УДК 539.1:539.17:539.164

СПЕКТРОСКОПИЯ СВОЙСТВ РАСПАДА ТРАНСФЕРМИЕВЫХ ИЗОТОПОВ В ДУБНЕ

© 2021 г. М. С. Тезекбаева^{1, 2, *}, А. В. Еремин^{1, 3}, О. Н. Малышев^{1, 3}, А. В. Исаев¹, Р. С. Мухин¹, А. А. Кузнецова¹, А. Г. Попеко^{1, 3}, Ю. А. Попов^{1, 3}, А. И. Свирихин^{1, 3}, Е. А. Сокол¹, М. Л. Челноков¹, В. И. Чепигин¹, А. Лопез-Мартенс⁴, К. Хошильд⁴, О. Дорво⁵, Б. Галл⁵, Б. С. Сайлаубеков^{1, 2}

> ¹Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

²Институт ядерной физики, Алматы, Казахстан

³Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

⁴Национальный институт ядерной физики и физики частиц Национального центра научных исследований, Университет Париж-Сакле, Лаборатория Ирен Жолио-Кюри, Орсе, Франция

⁵Национальный институт ядерной физики и физики частиц Национального центра научных исследований, Университет Страсбург, Междисциплинарный институт Губерта Курьена, Страсбург, Франция

> **E-mail: tezekbaeva@jinr.ru* Поступила в редакцию 24.05.2021 г. После доработки 01.06.2021 г. Принята к публикации 28.06.2021 г.

Представлены данные по свойствам радиоактивного распада изотопов ²⁵⁶Rf и ^{249, 250}No, синтезируемых в реакциях полного слияния ⁵⁰Ti + ²⁰⁸Pb и ⁴⁸Ca + ²⁰⁴Pb, с последующим испарением нейтронов из возбужденного состояния составного ядра. В экспериментах использовались высокоинтенсивные пучки ускоренных тяжелых ионов ⁴⁸Ca и ⁵⁰Ti циклотрона У400 ЛЯР ОИЯИ и кинематический сепаратор SHELS.

DOI: 10.31857/S0367676521100252

введение

Для детального исследования свойств радиоактивного распада изотопов трансфермиевых элементов и поперечных сечений образования этих изотопов используются различные типы реакций с пучками ускоренных частиц и методы идентификации. В наиболее эффективных методиках при синтезе сверхтяжелых элементов использовались экспериментальные установки с кинематическим отделением ядер отдачи от фоновых продуктов, а также корреляционная обработка экспериментальных данных для генетически связанных распадов материнское ядро – дочернее ядро [1]. Корреляционные цепочки имплантированных в детектор ядер отдачи приводят в область известных изотопов, что необходимо для достоверной идентификации материнского ядра. В будущем экспериментальная техника как для сепарации ядер отдачи, так и для регистрации различных видов излучений, испускаемых исследуемыми ядрами, может быть улучшена, что даст новые возможности для изучения и поиска новых изотопов и получения новых данных о распадах известных ядер.

При современных методах изучения область трансфермиевых элементов ($100 \le Z \le 106$) является более доступной для исследования и проведения экспериментов, так как сечения образования этих изотопов гораздо выше образования изотопов сверхтяжелых элементов (СТЭ, Z > 110). Кроме того, область трансфермиевых элементов (нейтронно-избыточные изотопы элементов в области No–Sg) сама по себе является весьма интересной для спектроскопических исследований, так как существует переход от нейтронной подоболочки N = 152 к подоболочке N = 162, причем сечения образования данных изотопов достаточно высоки (более одного нанобарна).

