то же время относительно повышены содержания суммы РЗЭ. достигающие в некоторых образцах значений более 300 г/т (см. табл. 5). Наиболее обогащены РЗЭ граниты, содержащие вкрапленную молибденитовую минерализацию, однако кварц-молибденитовые прожилки также содержат РЗЭ в концентрациях до 175 г/т.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате проведенных исследований в молибденовых рудах Булуктаевского месторождения диагностировано 15 рудных минералов, представленных сульфидами, вольфраматами, молибдатами и минералами U-Th-P3Э. В отличие от месторождений Джидинского рудного поля, где вольфрамит представлен исключительно гюбнеритом (Damdinova, Damdinov, 2021), в данном

случае, наряду с гюбнеритом присутствует и вольфрамит, содержащий Мп и Fe в сопоставимых количествах. Одной из особенностей руд Булуктаевского месторождения является повышенное содержание Nb и V в рутиле. Примеси Nb характерны для рутила из редкометальных гранитов (Aurisicchio et al., 2002; Cerný et al., 1999), тогда как V характерен для рутила из плутоногенногидротермальных месторождений золота (Scott et al., 2011). Уран-торий-РЗЭ-содержащие минералы непосредственно в рудах молибден-вольфрамовых месторождений встречаются крайне редко, как правило, в виде единичных зерен акцессорных минералов – уранинита или браннерита (Боровиков и др., 2020; Moura et al., 2014). Соответственно, в рудах крупнейшего в регионе Первомайского молибденового месторождения эти минералы, за исключением единичных зерен монацита-(Ce) и уранинита, не обнаружены (Damdinova et al., 2020).

На исследуемом Булуктаевском молибденвольфрамовом месторождении уран-торий-редкоземельная минерализация представлена рядом минералов, часть из которых – крайне редкие. Монацит-(Се) как акцессорный минерал обычно встречается в гранитоидах, однако в рудах Булуктаевского месторождения зерна и агрегаты монацита-(Се) установлены и в составе кварц-молибденитовых прожилков, что говорит о гидротермальной природе по крайней мере их части. Этим, возможно, обусловлены вариации химического состава монацита-(Се), в частности сильно различающиеся содержания Th. Поскольку изученные гранитоиды также подвержены гидротермально-метасоматическим изменениям, то выяснить природу монацита-(Се) в каждом конкретном случае затруднительно вследствие того, что значительные вариации составов этого минерала наблюдаются в одном и том же образце. Для решения этого вопроса необходимы более детальные исследования акцессорного и гидротермального монацита-(Се). В данном случае установлено, что Th-содержащий монацит-(Се) мог быть сформирован гидротермальным путем, совместно с другими U-Th-РЗЭ-минералами.

Браннерит — достаточно распространенный минерал, известный как в рудах гидротермальных и метаморфогенных урановых месторождений, так и в комплексных золото-урановых месторождениях (Алешин и др., 2007; Будяк и др., 2017; Миронов и др., 2008; Тарасов и др., 2018; Сипеу et al., 2012; Steacy et al., 1974). Однако ортобраннерит, отличающийся присутствием гидроксильной группы в своем составе, распространен не так широко. Известны несколько находок этого минерала в Китае, Италии, Мексике и Словакии, указанные в базе данных Mindat (https://www.mindat.org/). Описаны также находки ортобраннерита в урановых рудах Алданских месторождений (Черников, 2012). Происхождение этого минерала связывается с выветриванием урансодержащих сиенитов, хотя он встречается и в составе гипогенных гидротермальных U-Mo руд (Kohut et al., 2013). В молибденовых рудах Булуктаевского месторождения минерал, отвечающий по составу ортобраннериту, имеет явно гипогенное происхождение, находится в ассоциации с молибденитом и мусковитом. Наличие фтора позволяет предположительно отнести этот минерал к F-содержащей разновидности ортобраннерита, однако для более точной диагностики необходимо провести дополнительные исследования, в первую очередь – получить рентгенограмму.

