УДК 541.141/141.2;544.527;544.032.6

ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ВОДНЫХ РАСТВОРОВ ПОЛИВИНИЛОВОГО СПИРТА ПОД ВОЗДЕЙСТВИЕМ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ

© 2023 г. Н. В. Некрасова^{1, *}, О. А. Хлебникова^{1, **}, В. А. Ломовской¹, М. И. Кадыко¹, В. В. Высоцкий ¹, Т. Б. Галушко¹, Р. Я. Казберов¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский проспект, 31, корп. 4, Москва, 119071 Россия *e-mail: Natalianek@yandex.ru **e-mail: ol-khlebnikova@yandex.ru Поступила в редакцию 02.06.2022 г. После доработки 27.10.2022 г. Принята к публикации 30.10.2022 г.

При ультрафиолетовом облучении водных растворов поливинилового спирта разной концентрации (1–8%) обнаружено аномальное изменение вязкости раствора в интервале облучения от 0 до 60 мин. Предложен молекулярный механизм этого явления, основанный на предположении о перестройке гидратных оболочек функциональных групп поливинилового спирта в результате изменения среды под влиянием ультрафиолетового облучения.

DOI: 10.31857/S0023291222600584, EDN: KEZWUH

введение

Влияние ультрафиолетового облучения на поливиниловый спирт (ПВС) и композиты на его основе является предметом значительного количества исследований [1–5]. УФ-облучение, в частности, используется как метод сшивки полимерных цепей, приводящих к образованию сетчатых структур [1– 3], которые служат матрицей как для внедрения биологических объектов, так и для наночастиц, а также для создания композитных материалов. Как правило, в таких случаях рассматриваются времена облучения выше 60 мин и достаточно концентрированные водные растворы ПВС – выше 8%.

Поведение водных растворов ПВС при УФ-облучении — процесс, еще не изученный до конца, в котором, по-видимому, большую роль играет фотолиз воды в этих растворах. Процессы, происходящие при этом в водном растворе ПВС являются конкурирующими (например, сшивка и деструкция полимера) [6, 7]. Нами было обнаружено, что при УФ-облучении растворов ПВС разной концентрации (1–8%) в интервале от 0 до 60 мин наблюдается аномальное изменение вязкости раствора.

Предполагается, что одним из важных факторов этого изменения вязкости служит ряд процессов, вызываемых присутствием в растворе озона [8, 9], образующегося из растворенного в воде кислорода в результате УФ-облучения водных растворов ПВС [10]. Несомненно, это должно оказывать влияние на структурирование растворов ПВС, особенно на начальной фазе облучения, где особенно резко меняется pH воды в результате фотолиза и образования озона и перекиси водорода [8, 9]. Изменение pH среды должно оказывать влияние на строение гидратной оболочки молекулы, ее конформацию [7, 11], и, в результате, стабильность растворов.

Целью данной работы является экспериментальное исследование процессов, происходящих в водных растворах (1–8%) ($M = 50\,000$ Да) при УФ-облучении этих растворов в интервале от 0 до 60 мин.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для приготовления растворов использовался гранулированный ПВС фирмы KURARY POVAL, марки Moviol 15-98 ($M_w = 5 \times 10^4$).

Полностью гидролизованная марка, вязкость 4% раствора ПВС при 20°С (DIN 53015) – 15 мПа с, степень гидролиза (степень омыления) – 98.4%.

Для получения водного раствора ПВС определенной концентрации гранулы ПВС предварительно заливались деионизированной водой (18 МОм см, pH 5.5) оставлялись для набухания в течение 24 ч. Затем раствор медленно нагревали до $T = 95^{\circ}$ С, тщательно при этом перемешивая до полного растворения гранул.

Рис. 1. Зависимость вязкости растворов ПВС различной концентрации от времени УФ-облучения:1 (а), 2 (б), 5 (в), 8% (г).