В Лаборатории ядерных реакций (ЛЯР) им. Г.Н. Флерова ОИЯИ на кинематическом сепараторе SHELS [2] проводятся эксперименты по детальному изучению свойств радиоактивного распада (α, β, γ-спектроскопия) изотопов трансфермиевых элементов, синтезируемых в реакци-

Таблица 1. ЯО-α-α корреляции для распада изотопа ²⁵⁶Rf. $E_{\rm HO}$ – энергия ЯО, $\Delta T({\rm HO} - \alpha_1)$ – разница времени между зарегистрированным материнским ядром и ЯО. E_{α_1} – энергия материнского ядра, $\Delta T(\alpha_1 - \alpha_2)$ – разница времени между материнским и дочерним ядрами, E_{α_2} – энергия дочернего ядра

<i>Е</i> _{ЯО} , кэВ	ΔT (ЯО – α_1), мс	<i>Е</i> _{α₁, кэВ}	$\Delta T(\alpha_1 - \alpha_2), c$	<i>Е</i> _{α2} , кэВ
10810	21.57	8793	2.585	8418
8148	6.79	8780	2.456	8417
9738	8.078	8789	3.703	8412
8910	0.3	8749	2.226	8417
9402	29.87	8790	6.614	8420
11540	0.134	8726	5.027	8377
9330	3.424	8781	3.369	8405
9120	9.185	8798	3.505	8415
10795	0.981	8794	1.904	8411

ях полного слияния с последующим испарением нескольких нейтронов.

ОПИСАНИЕ ЭКСПЕРИМЕНТА

В 2019–2020 годах на ускорителе У-400 ЛЯР ОИЯИ были проведены эксперименты по детальному изучению свойств радиоактивного распада изотопов Rf и No, образующихся в реакциях полного слияния ускоренных ионов ⁵⁰Ti и ⁴⁸Ca с ядрами мишеней из обогащенных изотопов свинца. В экспериментах были использованы мишени ²⁰⁸PbS, ²⁰⁶PbS и ²⁰⁴PbS на 1.5 мкм Ti подложке.

Мишени в форме сегментов устанавливаются на вращающийся диск в мишенном блоке кинематического сепаратора SHELS для снижения тепловой нагрузки [2, 3]. Эффективность транспортировки ядер отдачи (ЯО), образующихся в реакциях полного слияния с ионами ⁴⁸Ca и ⁵⁰Ti, от мишени до фокальной плоскости сепаратора составляет величину порядка 30–40% в зависимости от настроек ионно-оптической системы сепаратора.

В фокальной плоскости сепаратора располагается комбинированная детектирующая система GABRIELA, позволяющая регистрировать α-частицы, γ-кванты, β-частицы и осколки спонтанного деления (СД), испускаемые исследуемыми ядрами [4, 5]. После отделения от фоновых продуктов ЯО, пролетая через время пролетную систему, состоящую из 2-х (старт и стоп) детекторов, имплантируются в фокальный двусторонний кремниевый многостриповый детектор DSSD (128 × 128 стрипов, размер 100 × 100 мм², толщина 0.5 мм). Дополнительные 8 стриповых детектора $(16 \times 16 \text{ стрипов, размер } 50 \times 60 \text{ мм}^2, толщина$ 0.7 мм), смонтированные по бокам фокального детектора, образующие "колодец" глубиной 6 см, служат для увеличения эффективности регистрации α - и β -частиц, а также осколков СД, вылетающих из фокального DSSD-детектора. Энергетическое разрешение для α -частиц в диапазоне 6— 10 МэВ составляет величину порядка 15—20 кэВ. Вокруг "колодца" смонтированы 4 однокристальных германиевых детектора. Максимально близко к фокальному DSSD детектору расположен германиевый четырехкристальный детектор Клеверного типа [5]. Для снижения фона германиевые детекторы окружены антикомптоновской защитой (BGO), что позволяет существенно снизить фон γ -квантов.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Изотоп ²⁵⁶Rf

В экспериментах по изучению свойств спонтанного деления изотопа ²⁵⁶Rf на сепараторе SHELS, с использованием нейтронного детектора, состоящего из 54 ³He-счетчиков [6], не удалось обнаружить ни одного события α -распада, соответствующего ²⁵⁶Rf, число событий спонтанного деления, отнесенного к данному изотопу, составило величину порядка 1500 [7]. В более ранних экспериментах [8, 9], проведенных в Институте тяжелых ионов (GSI, Дармштадт) были обнаружены события α -распада, которые были отнесены к распаду ²⁵⁶Rf. Вероятности α -распада составили $b_{\alpha} = 0.022^{+0.073}_{-0.018}$ [8] и $b_{\alpha} = 0.0032$ [9].

