УДК 539.1.08

РАЗРАБОТКА МЕТОДА ОБРАБОТКИ СЛОЖНЫХ РЕНТГЕНОВСКИХ И ГАММА-СПЕКТРОВ В НИЗКОЭНЕРГЕТИЧЕСКОЙ ОБЛАСТИ

© 2021 г. М. В. Желтоножская^{1, *}, В. А. Желтоножский¹, Д. Е. Мызников², А. Н. Никитин³, Н. В. Стрильчук², В. П. Хоменков²

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", физический факультет, Москва, Россия ²Институт ядерных исследований Национальной академии наук Украины, Киев, Украина

³Институт радиобиологии Наииональной академии наук Беларуси", Гомель, Беларусь

**E-mail: zhelton@yandex.ru* Поступила в редакцию 24.05.2021 г. После доработки 01.06.2021 г. Принята к публикации 28.06.2021 г.

Предложен метод обработки сложных рентгеновских и гамма-спектров в области энергий 10–100 кэВ, учитывающий сложность описания рентгеновских линий и обеспечивающий погрешность обработки не более 1%. С его помощью исследованы L_X -компоненты излучения калибровочного источника ²⁴¹ Ат. С точностью 1–4% определены выходы основных гамма-квантов.

DOI: 10.31857/S0367676521100276

ВВЕДЕНИЕ

В результате радиационных аварий в окружающую среду выпало большое количество радионуклидов техногенного происхождения. Значительную радиологическую опасность представляют альфа-нуклиды, связанные с распадом изотопов плутония и ²⁴¹Am. Регистрация подобных радионуклидов может проводиться по рентгеновскому характеристическому излучению, сопровождающему распад этих нуклидов [1]. Однако, спектр излучения в этой области энергий (10-30 кэВ) крайне сложный и описывать форму линии в спектре простой функцией Гаусса недостаточно, приходится использовать более сложную функцию, что особенно актуально при небольшой статистике спектра. Кроме того, отличительной особенностью характеристического рентгеновского излучения является наличие нескольких компонент. Например, L_{β} -группа нептуния содержит 6 переходов в диапазоне энергий 16.1-17.8 кэВ. В этой же области находятся L_в-переходы урана, смещенные на 300 эВ. Фактически в диапазоне 2 кэВ находятся 12 переходов. К тому же в этой же области находится K_x -излучение, сопровождающее распад ⁹⁰Sr и фотовозбуждение циркониевой матрицы [1]. Обработка таких спектров требует создания специального программного кода, учитывающего тот факт, что линии характеристического излучения описываются сверткой распределений Лоренца и Гаусса. В представленной работе нами

представлен метод обработки сложных рентгеновских и гамма-спектров в низкоэнергетической области.

МЕТОДЫ И МАТЕРИАЛЫ

Для описания формы пиков после анализа формы гамма-линий в низкоэнергетической области экспериментального спектра (рис. 1) нами используется функция Гаусса с "хвостами":

$$f(i, \boldsymbol{\alpha}) = \begin{cases} \alpha_1 \cdot e^{\frac{\alpha_4(2i-2\alpha_2+\alpha_4)}{2\alpha_3^2}}, & i < \alpha_2 - \alpha_4 \\ \alpha_1 \cdot e^{\frac{-(i-\alpha_2)^2}{2\alpha_3^2}}, & \alpha_2 - \alpha_4 \le i \le \alpha_2 + \alpha_5. \end{cases}$$
(1)
$$\alpha_1 \cdot e^{\frac{\alpha_5(2\alpha_2 - 2i + \alpha_5)}{2\alpha_3^2}}, & i > \alpha_2 + \alpha_5. \end{cases}$$

Детальное описание участка спектра с пиком приведено на рис. 2.