Свежеприготовленные растворы помещали в стандартные бюксы в установку для УФ-облучения лампой ПРК-4 на расстоянии 10 см от источника излучения. Основная длина волны УФ-об-

лучения составляла $\lambda = 254$ нм. Контроль температуры растворов осуществляли пирометрически и поддерживали при 20°С. Интенсивность падающей УФ-волны измеряли с помощью термоэлектрического актинометра АТ-50, она составляла 20 Вт/м². Растворы разной концентрации облучали в течение 60 мин. Выбор времени облучения обусловлен тем, что именно в этой области происходит наиболее заметное изменение pH воды при облучении (см. рис. 1).

Измерение вязкости проводилось сразу же после облучения при помощи капиллярных вискозиметров ВПЖ-2 и ВПЖ-4 при 20°С. Ошибка измерений рассчитывалась из предположения нормального распределения погрешностей. Количество измерений для каждой позиции было равно 5. Доверительный интервал определялся с вероятностью 0.95. Относительная ошибка при этом составляла не более 1.6%. Это находится внутри погрешности метода (относительная погрешность измерений при использовании капиллярного вискозиметра составляет 0.1–2.5%).

Изменение вязкости при разных величинах времен облучения варьировалась от 5 до 15%, что позволяет говорить о повторяемости и достоверности результатов.

РН дистиллированной воды и водных растворов ПВС измеряли при помощи рН-метра OP-208/1 (Radelkis).

Определение размеров частиц в растворе проводили методом динамического светорассеяния при помощи анализатора Zetasizer Nano ZS. Примерно 1 мл исследуемого раствора заданной концентрации наливался в акриловую кювету, которая помещалась в рабочую ячейку прибора. Средний размер (по интенсивности рассеяния) определялся из автокорреляционной функции с использованием приборного программного обеспечения.

Оптическая плотность раствора измерялась спектрофотометрически. Для проведения анализа образцов ПВС использовался спектрофотометр Varian Cary 100. Для удобства дальнейшей работы с полученными данными была выбрана кювета с толщиной поглощаюшего слоя 100 мм. Кювета перед началом работы была тщательно промыта и высушена, а затем заполнена дистилированной водой для получения спектра растворителя. После получения спектра воды, были получены спектры 5-ти и 8%-ных растоворов ПВС. Измерения проводились в диапазоне от 900 до 800 нм. В качестве итоговых значений использовались коэффициенты поглощения образцов на длине волны 860 нм.

ИК-спектры поглощения растворов ПВС снимали на Фурье-спектрометре Перкин-Элмер 2000 в области 400–4000 см⁻¹. Тонкий слой раствора наносился на пластину KRS-5, подбирались оптимальные условия для получения спектров поглощения в пределах от 0 до 80%.

Рис. 2. ИК-спектры 5% и 8% раствора ПВС при 0, 10, 30 и 40 мин. УФ-облучения: a - 5% раствор ПВС, область 3700–2900 см⁻¹; 6 - 5% раствор ПВС, область 1000–700 см⁻¹; B - 8% раствор ПВС, область 3700–2900 см⁻¹; r - 8% раствор ПВС, область 1000–700 см⁻¹.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены кривые зависимости вязкости водных растворов ПВС от времени облучения. Было замечено, что значение вязкости раствора проходит через локальный максимум при длительности УФ-воздействия в области 30 мин после начала облучения раствора вне зависимости от концентрации. Эффект сильнее выражен при более высоких концентрациях (5 и 8%).

Данный эффект не связан с процессами сшивки и последующей деструкции полимера, что подтверждается данными ИК-спектроскопии, согласно которым спектры облученного 5 и 8% водного раствора ПВС, снятые в структурно-чувствительной области 500–4300 см⁻¹ для времен экспозиции 0, 10, 30 и 40 мин, не показывают изменений в структуре полимера от времени облучения (рис. 2).

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

Наибольшие изменения наблюдаются как для 5% так и для 8% водного раствора ПВС в области 3600–2900 см⁻¹ (рис. 2а, 2в). В области валентных колебаний воды, связанной с ОН-группой ПВС, 3000–3600 см⁻¹ [12–15], выделяются две полосы в районе 3270 и 3100 см⁻¹. Соотношение интенсивности этих полос изменяется в зависимости от времени облучения.