В настоящем эксперименте при исследовании реакции полного слияния ${}^{50}\text{Ti} + {}^{208}\text{Pb} \rightarrow {}^{256}\text{Rf} + 2\text{n}$ были уточнены свойства распада изотопа ${}^{256}\text{Rf}$. Мишень ${}^{208}\text{PbS}$ толщиной 0.4—0.6 мг · см⁻², интегральный поток частиц ${}^{50}\text{Ti}$ составил 5.05 · 10¹⁸. За время эксперимента в фокальной плоскости сепаратора было зарегистрировано около 6270 событий СД и 9 событий α -распада, которые можно отнести к распаду ядра ${}^{256}\text{Rf}$. События α -распада были получены в результате проведения корреляционного ЯО- α - α анализа (см. табл. 1).

Таблица 2. Существующие литературные данные по распаду изотопа ²⁵⁶Rf и результаты настоящего эксперимента. $N_{\alpha}/N_{C\Lambda}$ – число зарегистрированных α-частиц/осколков СД, E_{α} – энергия зарегистрированных α-частиц, $b_{\alpha/b_{c\Lambda}}$ – вероятность α-распада/СД

Эксп.	α-распад			СД			
	N_{lpha}	<i>Е</i> _α , кэВ	T _{1/2} , мс	$b_{\alpha}, \%$	N _{CД}	<i>T</i> _{1/2} , мс	b _{сд} , %
[7]	1	8812 ± 23	10_{-4}^{+47}	$2.2_{-1.8}^{+7.3}$	73	$7.4_{-0.8}^{+1.3}$	97.8
[8]	3	8776-8800	—	0.32	1900	6.2 ± 0.2	99.68
[9]	0	—	_	_	1500	5.75 ± 0.17	~100
2018 г.	9	8726-8798	5.7 ± 1.2	$0.29^{+0.08}_{-0.07}$	6270	6.9 ± 0.23	99.71 ± 1.26

Таблица 3. Параметры экспериментов по синтезу и изучению свойств радиоактивного распада изотопов ²⁵⁰No и ²⁴⁹No

Эксперимент	Энергия пучка ⁴⁸ Са, МэВ	Интегральный поток ионов	Мишень	Толщина мишени, мкг · см ⁻²	Обогащение мишени, %
Январь 2019	225	$8\cdot 10^{18}$	²⁰⁸ PbS	360, 430	99.57
	225	$4.6 \cdot 10^{17}$	²⁰⁶ PbS	400	99.51
	225	$2.6 \cdot 10^{18}$	²⁰⁴ PbS	350	99.94
Октябрь 2020	225	$1 \cdot 10^{18}$		450	99.94
	237	$1.6 \cdot 10^{18}$	204 Dh S		
	242	$8.4 \cdot 10^{17}$			
	230	$2.6 \cdot 10^{17}$			

Измеренные периоды полураспада составили величину для СД 6.9 \pm 0.23 мс и для α -распада 5.7 \pm 1.2 мс, вероятности распада составили $b_{CA} = 99.71\%$ и $b_{a} = 0.29\%$ соответственно, что хорошо согласуется с раннее опубликованными данными [7–9].

В табл. 2 приведены свойства радиоактивного распада ядра 256 Rf по существующим и полученным новым данным.