В некоторых случаях не удается удовлетворительно описать форму пика в спектре функцией (1). Тогда можно создать некую эталонную линию, прообразом которой служит сильная одиночная линия из этого же или подобного спектра. Для этого выделим участок спектра $\{N_i\}, i_1 \le i \le i_2$, в котором находится калибровочная линия. Вычтя из него линейный фон, определенный по точкам

Рис. 1. Фрагмент области экспериментального спектра в области энергий 10–130 кэВ.

 i_1 и i_2 , получаем чистую калибровочную линию $\{y'_i\}, i_1 \le i \le i_2$.

Аппроксимируем ее кусочно-непрерывной функцией f'(x'), где каждый участок описывается кубическим сплайном (параметры сплайнов c_{ij} определяются по стандартной процедуре, описанной, например, в [2]):

$$f'(x') = \begin{cases} \sum_{j=0}^{3} c_{ij} x'^{j}, & i \le x' \le i+1, & i_{1} \le i \le i_{2} \\ 0, & (x' < i_{1}) \bigcup (x' > i_{2}) \end{cases}$$
(2)

Будем считать, что эта функция и есть описание калибровочной линии с амплитудой, положением и полушириной $\alpha'_1, \alpha'_2, \alpha'_3$, соответственно, через некоторую эталонную линию T(x):

$$f'(x') = \alpha'_1 \cdot T\left[\frac{x - \alpha'_2}{\alpha'_3}\right],$$
$$x' = \frac{x - \alpha'_2}{\alpha'_3}, \quad x = \alpha'_3 x + \alpha'_2.$$

Тогда:
$$T(x) = \frac{f'(\alpha'_3 + \alpha'_2)}{\alpha'_1}.$$

Как легко убедиться, функция T(x) нормирована: ее положение равно 0, а амплитуда и полуширина 1. В самом деле, при x = 0 $x' = \alpha'_2$, при $x_2 - \alpha'_2$

$$x_1 = 1x'_2 - x'_1 = \alpha'_3$$
, a $T(0) = \frac{f'(\alpha'_2)}{\alpha'_1} = 1$.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 85 № 10 2021

Рис. 2. Участок спектра с ү-пиком (1) описывается функцией Гаусса с "хвостами" (2) и фоном (3). Составляющие фона: квадратичная функция (4), ступенька (5) и экспоненциальный "хвост" (6). Простая функция Гаусса (7) демонстрирует асимметричность высоко- и низкоэнергетического "хвостов" пика.

Используем эту функцию для описания другой линии с амплитудой, положением и полушириной α_1 , α_2 , α_3 , соответственно, из участка спектра $\{N_i\}$:

$$f(i, \boldsymbol{\alpha}) = \boldsymbol{\alpha}_1 \cdot T\left[\frac{i - \boldsymbol{\alpha}_2}{\boldsymbol{\alpha}_3}\right] = \frac{\boldsymbol{\alpha}_1}{\boldsymbol{\alpha}_1'} f' \left[\frac{\boldsymbol{\alpha}_3'}{\boldsymbol{\alpha}_3}(i - \boldsymbol{\alpha}_2) + \boldsymbol{\alpha}_2'\right].$$

Функция *f* нелинейно зависит от параметров α . Для ее линеаризации используем разложение в ряд Тейлора в окрестности начальных значений параметров α_0 , оставив только члены первого порядка малости:

$$f(i, \boldsymbol{\alpha}) \approx f(i, \delta \boldsymbol{\alpha}) = \alpha_{01} f(x_0) + f'(x_0) \cdot \delta \alpha_{01} - \frac{\alpha_{01} \alpha'_3}{\alpha'_1 \alpha_{03}} \cdot \frac{\partial f'}{\partial x'} (x'_0) \cdot \delta \alpha_{02} -$$
(3)
$$- \frac{\alpha_{01} \alpha'_3 (i - \alpha_{02})}{\alpha'_1 \alpha^2_{03}} \cdot \frac{\partial f'}{\partial x'} (x'_0) \cdot \delta \alpha_{03},$$

где

$$x'_{0} = \frac{\alpha'_{3}}{\alpha_{03}}(i - \alpha_{02}) + \alpha'_{2},$$
$$\frac{\partial f'}{\partial x'}(x'_{0}) = \sum_{j=1}^{3} j \cdot c_{kj} \cdot (x'_{0})^{j-1},$$

индекс k определяется условием $k \le x'_0 \le k + 1$. Эта линеаризованная функция $\tilde{f}(i, \delta \alpha)$ используется для подгонки.