Наиболее сильно выражено изменение интенсивности полосы 3100 см^{-1} при облучении в течение 10 мин в растворах ПВС обеих концентраций. В 8% растворе интенсивность полосы 3100 см^{-1} снижается по сравнению с 3270 см^{-1} , в 5% растворе наоборот, возрастает. Также в 8% растворе, при облучении в течение 10 мин наблюдается смещение полосы 3643 см^{-1} (свободные OH-

Рис. 3. Изменение размеров частиц в результате УФоблучения в 5% растворе ПВС по данным ДСР.

группы [15]) в область более коротких волновых чисел.

При дальнейшем облучении в течение 30 мин 8% раствора полоса в области 3100 см^{-1} переходит в плечо на кривой, скорее всего, несколько смещаясь в область более положительных волновых чисел. В 5% растворе интенсивность полосы несколько снижается по сравнению с интенсивностью полосы 3270 см^{-1} .

После облучения в течение 40 мин 8% и 5% растворов ИК-спектры по форме практически совпадают с кривыми для необлученного раствора полимера.

Кроме того, заметны изменения в области 730 см^{-1} в необлученном 5% растворе полимера и облученном в течение 30 мин (рис. 2б, 2г), соотносящиеся с крутильными колебаниями молекул воды, которые практически исчезают на спектрах после 10 и 40 мин облучения.

В 8% растворе ПВС полоса в районе 760 см⁻¹ выражена очень слабо, скорее, в форме плеча и практически исчезает после облучения в течение 30 мин. Это, по-видимому, отражает превалирующее взаимодействие полимер-полимер в достаточно концентрированном растворе ПВС.

Таким образом, как для 5, так и для 8% водных растворов ПВС можно сделать вывод, что наиболее сильные изменения происходят в области валентных колебаний связанной с ПВС воды после 10 мин облучения и после 30 мин облучения. Можно предположить, что эти изменения связаны с перестройкой гидратных оболочек ОН-групп ПВС, что впоследствии приводит к изменению конформации молекулы.

Это коррелирует с точками экстремума на графиках зависимости вязкости от времени облучения. Следует отметить, что выявленный эффект аномального изменения вязкости коррелирует с

Рис. 4. Изменение рН дистиллированной воды в зависимости от времени УФ-облучения.

данными, полученными другими методами. На рис. 3 приведены данные по динамическому светорассеянию для 5% раствора ПВС до облучения и после 30-мин облучения. Поскольку система сложная, можно лишь сказать, что появление частиц большего размера по мере облучения, скорее всего, свидетельствует о наличии в растворе агрегатов, возникающих в результате образования водородных связей между гидратными оболочками молекул полимера. В концентрированных растворах (для ПВС – выше 5%) большую роль играют надмолекулярные структуры [18, 19], характер которых предопределяет реологическое поведение растворов. О природе их нет единого мнения, поскольку не существует абсолютного метода их идентификации.

Экспериментальные результаты по УФ-облучению дистиллированной воды (как отдельного компонента водного раствора ПВС, рис. 4), в интервале времени от 0 до 60 мин при ультрафиолетовом облучении показывают, что кислотно-щелочной баланс данной системы изменяется: pH сначала резко растет, после чего его рост замедляется и с течением времени (примерно четыре часа) плавно снижается. Это коррелирует с данными исследования [8, 9], где было показано изменение pH среды при пропускании сквозь воду озона.

Можно предположить, что в данном случае образуется озон из растворенного в воде кислорода, который также проникает в воду из воздуха в процессе экспозиции (растворимость озона в воде выше, чем у кислорода [10]). Процесс не так ярко выражен, как в работах [8, 9], поскольку содержание кислорода в воде невысоко (около 9 мг/л при 20°C) [16]. Изменение рН дистиллированной воды является хотя и косвенным, но достаточно характерным подтверждением наличия озона в растворе [8, 9].

Постепенное снижение значения pH связано с образованием перекиси водорода, дающей слабокислую среду:

Рис. 5. Значения оптической плотности для воды и 8% раствора ПВС в зависимости от времени облучения.

$$O_3 + H_2O \leftrightarrow 2OH \bullet + O_2.$$
 (1)

$$O_3 + H_2O \to H_2O_2 + O_2, [8, 9].$$
 (2)

Изменение pH среды должно сказываться на поведении растворенных молекул ПВС, их конформации в зависимости от концентрации, а также влиять на гидратную оболочку гидрофильной ОН-группы [17].

