УДК 546.47+546.593+543.442.3+54-386+544.016.2+543.429.23

ФОРМЫ СВЯЗЫВАНИЯ ЗОЛОТА(III) БИЯДЕРНЫМ ДИПРОПИЛДИТИОКАРБАМАТОМ ЦИНКА: СУПРАМОЛЕКУЛЯРНАЯ САМООРГАНИЗАЦИЯ И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ИОННЫХ КОМПЛЕКСОВ СОСТАВА [Au(S₂CNPr₂)₂]₂[ZnCl₄] И [Au(S₂CNPr₂)₂]₂[AuCl₄][AuCl₂]

© 2023 г. О. В. Лосева¹, Т. А. Родина², А. В. Герасименко³, А. В. Иванов^{1, *}

¹Институт геологии и природопользования ДВО РАН, Благовещенск, Россия ²Амурский государственный университет, Благовещенск, Россия ³Институт химии ДВО РАН, Владивосток, Россия *e-mail: alexander.v.ivanov@chemist.com Поступила в редакцию 04.04.2022 г. После доработки 27.04.2022 г. Принята к публикации 29.04.2022 г.

Изучено взаимодействие биядерного дипропилдитиокарбамата цинка $[Zn_2\{S_2CN(C_3H_7)_2\}_4]$ с раствором AuCl₃/2 M HCl. В качестве основной формы связывания золота(III) в исследуемой гетерогенной системе был идентифицирован двойной ионный комплекс состава $[Au\{S_2CN(C_3H_7)_2\}_2]_2[ZnCl_4]$ (I), охарактеризованный методом CP-MAS ЯМР (¹³C, ¹⁵N) спектроскопии. В качестве сопутствующего продукта отобраны единичные кристаллы гетеровалентного соединения $[Au\{S_2CN(C_3H_7)_2\}_2]_2[AuCl_4][AuCl_2]$ (II). Кристаллические и супрамолекулярные структуры I и II установлены прямым методом PCA (CCDC $N \ge 2159171$ и 2159170 соответственно). Показано, что самоорганизация сложных псевдополимерных структур I и II обусловлена связыванием ионных структурных единиц вторичными взаимодействиями Au···S и S···Cl невалентного типа, а также водородными связями C–H···Cl. При исследовании термического поведения комплексов методом синхронного термического анализа установлена количественная регенерация связанного золота (I и II) с частичным преобразованием высвобождаю-щегося ZnCl₂ в ZnS (I).

Ключевые слова: диалкилдитиокарбаматы цинка, двойные комплексы золота(III)-цинка, гетеровалентные комплексы золота(III)-золота(I), супрамолекулярная самоорганизация, вторичные Au…S, S…Cl взаимодействия, водородные C–H…Cl связи, CP-MAS ЯМР (¹³C, ¹⁵N), термическое поведение

DOI: 10.31857/S0132344X22700128, EDN: ERPEUY

Дитиокарбаматы, образуемые подавляющим большинством металлов, характеризует исключительное структурное многообразие (систематизация и подробное обсуждение типов структурной организации дитиокарбаматов цинка приводятся в [1]). Комплексы цинка, включающие дитиокарбаматные лиганды, представляют значительный интерес в связи с возможностями практического применения в качестве аналитических реагентов [2], фунгицидов [3-5], катализаторов [6, 7], ингибиторов коррозии [8]. ускорителей вулканизации [9-11] и др. Благодаря высокой летучести, они также являются удобными прекурсорами при получении полупроводниковых нанопорошков и пленок ZnS [12-15] и ZnO [16] (используемых в электронной промышленности) методами газофазного химического осаждения. В связи с низкой токсичностью дитиокарбаматов цинка интенсивно исследуется также их биологическая активность, включая иммунорегуляторные, антиоксидантные, антибактериальные и противоопухолевые свойства [17–21]. Использование этого класса соединений представляется перспективным и при лечении ВИЧ-инфекции: терапевтический эффект достигается за счет ингибирования ядерного фактора с ослаблением симптомов ВИЧ, усилением иммунной функции организма и замедлением прогрессирования ВИЧ в СПИД [22–24].

Ранее при изучении хемосорбционных свойств дитиокарбаматов цинка была установлена их способность к эффективному связыванию золота(III) из кислых растворов, с образованием целого ряда псевдополимерных дитиокарбаматно-хлоридных соединений со сложноорганизованными супрамолекулярными архитектурами, включая гетероядерные комплексы Au(III)–Zn [25–29], гомоядерные комплексы Au(III) [26, 30, 31], а также гетеровалентные комплексы Au(III)–Au(I) [25, 30].