Описанная выше процедура используется при обработке гамма-линий, но при обработке выходов характеристического излучения такой подход не полностью описывает форму рентгеновских пиков.

Как известно, форма линии в спектре образуется в результате свертки собственной формы линии с функцией отклика спектрометра (или приборной формой):

$$F(E) = \int_{-\infty}^{+\infty} G(E')D(E - E')dE'.$$
 (4)

Собственная форма линии описывается функцией Лоренца:

$$G(E) = \frac{\Gamma/2\pi}{(E - E_0)^2 + (\Gamma/2)^2},$$
(5)

где E — энергия, E_0 — средняя энергия фотона, Γ — ширина линии.

Функция отклика спектрометра D(E) описывается выражением (4) или эталонной линией. Поскольку ширина γ -линий намного меньше 10^{-2} эВ, а ширина приборной линии ~ 1 кэВ, то для γ -линий можно считать собственную форму линии δ -функцией, и тогда форма линии в спектре полностью определяется функцией отклика спектрометра.

По-другому обстоит дело с рентгеновскими линиями. Рентгеновские К_х-линии образуются в результате перехода электронов с L, M, ...-подоболочек при заполнении вакансии в К-оболочке. Ширина этих линий будет равна сумме ширин *К*и *L*, *M*, ...-уровней. Данные о естественных ширинах при возбуждении К, L-уровней приведены в [3] и можно видеть, что для тяжелых элементов собственная ширина *К*_х-линий достигает 100 эВ и выше. Так как форма функции Лоренца существенно отличается от формы приборной линии, которая приближенно описывается функцией Гаусса, в результате их свертки получается линия, края которой оказываются "затянутыми" по сравнению с приборной линией. В этом случае пренебрежение собственной формой линии приводит при обработке к ошибкам в значении интенсивности ~5%, что недопустимо при хорошей статистике и требованиям к точности обработки ~1%.

Поэтому для обработки рентгеновских пиков выбранная форма приборной линии по формуле (4) численным интегрированием сворачивается с функцией Лоренца соответствующей ширины, которая используется как табличная для обработки гамма-спектров.

При исследовании спектров гамма-лучей в образцах из зон аварии на АЭС в спектрах, как правило, присутствуют K_{α} -линия урана (рис. 1). Именно $K_{\alpha 1}$ -линия урана может использоваться в качестве эталонной линии при обработке спектров L_{χ} -переходов урана и нептуния.

Калибровка по энергии аппроксимируется квадратичной функцией от номера канала *i*:

$$E(i) = \sum_{j=0}^{2} a_{j} i^{j},$$
 (6)

Коэффициенты a_j определяются по нескольким линиям с известной энергией. Если задается две линии, проводится линейная калибровка, а если одна — то считается, что E(0) = 0.

При изотопном анализе спектра задаются два параметра: ΔE (кэВ) — ширина интервала по энергии, и I_{min} (%) — порог интенсивности линии. Затем линии с интенсивностью выше пороговой из базы данных по изотопам сравниваются по энергии со всеми обнаруженными в спектре линиями. Если линия, принадлежащая какому-то изотопу, в пределах интервала ΔE совпадает по энергии с любой линией в спектре, рейтинг этого изотопа повышается на 1, а если такой линии в спектре нет — понижается на 2. Таким образом, с помощью простой процедуры можно оценить изотопный состав спектра с градацией по вероятности присутствия изотопов.

Абсолютная эффективность регистрации гамма-квантов $\varepsilon(E)$ является одной из главных характеристик спектрометра, которая осуществляется по одной из двух формул:

$$\ln \varepsilon(E) = \sum_{j=0}^{m} a_j (\ln E)^j \quad [4]$$

либо

$$\varepsilon(E) = \sum_{j=1}^{3} a_{2j-1} e^{-a_{2j}E} + a_7 E^{-a_8} \quad [5]$$
(8)

здесь Е – энергия в кэВ.