Кроме прочего, мы не можем исключать влияния на вязкость возникающих надмолекулярных частиц [18, 19], которые могут иметь разную природу при различных сочетаниях факторов, воздействующих на нашу систему.

На рис. 5 приведены данные по оптической плотности для 8% раствора ПВС в зависимости от времени облучения. Как можно видеть из рис. 1г, для 8% раствора ПВС минимум вязкости при 10 и 30 мин облучения и максимум при 30 мин можно соотнести с соответствующими минимальными и максимальными значениями оптической плотности. Можно предположить, что в данном промежутке времени происходит некий процесс, приводящий к возрастанию, снижению и снова возрастанию оптической плотности на фоне изменения pH раствора.

Наиболее чувствительными к изменению pH являются гидратные оболочки группы OH⁻ полимера. Скорее всего, при изменении pH раствора происходит их перестройка и реорганизации, что в свою очередь, видимо, приводит к возникновению и разрушению надмолекулярных структур, в которых основную роль играют водородные связи, а также к изменению конформации самой молекулы. Известно, что молекула ПВС в водном растворе существует преимущественно в виде глобулы [20]. Изменение строения гидратных оболочек может привести к разворачиванию молекулы и образованию большего числа водородных связей с соседними молекулами ПВС, особенно в концентрированных растворах.

Таким образом, рассматривая аномальное поведение вязкости растворов ПВС при УФ-облучении, можно сделать следующий вывод: тремя независимыми методами экспериментально установлено, что при УФ-облучении растворов в диапазоне от 0 до 60 мин происходит определенная структурная перестройка в растворе, вероятнее всего связанная с перестройкой гидратных оболочек ПВС и вследствие этого в результате изменения взаимодействия молекулы с растворителем происходит изменение конформации макромолекул [21].

выводы

Из полученных результатов следует, что в результате УФ воздействия:

(1) наблюдается аномальное изменения вязкостных характеристик водных растворов ПВС в зависимости от времени УФ экспозиции, что проявляется в виде максимума вязкости раствора при времени экспозиции $t \approx 30$ мин независимо от степени разбавленности раствора, при этом повышение концентрации раствора приводит к повышению величины максимума вязкости в экстремуме зависимости "вязкость—время экспозиции";

(2) установлена определенная корреляция между областью наиболее заметного изменения pH при УФ-облучении и экстремумом на зависимости "вязкость—время облучения" для всех растворов в диапазоне концентраций 1-8%; максимум и минимум вязкости коррелирует с максимумом и минимумом оптической плотности в этих же растворах при облучении;

(3) по мере У Φ -облучения в растворе образуются более крупные частицы, количество которых постоянно возрастает при увеличении времени У Φ – экспозиции раствора;

(4) наблюдается процесс изменения pH дистиллированной воды при УФ облучении, что должно оказывать влияние на поведение гидратных оболочек растворенного ПВС, особенно в концентрированных водных растворах ПВС;