Диагностированный нами минерал, слагающий агрегат, обрастающий выделение рутила, близок по химическому составу к кобеиту. Этот минерал является крайне редким, единичные находки его диагностированы в пегматитах Японии и Новой Зеландии (Hutton, 1957; Masutomi et al., 1961; Takubo et al., 1950). Минерал, присутствующий в рудах Булуктаевского месторождения, имеет неоднородный химический состав, однако в целом соответствует теоретическому составу кобеита-(Ү), что демонстрируют эмпирические формулы минерала, рассчитанные по результатам рентгеноспектрального микроанализа. Приведенные в цитируемых источниках составы кобеита характеризуются некоторыми отличиями от минерала, диагностированного в изучаемых рудах - присутствием примеси циркония и меньшим содержанием урана, однако минерал ранее был проанализирован лишь химическим анализом, не учитывающим возможное наличие микровключений других минералов. В то же время, согласно теоретической формуле этого минерала, он нестехиометричен, следовательно, в химическом составе минерала возможны значительные вариации содержаний главных элементов. Так же как и в предыдущем случае, для более точной диагностики необходимы дополнительные исследования.

Одним из необычных, ранее не диагностированных минералов является фторсодержащий молибдат тория. Ранее известные молибдаты тория – ихнусаит (Ichnusaite – Th(MoO₄)₂·3H₂O) и нурагхеит (Nuragheite – $Th(MoO_4)_2 \cdot H_2O$), в отличие от изученного минерала, водосодержащие и не имеют в своем составе фтора (согласно минералогической базе данных https://www.mindat.org/). Эти минералы диагностированы в единственном местонахождении - на о. Сардиния в Италии (Orlandi et al., 2015), где они установлены в кварцевых жилах Bi-Mo-рудопроявления. Диагностированный нами минерал отличается присутствием фтора и отсутствием ОН-группы, причем содержания фтора варьируют. Несмотря на небольшое число определений, отмечается, что

содержания фтора находятся в обратной зависимости с Мо и прямо коррелируют с Th (см. табл. 4). Кристаллические структуры двойных молибдатов тория и щелочных металлов изучены экспериментально (Бушуев, Трунов, 1975 и др.). Имеющиеся сведения можно применить и к природным аналогам, однако необходимо провести рентгеновские исследования изученного минерала.

Таким образом, судя по морфологии и взаимоотношениям уран-ториевых минералов с окружающими рудными и породообразующими, можно сделать вывод, что все изученные U-Th-P3Э-содержащие минералы были сформированы гидротермальным путем. Ассоциация этих минералов с молибденитом и другими рудными минералами свидетельствует об их совместном формировании на раннем (молибденитовом) этапе развития Булуктаевского молибден-вольфрамового месторождения, тогда как в рудах позднего вольфрамитового этапа эти минералы не обнаружены.

Происхождение U-Th-P3Э-содержащих минералов может быть обусловлено влиянием редкометальных Li-F-гранитов, являющихся одним из источников урана (Алешин и др., 2007). Косвенно влияние редкометального магматизма подтверждает наличие примеси Nb в акцессорном рутиле. Однако в рудном поле Булуктаевского месторождения Li-F-граниты не установлены, хотя последние известны в пределах Джидинского рудного района (Антипин, Перепелов, 2011).

выводы

1. В молибденовых рудах Булуктаевского месторождения установлено 15 рудных минералов, включающих, кроме молибденита, сульфиды (пирит, галенит, халькопирит), вольфраматы (вольфрамит, шеелит), молибдаты (повеллит, вульфенит) и U-Th-P3Э-содержащие минералы.

2. Характерной особенностью руд месторождения является широкое развитие и относительно большое количество минеральных видов U-Th-P3Э-минералов. Среди них диагностированы монацит-(Се), браннерит, торит, уранинит, ранее неизвестный минеральный вид — фторсодержащий молибдат тория и минералы, близкие по составу к ортобраннериту и кобеиту-(Y).

3. Все изученные уран-торий-редкоземельные минералы были сформированы в ходе гидротермального процесса на раннем (молибденитовом) этапе развития Булуктаевского молибден-вольфрамового месторождения.

БЛАГОДАРНОСТИ

Авторы признательны анонимным рецензентам за внимательное прочтение рукописи и замечания, которые позволили улучшить ее.