Параметры кривой эффективности определяются при измерении спектров калибровочных источников, в которых интенсивности гаммаквантов измерены с точностью лучше 2% [6]. Если используются данные для нескольких калибровочных источников, то минимизируется следующая функция:

$$S(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{N} \sum_{k=1}^{n_i} w_{ik} \left(f(E_{ik}) - b_i \varphi_{ik} \right)^2,$$
(9)

где n_i — количество линий *i*-го изотопа, N — количество изотопов, f — функция калибровки (7) или (8), E_{ik} — энергия k-й линии *i*-го изотопа, b_i — весовой коэффициент *i*-го изотопа, ϕ_{ik} — для функции (7) это логарифм отношения измеренной и табличной интенсивностей k-й линии *i*-го изотопа и просто отношение для функции (8). Коэффициенты w_{ik} обратно пропорциональны сумме квадратов относительных погрешностей измеренной и табличной интенсивностей линии (для функции (7)) либо абсолютных погрешностей

Рис. 3. Участок спектра распада 241 Am (слева); пример обработки L_{β} -группы (справа).

(для функции (8)). Весовой коэффициент первого изотопа b_1 полагается равным единице. Функция калибровки (7) нелинейна по **a**, поэтому она линеаризуется заменой **a** \rightarrow **a**₀ + Δ **a** и разложением в ряд Тейлора до членов первого порядка малости в окрестности начальных значений **a**₀.

Если мы продифференцируем функцию (9) по **a**, **b** и приравняем производные к 0, то в результате получим систему линейных уравнений:

$$\mathbf{M} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \mathbf{Y}.$$
 (10)

Отсюда можно определить параметры калибровки a_i и относительные активности изотопов b_i ,

а если известна абсолютная активность одного из изотопов, то можно получить абсолютную кривую эффективности регистрации гамма-квантов.

При измерении активности в образцах если гамма-переходы близки по энергии, то погрешность относительной эффективности регистрации для двух различных, но близких по энергии гамма-переходов значительно ниже погрешностей отдельно взятых коэффициентов эффективности регистрации гамма-переходов. При использовании для кривой эффективности функции (8) относительная погрешность $\delta\eta$ будет равна абсолютной погрешности $\Delta(\ln \eta)$:

$$\Delta \ln \frac{\varepsilon_k}{\varepsilon_l} = \sqrt{S_0 \cdot \sum_{i,j=0}^m M_{ij}^{-1} \cdot \left[(\ln E_k)^i - (\ln E_l)^i \right] \cdot \left[(\ln E_k)^j - (\ln E_l)^j \right]}, \tag{11}$$

где E_k и E_l – энергии гамма-переходов, S_0 – минимизированное значение функции (9), M_{ij}^{-1} – элементы матрицы, обратной матрице **M** (10), определяющие вариации и ковариации параметров калибровки **a**. Из выражения (9) можно сделать вывод, что чем ближе по энергии находятся гамма-переходы E_k и E_l , тем погрешность отношения $\eta = \varepsilon_k/\varepsilon_l$ будет меньше. Из-за взаимной корреляции параметров калибровки **a** относительная погрешность также уменьшается.

Изотопы ²⁴¹Am, ¹⁸²Ta и ^{152, 154, 155}Eu часто используются в качестве калибровочных источников для построения кривой эффективности спектрометров. Они позволяют получить калибровку в диапазоне энергий от 10 до 1600 кэВ. Основные исследования по определению активности изотопов плутония и америция проводятся в низкоэнергетической области, где изучаются как γ-переходы, так и характеристическое излучение [7]. Поэтому большое внимание нами было уделено