Изотопы No. Предварительные результаты

В 2019–2020 гг. в ОИЯИ ЛЯР на циклотроне У-400 проводился ряд экспериментов по изучению свойств радиоактивного распада изотопов нобелия, образующихся в результате испарения составным ядром двух–трех нейтронов в реакциях полного слияния ⁴⁸Ca + ^{204, 206, 208}Pb \rightarrow ^{252, 254, 256}No*. Полученные изотопы нобелия в основном испытывают α –распад и СД, имеют периоды полураспада от нескольких микросекунд до десятков секунд. Условия экспериментов приведены в табл. 3.

²⁵⁴No u ²⁵²No

Во время облучения мишени ²⁰⁸PbS ускоренными ионами пучка ⁴⁸Са в фокальной плоскости было зарегистрировано порядка 600 корреляционных событий ЯО-осколок СД. В данном облучении наблюдались две активности, которые можно отнести к СД изотопов ²⁵⁴No и ²⁵²No. Это связано с достаточно большой вероятностью деления ²⁵²No, образующегося на примеси изотопа ²⁰⁶Рb в основной мишени. Вероятность спонтанного деления ²⁵⁴No составляет величину 0.17%, с сечением образования в максимуме функции возбуждения 2 мкб, тогда как для ²⁵²No вероятность СД составляет 29.3% (сечение образования составляет величину порядка 500 нб). Имея большую разницу между временами жизни, данные два изотопа хорошо разделяются по периодам полураспада. В результате к распаду ²⁵⁴ No было отнесено 310 событий СД.

В ходе эксперимента была набрана статистика, сравнимая с предыдущим экспериментом, проведенным в GSI [10]. Наблюдалось два события СД с малыми временами жизни, которые могут быть

Рис. 1. Временное распределение для изомерного и основного состояний ²⁵⁰No. N – число отсчетов. ΔT – временной интервал между сигналами от ЯО и СД.

предварительно отнесены к распаду изомерного состояния изотопа ²⁵⁴No.

В ходе облучения мишени ²⁰⁶PbS толщиной 400 мкг · см⁻² пучком ускоренных ионов ⁴⁸Ca в фокальной плоскости было зарегистрировано 22000 событий СД, отнесенных к распаду изотопа ²⁵²No. Данной статистики было достаточно для проведения калибровки детекторов по полной кинетической энергии (*TKE*).

²⁵⁰No u ²⁴⁹No

Целью экспериментов, выполненных в 2019 году, являлось изучение свойств распада изотопа ²⁵⁰No, синтезируемого в реакции полного слияния ⁴⁸Ca + ²⁰⁴Pb \rightarrow ²⁵⁰No + 2*n* с сечением образования в максимуме функции возбуждения около 13 нб. Всего в фокальном детекторе (DSSD) за 13 дней облучения мишени ²⁰⁴PbS толщиной 350 мкг · см⁻² было зарегистрировано около 18000 корреляционных событий ЯО–осколок СД при энергии пучка 225 МэВ (см. табл. 3).

В эксперименте 2020 года в 2*n* и 3*n* каналах реакции полного слияния ⁴⁸Ca с мишенью ²⁰⁴PbS толщиной 450 мкг · см⁻² изучались свойств радиоактивного распада изотопов ²⁵⁰No и ²⁴⁹No. (см. табл. 3). При энергии 225 МэВ за 8 дней облучения было зарегистрировано порядка 3000 событий деления, отнесенных к ²⁵⁰No.

Временное распределение для основного и изомерного состояния ²⁵⁰No показано на рис. 1. Время пролета ядер отдачи через сепаратор в среднем составляет величину на уровне 2 мкс, т.е.

Рис. 2. Корреляционный спектр γ -квантов, регистрируемых при распаде изотопа ²⁵⁰No. E_{γ} – энергия γ -квантов. N – число отсчетов.

часть короткоживущих изотопов распадается на лету. Кроме того, мертвое время электронной регистрирующей аппаратуры для ЯО–СД корреляций составляет величину порядка 3 мкс. Эти факторы приводят к некоторой отсечке по времени. Однако, поскольку эта отсечка носит постоянный характер, на вычисление периода полураспада для короткоживущего состояния она не влияет.