ФИНАНСИРОВАНИЕ

Исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (проект ГИН СО РАН № АААА-А21-121011390003-9).

СПИСОК ЛИТЕРАТУРЫ

Алешин А.П., Величкин В.И., Крылова Т.Л. Генезис и условия формирования месторождений уникального молибден-уранового Стрельцовского рудного поля: новые минералого-геохимические и физико-химические данные // Геология руд. месторождений. 2007. Т. 49. № 5. С. 446–470.

Антипин В.С., Перепелов А.Б. Позднепалеозойский редкометалльный гранитоидный магматизм Южного Прибайкалья // Петрология. 2011. Т. 19. № 4. С. 386—398.

Батурина Е.Е., Рипп Г.С. Молибденовые и вольфрамовые месторождения Западного Забайкалья. М.: Наука, 1984. 152 с.

Боровиков А. А., Гущина Л. В., Говердовский В. А., Гимон В. О. Физико-химическая модель формирования руд Калгутинского месторождения: термодинамическое моделирование // Геохимия. 2020. Т. 65. № 1. С. 31–45.

Бортников Н.С., Волков А.В., Галямов А.Л., Викентьев И.В., Аристов В.В., Лаломов А.В., Мурашов К.Ю. Минеральные ресурсы высокотехнологичных металлов в России: состояние и перспективы развития // Геология руд. месторождений. 2016. Т. 58. № 2. С. 97–119.

Будяк А.Е., Паршин А.В., Спиридонов А.М., Реутский В.Н., Дамдинов Б.Б., Волкова М.Г., Тарасова Ю.И., Абрамова В.А., Брюханова Н.Н., Зарубина О.В. Геохимические особенности формирования Au–U месторождений типа "несогласия" (Северное Забайкалье) // Геохимия. 2017. № 2. С. 149–160.

Бузкова Н.Г. Новые данные о соотношении гранитоидного магматизма с эндогенным оруденением (на примере Булуктайского массива в Западном Забайкалье) // Доклады Академии наук. 1994. Т. 338. № 6. С. 793–797.

Бушуев Н.Н., Трунов В.К. Двойные молибдаты рубидия и тория // Журнал неорганической химии. 1975. Т. 20. № 4. С. 1143–1144.

Гаськов И. В. Гидротермальные зоны как возможные источники россыпного золота Булуктай-Харацайского рудного узла (Джидинский рудный район Бурятии) // Геология и минерально-сырьевые ресурсы Сибири. 2019. № 2. С. 82 – 92.

Гордиенко И.В., Гороховский Д.В., Смирнова О.К., Ланцева В.С., Бадмацыренова Р.А., Орсоев Д.А. Джидинский рудный район: геологическое строение, структурно-металлогеническое районирование, генетические типы рудных месторождений, геодинамические условия их образования, прогнозы и перспективы освоения // Геология руд. месторождений. 2018. Т. 60. № 1. С. 3–37.

Дымков Ю.М. Об эпитаксиальном превращении $U_3O_8 \rightarrow UO_{2+x}$ в настуранах // Доклады АН СССР. 1964. Т. 157. № 3. С. 583–585.

Миронов А.Г., Карманов Н.С., Миронов А.А., Ходырева Е.В. Золото-браннеритовые самородки в россыпи Озер-

№ 5 2022

нинского рудного узла (Бурятия) // Геология и геофизика. 2008. Т. 49. № 10. С. 984–989.

Рехарский В.И. Геохимия молибдена в эндогенных процессах. М. Наука, 1973. 272 с.

Рипп Г.С. Новые данные о стадийности в формировании Булуктаевского молибдено-вольфрамового месторождения // Матер. по геологии и полезным ископаемым Бурятской АССР. 1966. Вып. Х. С. 155–168.

Рундквист Д.В., Денисенко В.К., Павлова И.Г. Грейзеновые месторождения: онтогенез и филогенез. М.: Недра, 1971. 328 с.

Тарасов Н.Н., Кочкин Б.Т., Величкин В.И., Дойникова О.А. Месторождения Хиагдинского урановорудного поля (Бурятия): условия образования и факторы контроля // Геология руд.месторождений. 2018. Т. 60. № 4. С. 392–400. Туговик Г.И. Эксплозии и рудный процесс. М.: Недра, 1974. 208 с.