калибровке именно в области 10-60 кэВ. Для этой области энергий изотоп ²⁴¹Ат является важным калибровочным источником. Однако результаты измерения $L_{\rm X}$ -излучения, сопровождающего распад ²⁴¹Ат, приведенные в работе [7], существенно (на 4–6% для групп L_{β} и L_{γ}) отличаются от данных справочника [8], который является одним из основных в у-спектроскопии. Поэтому нами были проведены тщательные измерения ОСГИ ²⁴¹Ат на Si(Li)-спектрометре с энергетическим разрешением 150 эВ на $K_{\rm X}$ -излучении Fe и обработаны результаты измерений с помощью вышеописанного метода, результаты которых подтвердили данные работы [7]. Нами были получены интенсивности более 30 L_x-линий, некоторые из них выделены впервые (рис. 3 и табл. 1).

По результатам полученных данных была проведена калибровка Si(Li)-спектрометра по эффективности, приведенная на рис. 4. Высокая точность измерения интенсивности L_X -излучения и гладкий ход кривой эффективности позво-

Линия	Переход	<i>Е</i> , кэВ	Ι, %	
			наши данные	данные работы [4]
L ₁	L3-M1	11.87	0.864 (11)	0.864 (12)
L_{t}	L3-M2	12.24	0.017 (1)	
	L3-M3	13.18	0.044 (8)	
$L_{\alpha 2}$	L3-M4	13.76	1.33 (5)	1.15 (5)
$L_{\alpha 1}$	L3-M5	13.95	11.66 (12)	11.88 (11)
L_{lpha}		13.90	13.03 (13)	13.03 (13)
L_{η}	L2-M1	15.85	0.374 (6)	0.369 (12)
$L_{\beta 6}$	L3-N1	16.11	0.218 (4)	0.246 (8)
	L2-M2	16.23	0.050 (2)	
	L3-N2	16.28	0.011 (2)	
	L3-N3	16.53	0.019 (2)	
	L1-M1	16.69	0.012 (3)	
$L_{\beta 15}$	L3-N4	16.79	0.157 (6)	[0.12 (6)]
$L_{\beta 2}$	L3-N5	16.84	2.65(3)	2.59 (7)
$L_{\beta4}$	L1-M2	17.06	1.74 (2)	1.76 (4)
	L2-M3	17.16	0.056 (4)	
$L_{\beta7}$	L3-O1	17.27	0.022 (2)	[0.20 (3)]
$L_{\beta 5}$	<i>L</i> 3- <i>O</i> 4.5	17.51	0.435 (14)	0.465 (15)
	L3-P4.5	17.60	0.244 (20)	
$L_{\beta 1}$	L2-M4	17.75	11.25 (13)	11.60 (16)
$L_{\beta 3}$	L1-M3	17.99	1.217 (16)	1.222 (25)
$L_{\beta 10}$	L1- <i>M</i> 4	18.58	0.084 (3)	0.075 (10)
$L_{\beta 9}$	L1-M5	18.76	0.103 (3)	0.108 (11)
L_{eta}		17.54	18.64 (14)	18.39 (19)
$L_{\gamma 5}$	L2-N1	20.10	0.106 (4)	0.121 (8)
$L_{\gamma 1}$	L2-N4	20.78	2.88 (4)	2.84 (6)
$L_{\gamma 2}$	L1-N2	21.10	0.15 (2)	
$L_{\gamma 8}$	<i>L</i> 2- <i>O</i> 1	21.26	0.37 (5)	0.452 (13)
$L_{\gamma 3}$	L1-N3	21.34	0.46 (1)	0.47 (3)
$L_{\gamma 6}$	<i>L</i> 2- <i>O</i> 4	21.49	0.52 (2)	0.60 (4)
•	L2-P1	21.55	0.038 (6)	
	L2-P4	21.59	0.020 (4)	
$L_{\gamma 4}$	L1-02.3	22.20	0.198 (8)	0.197 (11)

22.40

22.01

Таблица 1. Интенсивности L_X -линий из спектра распада ²⁴¹Am

*L*1-*P*2.3

 L_{γ}

 L_{total}

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 85 № 10 2021

0.042 (8)

4.78 (7)

37.34 (24)

[0.058 (6)]

4.74 (8)

37.39 (24)

Рис. 4. Кривая относительной эффективности регистрации Si(Li)-спектрометра. Сплошная линия – по нашим данным, пунктирная – по данным [8].