В настоящей работе изучено взаимодействие биядерного дипропилдитиокарбамата (Pr₂Dtc) цинка, $[Zn_2{S_2CN(C_3H_7)_2}_4]$, с раствором AuCl₃/2 M HCl. Из исследуемой гетерогенной системы в качестве основной индивидуальной формы связывания золота был выделен ионный дитиокарбаматно-хлоридный комплекс состава $[Au{S_2CN(C_3H_7)_2}_2]_2$ -[ZnCl₄] (I), детально охарактеризованный по данным CP-MAS ЯМР (¹³C, ¹⁵N) спектроскопии. Кроме того, было отобрано небольшое число кристаллов сопутствующего гетеровалентного соединения золота [Au{S₂CN(C₃H₇)₂}₂]₂[AuCl₄][AuCl₂] (II). Прямой метод PCA был использован для установления кристаллических и супрамолекулярных структур полученных комплексов Au(III)-Zn и Au(III)–Au(I). При исследовании термического поведения I и II методом СТА, в качестве финальных продуктов термолиза идентифицировано металлическое золото (I, II) и сопутствующий сульфид цинка (I).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дипропилдитиокарбамат натрия получали взаимодействием сероуглерода (Merck) и дипропиламина (Merck) в щелочной среде [32], а исходный биядерный дипропилдитиокарбамат цинка, $[Zn_2{S_2CN(C_3H_7)_2}_4]$, (ранее охарактеризованный методами PCA [33] и CP-MAS ЯМР ¹³C, ¹⁵N спектроскопии [34]) осаждением из водной фазы по реакции между растворами ZnSO₄ · 7H₂O (Sigma-Aldrich) и Na{S₂CN(C₃H₇)₂} · H₂O, взятыми в стехиометрическом соотношении.

Синтез І. Двойной псевдополимерный тетрахлороцинкат(II) *бис*(N,N-дипропилдитиокарбамато-S,S')золота(III) (I) получали взаимодействием свежеосажденного дипропилилдитиокарбамата цинка с раствором AuCl₃/2 M HCl:

 $[Zn_2(S_2CNPr_2)_4] + 2H[AuCl_4] =$ = [Au(S_2CNPr_2)_2]_2[ZnCl_4] + ZnCl_2 + 2HCl.

К 100 мг творожистого осадка $[Zn_2\{S_2CN(C_3H_7)_2\}_4]$ белого цвета приливали 10 мл раствора H[AuCl_4], содержащего 47.1 мг золота, и перемешивали в течение 1 ч на магнитной мешалке. При контакте с раствором H[AuCl_4] осадок комплекса цинка быстро изменяет цвет на желто-оранжевый с постепенным формированием компактной пластичной массы, которая при тщательном истирании стеклянной палочкой в воде преобразуется в мелкокристаллический порошок. Последний промывали водой на фильтре и высушивали. Выход I 93.4%. Кристаллы I (прозрачные, желтые, уплощенные квадратно-призматические), пригодные для РСА, получали растворением приготовленного порошка в ацетоне при умеренном нагревании с последующим медленным испарением растворителя при комнатной температуре.

Найдено, %:	C 25.74;	H 4.56;	N 4.39.
Для C ₂₈ H ₅₆ N ₄ S ₈	$Cl_4ZnAu_2(I)$		
вычислено, %:	C 25.74;	H 4.32;	N 4.29.

ИК-спектр I (v, см⁻¹): 3670, 2964, 2929, 2874, 1548, 1444, 1343, 1304, 1252, 1183, 1149, 1081, 1046, 959, 893, 749, 637, 601, 557.

CP-MAS \Re MP ¹³C//¹⁵N I (δ , M.д.): 197.6, 196.9, 194.5, 191.5 (1 : 1 : 1, $-S_2$ CN<); 59.5, 57.6, 56.9, 55.7, 55.3 (1 : 1 : 1 : 3 : 2, >NCH₂--); 23.4, 23.1, 22.7, 22.2, 21.5, 20.9 (1 : 1 : 1 : 3 : 1 : 1, -CH₂--); 13.6, 13.3, 13.0, 12.5, 12.1, 11.6 (2 : 1 : 1 : 1 : 2 : 1, -CH₃) // 159.7, 155.2, 151.4, 149.3 (1 : 1 : 1, $-S_2$ CN<).