Период полураспада для основного короткоживущего состояния составило $T_{1/2} = 5.84 \pm 1.72$ мкс, а для изомерного $T_{m1/2} = 40.5 \pm 0.73$ мкс.

На рис. 2 приведен спектр гамма-квантов, видны линии на 914 и 1090 кэВ, разница между которыми составляет 176 кэВ. Пик с такой энергией также наблюдается на спектре. Линии 115 и 176 кэВ хорошо согласуются с тем, что ожидается увидеть в ротационном спектре основного состояния на основе известных данных по спектрам основных состояний изотопов 254 No и 252 No (рис. *За* и *3б* соответственно). Полученные данные совпадают с результатами предыдущего эксперимента [11].

Для данных изотопов переход от 6+ к 4+ происходит от 159 кэВ в ²⁵⁴No к 167 кэВ в ²⁵²No, переход от 4+ к 2+ происходит с испусканием фотонов энергией 44 и 46 кэВ соответственно [12]. Исходя из этих данных можно представить схему распада ²⁵⁰No, показанную на рис. Зв. Распад из 6+ изомерного состояния сопровождается переходами 914 кэВ с мультипольностью *M*1 в 6+ и 1090 кэВ с мультипольностью *E*2 в 4+ основного состояния. Переход от 6+ к 4+ составляет 176 кэВ, от 4+ к 2+ – 115 кэВ и от 2+ к 0+ ~ 49 кэВ.

В ходе ЯО–α-α-α корреляционного анализа в эксперименте был синтезирован новый изотоп

Рис. 3. Ротационный спектр основного состояния 254 No (*a*). Ротационный спектр основного состояния 252 No (*б*). Предположительная схема распада 250 No, основанная на полученных данных из эксперимента и существующих данных по 254 No и 252 No (*b*).

Рис. 4. Генетическая цепочка α-распада для ²⁴⁹No. Слева показан коррелированный α-спектр, где *N* – число отсчетов, *E* – энергия α-частиц.

²⁴⁹No. 244 события α-распада и 5 событий СД может быть отнесено к распаду ²⁴⁹No. Оценка вилки на спонтанное деление составляет порядка $b_{CД} = 0.02^{+0.013}_{-0.009}$. Генетическая цепочка для ²⁴⁹No показана на рис. 4. По предварительным данным энергия α-частиц, испускаемых ²⁴⁹No лежит в диапазоне 9050–9200 кэВ с периодом полураспада 43.8 ± 3.7 мс.

ЗАКЛЮЧЕНИЕ

Представлены предварительные результаты по изучению изомерного состояния ²⁵⁰No и уточне-

ны некоторые свойства распада ²⁵⁶Rf с использованием методики α , β , γ -спектроскопии, успешно реализуемой на кинематическом сепараторе SHELS. Весной 2019 года в ЛЯР ОИЯИ прошел запуск "Фабрики сверхтяжелых элементов". Методы изучения, на основе которых проведен анализ данных, представленных в работе, позволяющий детально изучить структуру трансфермиевых элементов, является хорошей методологической основой при подготовке исследований структур изотопов сверхтяжелых элементов. На ускорителе DC–280, ток пучка будет примерно в 10 раз больше, чем на работающем циклотроне У-400. На фабрике СТЭ ЛЯР ОИЯИ планируется полу-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 85 № 10 2021

чение пучков тяжелых ионов с интенсивностью до 10 мкА [13]. Использование таких высокоинтенсивных пучков в сочетании с эффективными методиками и экспериментальными установками должно открыть доступ к изучению ядер, более близких к центру "острова стабильности".

Работа выполнена при финансовой поддержке РФФИ (проект № 18-52-15004).