(5) предполагается, что молекулярным механизмом полученных результатов является перестройка гидратных оболочек молекул полимера, приводящая к возникновению надмолекулярных структур, что в свою очередь будет влиять на образование и распад сеточных структур между макромолекулами ПВС в водных растворах концентрации 1-8%.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по Госзаданию в плане 2022 года.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kaczmarek H., Podgorski A. The effect of UV-irradiation on poly(vinyl alcohol) composites with montmotilonnite // Journal of Photochemistry and Photobiology A: Chemistry. 2007. V. 191. № 2–3. P. 209–215.
- Асулян Л.Д., Гавриков А.С., Арляпов В.А., Алферов В.А. Модификация поливинилового спирта УФ-облучением для получения рецепторных элементов биосенсоров // Известия ТулГУ. Естественные науки. 2017. № 1. С. 12–23.
- Skopińska-Wiśniewska J., Grabska-Zielińska S., Kozłowska J., Kaczmarek-Szczepańska B., Stachowiakc N., Sionkowska A. Spectroscopic studies of UV-irradiated poly(vinylalcohol)/elastin blends // International Journal of Polymer Analysis and Characterization. 2021. V. 26. № 1. P. 84–96.
- Rudko G., Kovalchuk A., Fediv V., Weimin M Chen, Buyanova I.A. Enhancement of polymer endurance to UV light by incorporation of semiconductor nanoparticles // Nanoscale Research Letters. 2015. V. 10. P. 81.
- Sionkowska A., Planecka A., Kozlowska J., Skopinr ska-Wisniewska J. Photochemical stability of poly(vinyl alcohol) in the presence of collagen // Polymer Degradation and Stability. 2009. V. 94. P. 383–388.
- 6. *Гришина А.Д.* Исследование методом ЭПР первичных радикальных продуктов радиолиза поливинилового спирта. // ДАН СССР. 1963. Т. 150. № 4. С. 809–812.
- Sun1 W.H., Chen L.J., Tian1 J.P., Wang J.L., He S.J. Radiation-induced decomposition and polymerization of polyvinyl alcohol in aqueous solutions // Environmental Engineering and Management Journal. 2013. V. 12. № 7. P. 1323–1328.
- 8. *Куи Н.К., Григорьев Е.И., Петухов А.А.* Взаимодействие озона с дистиллированной водой // Вестник казанского технологического университета. 2014. Т. 17. № 1. С. 49–52.
- Шабалина А.В., Фахрутдинова Е.Д., Федотова М.И., Белова К.А., Быкова П.В. Исследование изменения рН воды при озонировании // Вестник Томского государственного университета. 2013. № 375. С. 200–203.

- Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона // Изд. Московского Университета, 1998. 61 с.
- Choi P.-K. Bae J.Φ.-R., Takagi K. Ultrasonic spectroscopy in bovine serum albumin solutions // The Journal of the Acoustical Society of America. 1990. V. 87. № 2. P. 874. https://doi.org/10.1121/1.398897
- 12. Юхневич Г.В. ИК-спектроскопия воды. М.: Наука, 1973.
- Царюк В.И., Францессон А.В. Инфракрасная спектроскопия воды, содержащейся в целлюлозе // Высокомолекулярные соединения, Серия А.: 1991. Т. 38. № 2. С. 334–341.
- 14. Буслов Д.К., Сушко Н.И., Третинников О.Н. Исследование водородных связей в слабо гидратированных пленках поливинилового спирта методом инфракрасной спектроскопии // Высокомолекулярные соединения, Серия А. 2011. Т. 53. № 12. С. 2035–2042.
- Цундель Г. Гидратация и межмолекулярное взаимодействие. М.: Мир, 1972.
- 16. *Муравьев А.Г.* Руководство по определению качества воды полевыми методами. СПб.: Крисмас+, 2004. 248 с.
- 17. *Карякин А.В., Кривенцова Г.А.* Состояние воды в органических и неорганических соединениях. М.: Наука, 1973. 176 с.
- Кленин В.И., Федусенко И.В., Клохтина Ю.И. Структура растворов кристаллизующихся полимеров. Влияние способа растворения // Высокомолекулярные соединения, Серия А. 2003. Т. 45. № 12. С. 2054–2062.
- Пахомов П.М., Хижняк С.Д., Nierling W., Nordmeier E., Lechner M.D. Процессы структурообразования в водных растворах поливинилового спирта // Высокомолекулярные соединения, Серия Б. 1999. Т. 41. № 6. С. 1035–1039.
- Погосян А.Г., Арсенян Л.Г., Акопян П.К., Вихренко В.С., Грода Я.Г. Конформационные особенности молекулы поливинилспирта // Труды БГТУ. 2012. № 6. С. 48-50.
- 21. *Kouderis C., Siafarika P., Kalampounias A.G.* Disentangling proton-transfer and segmental motion relaxations in poly-vinyl-alcohol aqueous solutions by means of ultrasonic relaxation spectroscopy // Polymer. 2021. V. 217. P. 123479.