Из общей массы окристаллизованного вещества также были отобраны единичные удлиненные призматические кристаллы дихлороаурат(I)-тетрахлороаурат(III) *бис*(N,N-дипропилдитиокарбамато-S,S')золота(III) (II) (количество кристаллов этого типа не превышало 5% от общего числа). Образование II можно объяснить следующими обстоятельствами:

– после формирования компактной массы комплекса I в растворе еще остается некоторое количество H[AuCl₄] (см. выше), что приводит к возможности протекания на поверхности раздела фаз реакции дополнительного связывания золота(III):

$$1/2[Au(S_2CNPr_2)_2]_2[ZnCl_4] + H[AuCl_4] =$$

= [Au(S_2CNPr_2)_2][AuCl_4] + 1/2ZnCl_2 + HCl;

– в свою очередь, последующая кристаллизация образовавшегося побочного комплекса золота(III) сопровождается восстановлением половины его анионов [AuCl₄]⁻ до [AuCl₂]⁻ при участии ацетона [25, 35]:

$$[AuCl_4]^- + CH_3COCH_3 =$$
$$[AuCl_2]^- + CH_2CICOCH_3 + HCl.$$

Элементный анализ выполняли на автоматизированном элементном анализаторе Carlo Erba EA 1108. ИК-спектр регистрировали на ИК спектрофотометре с Фурье-преобразованием Perkin-Elmer Spectrum 65 методом НПВО (нарушенного полного внутреннего отражения) в интервале частот 400–4000 см⁻¹.

Остаточное содержание золота в растворе определяли на атомно-абсорбционном спектрометре 1 класса фирмы Hitachi (модель 180-50). Степень связывания золота из раствора в твердую фазу составила 97%.

РСА монокристаллов I/II выполнен на дифрактометре BRUKER Карра APEX II (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 200(2)/170(1) К. Поглощение рентгеновских лучей в образцах учтено по индексам граней монокристалла/по эквивалентным отражениям. Структура определена прямым методом и уточнена методом наименьших квадратов в анизотропном приближении неводородных атомов. Положения атомов водорода рассчитаны геометрически и включены в уточнение в модели "наездника". Коэффициенты заселенности статистически распределенных атомов углерода в соединении I заданы равными 0.6 и 0.4, для атомов с индексами А и В соответственно. Независимое уточнение этих коэффициентов привело к таким же значениям с точностью до 0.04. Сбор и редактирование данных, уточнение параметров элементарной ячейки проведены по программам АРЕХ2 [36]. Все расчеты по определению и уточнению структур выполнены по программам SHELXTL [37, 38]. Координаты атомов, длины связей и углы депонированы в Кембриджском банке структурных данных (№ 2159171 (I), 2159170 (II); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk). Основные кристаллографические данные и результаты уточнения структур I, II приведены в табл. 1, длины связей и углы – в табл. 2, геометрические параметры водородных связей комплекса II – в табл. 3.

Спектры CP-MAS ЯМР ¹³C/¹⁵N регистрировали на спектрометре CMX-360 (Agilent/Varian/Chemagnetics InfinityPlus) с рабочей частотой 90.52/36.48 МГц, сверхпроводящим магнитом – $B_0 = 8.46$ Тл и Фурье-преобразованием. Применяли эффект кросс-поляризации с протонов (СР), а для подавления взаимодействий ¹³С-¹Н эффект декаплинга, при использовании радиочастотного поля на резонансной частоте протонов [39]. Образец I массой ~80 мг помещали в 4.0 мм керамический ротор из ZrO₂. При измерениях ЯМР ¹³С/¹⁵N образец вращали под магическим углом (MAS) на частоте 5800(1)/6100(1) Гц; число накоплений 1300/21392; длительность протонных $\pi/2$ -импульсов 4.9/4.7 мкс; контактное время ¹H-¹³C/¹H-¹⁵N 2.5/1.5 мс; интервал между импульсами 3.0/2.0 с. Изотропные хим. сдвиги $\delta(^{13}C)/\delta(^{15}N)$ (м.д.) даны относительно одной из компонент внешнего стандарта – кристаллического адамантана [40] ($\delta = 38.48$ м.д., относительтетраметилсилана [41])/кристаллического но NH_4Cl ($\delta = 0.0$ м.д., -341 м.д. в абсолютной шкале [42] с поправкой на дрейф напряженности магнитного поля, частотный эквивалент которого составил 0.051/0.018 Гц/ч.