СПИСОК ЛИТЕРАТУРЫ

- Еремин А.В., Попеко А.Г. // ЭЧАЯ. 2004. Т. 35. № 4. С. 894; Yeremin A.V., Popeko A.G. // PEPAN. 2004. V. 35. No. 4. P. 480.
- 2. Еремин А.В., Попеко А.Г., Малышев О.Н. и др. // Письма в ЭЧАЯ. 2015. Т. 12. № 1. С. 63; Yeremin A.V., Popeko A.G., Malyshev O.N. et al. // PEPAN Lett. 2015. V. 12. No. 1. P. 43.
- 3. Еремин А.В., Попеко А.Г., Малышев О.Н. и др. // Письма в ЭЧАЯ. 2015. Т. 12. № 1. С. 74; Yeremin A.V., Popeko A.G., Malyshev O.N. et al. // PEPAN Lett. 2015. V. 12. No. 1. P. 35.

- 4. *Hauschild K., Yeremin A.V., Dorvaux O. et al.* // Nucl. Instrum. Meth. A. 2006. V. 560. P. 388.
- 5. Yeremin A., Popeko A.G., Malyshev O. et al. // Proc. VIII EXON (Kazan, 2016). P. 397.
- 6. Yeremin A.V., Belozerov A.V., Chelnokov M.L. et al. // Nucl. Instrum. Meth. A. 2005. V. 539. P. 441.
- 7. Свирихин А.И., Ерёмин А.В., Изосимов И.Н. и др. // Письма в ЭЧАЯ. 2016. Т. 13. № 4. С. 759; Svirikhin A.I., Yeremin F.V., Izosimov I.N. et al. // PEPAN Lett. 2016. V. 13. No. 4. P. 480.
- 8. *Heβberger F.P., Münzenberg G., Hofmann S. et al.* // Ζ. Phys. A. 1985. V. 321. P. 317.
- Heβberger F.P., Hofmann S., Ninov V. et al. // Z. Phys. A. 1997. V. 359. P. 415.
- 10. *Heβberger F.P., Antalic S., Sulignano B. et al.* // Eur. Phys. J. A. 2010. V. 43. P. 55.
- 11. Еремин А.В., Попеко А.Г., Малышев О.Н. и др. // ЯФ. 2020. Т. 83. № 4. С. 278.
- 12. https://www.nndc.bnl.gov/nudat2.
- 13. Dmitriev S., Itkis M., Oganessian Y. // EPJ Web Conf. 2016. V. 131. Art. No. 08001.

Spectroscopic study of decay properties of transfermium isotopes in Dubna

M. S. Tezekbayeva^{*a*, *b*, *, A. V. Yeremin^{*a*, *c*}, O. N. Malyshev^{*a*, *c*}, A. V. Isaev^{*a*}, R. S. Mukhin^{*a*}, A. A. Kuznetsova^{*a*}, A. G. Popeko^{*a*, *c*}, Yu. A. Popov^{*a*, *c*}, A. I. Svirikhin^{*a*, *c*}, E. A. Sokol^{*a*}, M. L. Chelnokov^{*a*}, V. I. Chepigin^{*a*}, A. Lopez-Martens^{*d*}, K. Hauschild^{*d*}, O. Dorvaux^{*e*}, B. Gall^{*e*}, B. S. Sailaubekov^{*a*, *b*}}

^aJoint Institute for Nuclear Research, Dubna, 141980 Russia ^bInstitute of Nuclear Physics, Almaty, 050032 Kazakhstan ^cState University "Dubna", Dubna, 141982 Russia ^dIJCLab, IN2P3- CNRS, University Paris – Sacle, Orsay, 91400 France ^eHubert Curien Multi-Disciplinary Institute, IN2P3- CNRS, Strasbourg, 67200 France *e-mail: tezekbaeva@jinr.ru

We present a data of 256 Rf and ${}^{249, 250}$ No isotopes radioactive decay properties, which are produced in complete fusion reactions 50 Ti + 208 Pb, and 48 Ca + 204 Pb with subsequent neutron evaporation from the excited compound nucleus. High intensity beams of accelerated 48 Ca and 50 Ti heavy ions from the U-400 cyclotron and the SHELS kinematic separator were used in the experiments.