ляет для гамма-переходов, смещенных по энергии на $1-2 ext{ κ}$ в определять погрешность с точностью $\leq 0.5\%$.

Если же проводятся измерения γ - и $K_{\rm X}$ -линий, смещенных по энергии друг от друга на десятки и более кэВ, то погрешность коэффициентов эффективности регистрации этих переходов составляет ~1%.

ЗАКЛЮЧЕНИЕ

Разработан метод обработки сложных рентгеновских и гамма-спектров в области энергий 10— 100 кэВ. Предлагаемый метод учитывает сложность описания рентгеновских линий и обеспечивает погрешность обработки ≤1%. Для реализации метода разработан программный код, который производит набор одиночных и двумерных спектров гамма-лучей, позволяет обрабатывать одновременно несколько гамма-спектров, совместим с форматами Ortec и Canberra. Также с помощью разработанного кода можно рассчитывать и сохранять в файле спектра калибровки по энергии, форме линии и эффективности, проводить по результатам обработки изотопный анализ. Форма линии в программном коде описывается либо модифицированной функцией Гаусса с "хвостами", либо функцией Лоренца или табличной линией. Результаты анализа спектров можно экспортировать в текстовый формат для последующей обработки в программах численного анализа данных и научной графики. С помощью разработанного программного кода исследованы L_X -излучения калибровочного источника ²⁴¹Ат. С точностью 1–4% определены выходы основных гамма-квантов.

Исследование выполнено при финансовой поддержке РФФИ и БРФФИ (проект № 20-57-00009).

СПИСОК ЛИТЕРАТУРЫ

- Zheltonozhskaya M.V., Zheltonozhsky V.A., Vlasova I.E. et al. // J. Environ. Radioact. 2020. V. 225. Art. No. 106448.
- 2. Волков Е.А. Численные методы. Уч. пособ. для инж.-техн. спец. вузов. Санкт-Петербург: Лань, 2008. 248 с.
- 3. *Debertin K., Helmer R.G.* Gamma and X-ray spectrometry with semiconductor detectors. Amsterdam: Elsevier Sci. Publ., 1988.
- Gray P.W., Ahmad A. // Nucl. Instrum. Meth. Phys. Res. A. 1985. V. 237. P. 577.
- McNelles L.A., Campbell J.L. // Nucl. Instrum. Meth. 1973. V. 109. P. 241.
- 6. Вишневский И.Н., Желтоножский В.А., Саврасов А.Н. и др. // Вопр. атомн. науки и техн. Сер. физ. ядерн. реакт. 2015. № 1. С. 79.
- Lepy M.C., Duchemin B., Morel J. // Nucl. Instrum. Meth. Phys. Res. A. 1994. V. 353. P. 10.
- 8. *Lederer C.M., Shirley V.S.* Table of isotopes. New York, 1979.

Development of method for processing complex X-ray and gamma spectra in low energy area

M. V. Zheltonozhskaya^{*a*, *}, V. A. Zheltonozhsky^{*a*}, D. E. Myznikov^{*b*}, A. N. Nikitin^{*c*}, N. V. Strilchuk^{*b*}, V. P. Khomenkov^{*b*}

^aLomonosov Moscow State University, Faculty of Physics, Moscow, 119991 Russia ^bInstitute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev, 03680 Ukraine ^cInstitute of Radiobiology of the National Academy of Sciences of Belarus, Gomel, 246007 Belarus *e-mail: zhelton@yandex.ru

A method for processing complex X-ray and gamma-spectra in the 10–100 keV energy range is proposed. It considers the complexity of describing X-ray lines and providing a processing error of $\leq 1\%$. It was used to study the L_X -radiation of the ²⁴¹Am calibration source. The yields of the main gamma quanta are determined with an accuracy of 1–4%.