Термическое поведение I, II изучали методом синхронного термического анализа (**СТА**) на приборе STA 449C Jupiter (NETZSCH) в корундовых тиглях под крышкой с отверстием, обеспечивающим давление паров при термическом разложении образца в 1 атм. Скорость нагрева составляла 5°С/мин до 1100°С в атмосфере аргона. Масса навесок 2.527-4.688 (I) и 2.070-5.313 (II) мг. Точность измерения температуры ±0.6°С, изменения массы $\pm 1 \times 10^{-4}$ мг. При съемке кривых термогравиметрии (ТГ) и дифференциальной сканирующей калориметрии (ДСК) использовали файл коррекции, а также калибровки по температуре и чувствительности для заданной температурной программы и скорости нагрева. Незавиопределение температур симое плавления проводили на приборе ПТП(М) (ОАО Химлаборприбор).

После проведения термического анализа качественное определение химического состава остаточного вещества было выполнено методом микрозонда с применением энергодисперсионного спектрометра RONTEC, интегрированного с растровым электронным микроскопом LEO-1420.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Высокоинтенсивная одиночная полоса поглощения, наблюдаемая в ИК-спектре кристаллического комплекса I при 1548 см⁻¹, характерна для валентных колебаний связи С–N в дитиокарбаматных группах >NC(S)S– [32, 43]. Промежуточное положение обсуждаемого значения v(C–N) между диапазонами валентных колебаний ординарных С–N (1250–1360 см⁻¹) и двойных связей С=N (1640–1690 см⁻¹), а также его существенное смещение в высокочастотную область указывают на частично двойной характер формально ординарной связи N–C(S)S [43, 44].

Полосы поглощения средней интенсивности при 1149 и 959 см⁻¹ отнесены к асимметричным (v_{as}) и симметричным (v_s) валентным колебаниям группы – C(S)S – соответственно [43, 45]. Полосы в области 557–749 см⁻¹ обусловлены колебаниями v(C–S) [46]. Поглощения в диапазоне 2874– 2964 см⁻¹ связаны с валентными и деформационными колебаниями связей алкильных заместителей в составе лигандов Dtc.

Спектр СР-МАЅ ЯМР ¹³С комплекса I (рис. 1а) включает четыре группы резонансных сигналов, хим. сдвиги которых (см. выше раздел Синтез I) позволяют отнести их к структурным положениям углерода в составе химических групп (>NC(S)S-, >NCH₂-, $-CH_2$ - и $-CH_3$) лигандов Pr₂Dtc. Четыре сигнала ¹³С равной интенсивности в области дитиокарбаматных групп указывают на присутствие в составе исследуемого соединения четырех структурно-неэквивалентных лигандов Pr₂Dtc. Кроме того, наблюдаемое

	Значение		
Параметр	Ι	II	
Брутто-формула	$C_{28}H_{56}N_4S_8Cl_4ZnAu_2$	$C_{28}H_{56}N_4S_8Cl_6Au_4$	
М	1306.35	1705.81	
Сингония	Моноклинная	Моноклинная	
Пр. гр.	$P2_1/n$	C2/c	
<i>a</i> , Å	14.9546(5)	32.6012(9)	
b, Å	13.0269(4)	9.4225(2)	
<i>c</i> , Å	24.1423(8)	17.7918(5)	
β, град	101.4520(10)	116.1910(10)	
<i>V</i> , Å ³	4609.6(3)	4904.2(2)	
Z	4	4	
ρ(выч.), г/см ³	1.882	2.310	
μ, мм ⁻¹	7.486	12.623	
<i>F</i> (000)	2544	3192	
Размер кристалла, мм	$0.43 \times 0.39 \times 0.28$	$0.46 \times 0.20 \times 0.14$	
Область сбора данных по θ, град	1.482-27.999	2.27-36.37	
Интервалы индексов отражений	$-19 \le h \le 14,$ $-17 \le k \le 15,$ $-31 \le l \le 29$	$-53 \le h \le 53,$ $-15 \le k \le 15,$ $-29 \le l \le 29$	
Измерено отражений	32351	74937	
Независимых отражений	11 125 ($R_{\rm int} = 0.0246$)	11818 ($R_{\rm int} = 0.0271$)	
Отражений с <i>I</i> > 2σ(<i>I</i>)	9504	10115	
Переменных уточнения	522	245	
GOOF	1.032	0.828	
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0285$ $wR_2 = 0.0633$	$R_1 = 0.0198$ $wR_2 = 0.0416$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0378$ $wR_2 = 0.0678$	$R_1 = 0.0279$ $wR_2 = 0.0449$	
Остаточная электронная плотность (min/max), e/Å ³	-0.849/1.823	-1.046/1.001	