Черников А.А. Сложные оксиды урана в урановых рудах // Новые данные о минералах. 2012. Вып. 47. С. 71–83.

Aurisicchio C., De Vito C., Ferrini V., Orlandi P. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy // Can. Mineral. 2002. V. 40. P. 799–814.

Černý P., Chapman R., Simmons W. B., Chackowsky L. E. Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: solid solution, exsolution, and oxidation // Amer. Mineral. 1999. V. 84. P. 754–763.

Cuney M., Emertz A., Mercadier J., Mykchaylov V., Shunko V., Yuslenko A. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints // Ore Geol. Rev. 2012. V. 44. P. 82–106.

Damdinova L.B., Damdinov B.B. Tungsten ores of the Dzhida W–Mo ore field (Southwestern Transbaikalia, Russia): Mineral composition and physical-chemical conditions of formation // Minerals. 2021. V. 11. 725.

Damdinova L.B., Damdinov B.B., Huang X.-W., Bryansky N.V., Khubanov V.B., Yudin D.S. Age, conditions of formation, and fluid composition of the Pervomaiskoe molybdenum deposit (Dzhidinskoe ore field, South-Western Transbaikalia, Russia) // Minerals. 2019. V. 9. 572.

Hutton C.O. Kobeite from Paringa River, south Westland, New Zealand // Amer. Mineral. 1957. V. 42. P. 342–353. *Kiseleva G.D., Laputina I.P., Chukhrova O.F., Tyulene-va V.M.* U–Th and Au–Bi–Te–Zn mineralization of the unique rare metal-tin deposit Syrymbet (Republic of Kazakhstan) // 16th General Meet. IMA. Abstr. Vol. Piza (It-aly): 1994. P. 205–206.

Kohut M., Trubac J., Novotny L., Ackerman L., Demko R., Bartalsky B. Erban V. Geology and Re–Os molybdenite geochronology of the Kuriškova U–Mo deposit (Western Carpathians, Slovakia) // J. of Geosciences. 2013. V. 58. P. 275–286.

Kosals Ya.A., Dmitriyeva A.N. Se-quences and temperatures in formation of the Buluktay molybdenum-tungsten deposit (Southwestern Transbaykal) // International Geology Review. 1973. V. 15. N_{2} 1. P. 25–30.

Masutomi K., Nagashima, Kato A. Kobeite from the Ushio mine, Kyoto Prefecture, Japan, and re-examination of kobeite // Mineralogical Journal (Japan). 1961. V. 3. P. 139–147.

Moura A., Dória A., Neiva A.M.R., Leal Gomes C., Creaser R.A. Metallogenesis at the Carris W–Mo–Sn deposit (Gerês, Portugal): Constraints from fluid inclusions, mineral geochemistry, Re–Os and He–Ar isotopes. Ore Geol. Rev. 2014. V. 56. P. 73–93.

Orlandi P., Biagioni C., Bindi L., Merlino S. Nuragheite, $Th(MoO_4)_2$ ·H₂O, the second natural thorium molybdate and its relationships with ichnusaite and synthetic $Th(MoO_4)_2$. Amer. Mineral. 2015. V. 100. P. 267–273.

Ripp G.S.; Smirnova, O.K.; Izbrodin I.A.; Lastochkin E.I.; Rampilov M.O.; Posokhov V.F. An Isotope Study of the Dzhida Mo-W Ore Field (Western Transbaikalia, Russia). Minerals 2018. V. 8. 546.

Scott K.M., Radford N.W., Hough R.M., Reddy S.M. Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration // Australian J. Earth Sciences: An International Geoscience Journal of the Geological Society of Australia. 2011. V. 58 (7). P. 803–812.

Steacy H.R., Plant R., Boyle R.W. Brannerite associated with native gold at the Richardson Mine, Ontario // Can. Mineral. 1974. V. 12. P. 360–363.

Takubo J., Ukai Y., Minato T. Studies on the minerals containing rare elements (Part II) A new mineral found in Kobe-mura, Kyoto Prefecture, Japan // Chishitsugaku Zasshi. 1950. V. 56. P. 509–513.