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур $[Au\{S_2CN(C_3H_7)_2\}_2]_2[ZnCl_4]$ (I) и $[Au\{S_2CN(C_3H_7)_2\}_2]_2[AuCl_4][AuCl_2]$ (II)

соотношение интенсивностей резонансных сигналов ¹³С для каждой из >NCH₂-, $-CH_2$ - и $-CH_3$ групп дополнительно свидетельствует об их неэквивалентности в соседних цепях алкильных заместителей. Данные CP-MAS ЯМР ¹⁵N независимым образом подтверждают установленный характер неэквивалентности дитиокарбаматных лигандов (рис. 16). При этом важно отметить, что хим. сдвиги групп ¹³C/¹⁵N >NC(S)S- лежат в диапазоне 191.5–197.6/149.3–159.7 м.д., что полностью согласуется с представлением о связывании лигандов Pr₂Dtc золотом в форме катионов состава [Au(S₂CNPr₂)₂]⁺ [47, 48]. Очевидно, что обнаруженная структурная неэквивалентность лигандов Pr₂Dtc (1 : 1 : 1 : 1) может быть реализована в одном из следующих вариантов: а) присутствие в структуре I четырех неэквивалентных центросимметричных катионов золота(III) [Au(S₂CNPr₂)₂]⁺, б) двух неэквивалентных нецентросимметричных катионов или в) двух неэквивалентных центросимметричных и двух эквивалентных нецентросимметричных катионов. Для разрешения этой альтернативы и установления структурной организации полученных комплексов был использован прямой структурный метод PCA.

ФОРМЫ СВЯЗЫВАНИЯ ЗОЛОТА(III) БИЯДЕРНЫМ...

	Coe	единение I	
Связь	<i>d,</i> Å	Связь	<i>d,</i> Å
Au(1)–S(1)	2.3334(11)	S(6)-C(15)	1.741(4)
Au(1)–S(2)	2.3370(10)	N(3)–C(15)	1.298(5)
Au(1)–S(3)	2.3244(10)	N(3)–C(16)	1.478(6)
Au(1)–S(4)	2.3316(10)	N(3)–C(19A)	1.517(7)
Au(1)…S(8)	3.6714(12)	N(3)-C(19B)	1.542(9)
S(1)–C(1)	1.736(4)	Au(3)–S(7)	2.3318(10)
S(2)–C(1)	1.718(4)	Au(3)–S(8)	2.3391(11)
S(3)–C(8)	1.731(4)	Au(3)…S(4)	3.7257(11)
S(4)–C(8)	1.741(4)	S(7)-C(22)	1.733(4)
N(1)–C(1)	1.302(5)	S(8)-C(22)	1.737(4)
N(1)–C(2)	1.486(6)	N(4)-C(22)	1.303(5)
N(1)-C(5A)	1.544(8)	N(4)-C(23)	1.490(6)
N(1)-C(5B)	1.517(9)	N(4)-C(26)	1.479(6)
N(2)–C(8)	1.295(5)	Zn(1)-Cl(1)	2.3201(10)
N(2)-C(9A)	1.481(10)	Zn(1)-Cl(2)	2.2704(11)
N(2)-C(9B)	1.504(13)	Zn(1)-Cl(3)	2.2733(11)
N(2)–C(12)	1.468(6)	Zn(1)-Cl(4)	2.2672(13)
Au(2)–S(5)	2.3347(9)	$S(2)^{a}$ $Cl(3)^{c}$	3.3834(14)
Au(2)–S(6)	2.3265(10)	$S(4)^{a}$ ···· $Cl(3)^{c}$	3.5045(16)
S(5)-C(15)	1.725(4)	S(5)···Cl (1) ^c	3.3349(15)
Угол	ω, град	Угол	ω, град
S(1)Au(1)S(2)	75.19(4)	S(5)Au(2)S(6)	75.66(4)
S(1)Au(1)S(3)	104.17(4)	C(15)N(3)C(16)	121.1(4)
S(1)Au(1)S(4)	177.54(5)	C(15)N(3)C(19A)	121.6(4)
S(2)Au(1)S(3)	176.89(4)	C(15)N(3)C(19B)	116.6(6)
S(2)Au(1)S(4)	105.05(3)	C(16)N(3)C(19A)	116.2(4)
S(3)Au(1)S(4)	75.73(4)	C(16)N(3)C(19B)	117.8(6)
S(1)Au(1)…S(8)	81.30(4)	S(7)Au(3)S(8)	75.09(4)
C(1)N(1)C(2)	122.0(4)	S(7)Au(3)S(8) ^c	104.91(4)
C(1)N(1)C(5A)	119.0(5)	$S(7)^{a}Au(3)\cdots S(4)$	73.32(3)
C(1)N(1)C(5B)	119.5(5)	C(22)N(4)C(23)	121.5(4)
C(2)N(1)C(5A)	117.2(5)	C(22)N(4)C(26)	120.8(4)
C(2)N(1)C(5B)	113.3(5)	C(26)N(4)C(23)	117.2(4)
C(8)N(2)C(12)	122.5(3)	Cl(1)Zn(1)Cl(2)	105.79(4)
C(8)N(2)C(9A)	124.6(11)	Cl(1)Zn(1)Cl(3)	108.91(4)
C(8)N(2)C(9B)	115.3(15)	Cl(1)Zn(1)Cl(4)	111.68(5)
C(12)N(2)C(9A)	112.7(11)	Cl(2)Zn(1)Cl(3)	110.37(5)
C(12)N(2)C(9B	121.6(15)	Cl(2)Zn(1)Cl(4)	110.96(5)
$S(5)Au(2)S(6)^{b}$	104.34(4)	Cl(3)Zn(1)Cl(4)	109.08(4)
Угол	ф, град	Угол	ф, град
Au(1)S(1)S(2)C(1)	174.7(3)	S(4)C(8)N(2)C(12)	3.2(6)
S(1)Au(1)C(1)S(2)	175.3(2)	Au(2)S(5)S(6)C(15)	-175.6(3)

S(5)Au(2)C(15)S(6)

S(5)C(15)N(3)C(16)

S(5)C(15)N(3)C(19A)

S(5)C(15)N(3)C(19B)

-176.1(2)

-164.4(5)

158.3(6)

2.6(8)

Таблица 2. Основные длины связей (*d*), валентные (ω) и торсионные (φ) углы в структурах I и II*

-178.6(4)

-14.3(7)

28.5(7)

1.0(8)

S(1)C(1)N(1)C(2)

S(1)C(1)N(1)C(5A)

S(1)C(1)N(1)C(5B)

S(2)C(1)N(1)C(2)

Таблица 2. Окончание

Соединение І				
Угол	ф, град	Угол	ф, град	
S(2)C(1)N(1)C(5A)	165.1(5)	S(6)C(15)N(3)C(16)	-178.0(4)	
S(2)C(1)N(1)C(5B)	-152.0(5)	S(6)C(15)N(3)C(19A)	15.1(8)	
Au(1)S(3)S(4)C(8)	-179.2(2)	S(6)C(15)N(3)C(19B)	-22.3(7)	
S(3)Au(1)C(8)S(4)	-179.3(2)	Au(3)S(7)S(8)C(22)	176.4(2)	
S(3)C(8)N(2)C(9A)	9.0(9)	S(7)Au(3)C(22)S(8)	176.8(2)	
S(3)C(8)N(2)C(9B)	-6.2(2)	S(7)C(22)N(4)C(23)	-7.4(6)	
S(3)C(8)N(2)C(12)	-175.7(3)	S(7)C(22)N(4)C(26)	-179.5(3)	
S(4)C(8)N(2)C(9A)	-172.0(7)	S(8)C(22)N(4)C(23)	172.3(3)	
S(4)C(8)N(2)C(9B)	172.8(1)	S(8)C(22)N(4)C(26)	0.2(6)	
	Coe	динение II		
Связь	d, Å	Связь	<i>d,</i> Å	
Au(1)–S(1)	2.3331(5)	N(2)-C(8)	1.311(2)	
Au(1)–S(2)	2.3391(5)	N(2)–C(9)	1.470(3)	
Au(1)–S(3)	2.3409(5)	N(2)–C(12)	1.470(3)	
Au(1)–S(4)	2.3316(5)	Au(2)–Cl(1)	2.2874(5)	
S(1)–C(1)	1.730(2)	Au(2)-Cl(2)	2.2786(6)	
S(2)–C(1)	1.734(2)	Au(2)…S(1)	3.5302(6)	
S(3)–C(8)	1.729(2)	Au(3)-Cl(3)	2.263(3)	
S(4)–C(8)	1.725(2)	Au(3)-Cl(4)	2.268(3)	
N(1)-C(1)	1.304(2)	$S(2)^b \cdots Cl(1)$	3.3200(8)	
N(1)–C(2)	1.481(3)	$S(3)^{b}Cl(1)$	3.2835(9)	
N(1)-C(5)	1.473(3)	S(4)…Cl(2)	3.3730(8)	
Угол	ω, град	Угол	ω, град	
S(1)Au(1)S(2)	75.447(18)	C(2)N(1)C(5)	117.11(16)	
S(1)Au(1)S(3)	177.75(2)	C(8)N(2)C(9)	121.35(18)	
S(1)Au(1)S(4)	103.762(18)	C(8)N(2)C(12)	120.88(18)	
S(2)Au(1)S(3)	105.375(17)	C(9)N(2)C(12)	117.73(17)	
S(2)Au(1)S(4)	178.01(2)	Cl(1)Au(2)Cl(2)	89.64(2)	
S(3)Au(1)S(4)	75.346(18)	$Cl(1)^{a}Au(2)Cl(2)$	90.36(2)	
C(1)N(1)C(2)	121.68(18)	Cl(3)Au(3)Cl(4)	179.76(17)	
C(1)N(1)C(5)	121.20(17)	$Cl(2)Au(2)\cdots S(1)$	74.76(2)	
Угол	ф, град	Угол	ф, град	
Au(1)S(1)S(2)C(1)	179.33(8)	Au(1)S(3)S(4)C(8)	178.32(8)	
S(1)Au(1)C(1)S(2)	179.40(7)	S(3)Au(1)C(8)S(4)	178.50(7)	
S(1)C(1)N(1)C(2)	-4.7(2)	S(3)C(8)N(2)C(9)	-173.6(1)	
S(1)C(1)N(1)C(5)	176.30(9)	S(3)C(8)N(2)C(12)	4.1(2)	
S(2)C(1)N(1)C(2)	176.33(9)	S(4)C(8)N(2)C(9)	7.1(2)	
S(2)C(1)N(1)C(5)	-2.6(2)	S(4)C(8)N(2)C(12)	-175.2(1)	

* Симметрические преобразования: ^a -1/2 + x, 1/2 - y, 1/2 + z; ^b1/2 + x, 3/2 - y, 1/2 + z; ^c1/2 - x, -1/2 + y, 3/2 - z (I); ^a1/2 - x, 3/2 - y, 1 - z; ^b1/2 - x, 1/2 - y, 1 - z (I).

В состав элементарной ячейки каждого из соединений входит по четыре формульные единицы I, $[Au{S_2CN(C_3H_7)_2}_2]_2[ZnCl_4]$, и II, $[Au{S_2CN(C_3H_7)_2}_2]_2$ - $[AuCl_4][AuCl_2]$ (табл. 1, рис. 2). В полном соответствии с данными MAS ЯМР (¹³C, ¹⁵N) катионная часть комплекса I включает три вида структурно-неэквивалентных комплексных катионов [Au(S₂CN-Pr₂)₂]⁺: нецентросимметричный A с атомом Au(1) и центросимметричные B – Au(2) и C – Au(3) в соотношении 2 : 1 : 1 (рис. 3а–3в). Напротив, в со-

Контакт D–Н…А –	Расстояние, Å			Угол
	D-H	Н…А	D…A	D–Н–А, град
C(3)–H(3B)····Cl(2) ^a	0.99	2.91	3.829(2)	155
$C(5)-H(5B)\cdots Cl(3)^d$	0.99	2.81	3.704(3)	151
$C(5)^{e}-H(5B)^{e}-Cl(4)^{d}$	0.99	2.97	3.786(3)	141
$C(9)^{f}-H(9A)^{f}Cl(3)^{d}$	0.99	2.90	3.707(3)	139
$C(9)^{b}-H(9A)^{b}-Cl(4)^{d}$	0.99	2.79	3.656(3)	147

Таблица 3. Геометрические параметры водородных связей в комплексе II*

* Симметрические преобразования: ^a 1/2 - x, 3/2 - y, 1 - z; ^b 1/2 - x, 1/2 - y, 1 - z; ^d 1/2 + x, -1/2 + y, z; ^e 1 - x, 1 - y, 1 - z; ^f 1/2 + x, 1/2 + y, z.

единении II комплексные катионы золота(III) структурно унифицированы и характеризуются нецентросимметричным строением, включая неэквивалентные лиганды Pr_2Dtc (рис. 4а). В обсуждаемых катионах каждого из соединений I и II атом золота S,S'-бидентатно координирует два лиганда Pr_2Dtc и формирует хромофоры [AuS₄] плоскостного строения (диагональные углы SAuS равны или близки 180°), что обусловлено низкоспиновым внутриорбитальным dsp^2 -гибридным состоянием комплексообразователя. Лиганды в I/II обнаруживают практически изобидентатный характер координации: значения длин связей Au—S лежат в узком диапазоне 2.3244–2.3391/ 2.3316–2.3409 Å (табл. 2).

Следует отметить, что в соединениях I и II дитиокарбаматные лиганды обнаруживают ряд общих признаков. Так, строение группировок S_2CNC_2 заметно отклоняется от плоскостного (см. значения соответствующих торсионных углов в табл. 2). Наиболее значительное отклонение атомов от копланарного расположения отмечается для катионов *А* и *B*, лиганды Pr₂Dtc которых включают структурно разупорядоченные заместители – С₃H₇ (рис. 3a, 3б). Связи N-C(S)S (1.295-1.303/1.304, 1.311 Å) существенно более короткие, чем связи N-CH₂ (1.468-1.544/1.470-1.481 Å), занимают промежуточное положение между ординарной C-N (1.47 Å) и двойной C=N (1.27 Å) связями [49]. Это обстоятельство указывает на частично двойной характер связей N-C(S)S, обусловленный проявлением мезомерного эффекта в дитиокарбаматных группах. Длина связей С–С в составе алкильных заместителей лежит в лиапазоне 1.413–1.525/1.509–1.525 Å.

Результатом бидентатной координации лигандов является образование двух четырехчленных циклов [AuS₂C], связанных общим атомом золо-

Рис. 1. Спектры СР-МАS ЯМР ¹³С (а) и 15 N (б) поликристаллического комплекса I; число накоплений/частота вращения образца: 1300/5.8 кГц (а) и 21392/6.1 кГц (б).

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 1 2023

Рис. 2. Упаковка ионных структурных единиц в кристаллах I (а) и II (б). Для I алкильные заместители в Pr₂Dtc лигандах не приведены.

та. На малые размеры металлоциклов указывают расстояния Au···C (2.819-2.843/2.820, 2.826 Å) и S···S (2.845-2.859/2.856, 2.859 Å), которые значительно меньше сумм ван-дер-ваальсовых радиусов соответствующих пар атомов, 3.36 и 3.60 Å соответственно [50]. Значения торсионных углов AuSSC и SAuCS близки к 180° : отклонения лежат в диапазоне $0.7^\circ-5.3^\circ$ и $0.60^\circ-1.68^\circ$ (табл. 2), свидетельствуя о плоскостной геометрии металлоциклов.

Несмотря на существенное структурное сходство, неэквивалентные катионы A, B и C в составе I обнаруживают достоверные различия в значениях соответственных длин связей, межатомных расстояний, валентных и торсионных углов (табл. 2), что позволяет классифицировать их как конформеры. Анионная часть I представлена искаженно-тетраэдрическим [ZnCl₄]^{2–}, включающим четыре неэквивалентных атома хлора (рис. 3г). Валентные углы ClZnCl 105.79°-111.68° (табл. 2), несколько отклоняющиеся от 109.5°, отражают sp^3 гибридное состояние комплексообразователя. Для количественной характеристики геометрии полиэдра цинка был использован параметр $\tau_4 =$ = $[360^{\circ} - (\alpha + \beta)]/141^{\circ}$ (где α и β – два наибольших угла LML) [51]. При этом предельные значения, принимаемые параметром τ_4 , 0 ($\alpha = \beta = 180^\circ$) и 1 ($\alpha = \beta = 109.5^{\circ}$), соответствуют плоско-тетрагональной и тетраэдрической конфигурациям полиэдров в комплексах с четверной координацией металлов. В нашем случае значения двух наибольших углов LZnL: 111.68° и 110.96° (табл. 2) задают параметр $\tau_4 = 0.974$, что указывает на преобладающий (97.4%) вклад тетраэдрической составляющей в геометрию полиэдра цинка.

Рис. 3. Строение трех изомерных катионов $[Au(S_2CNPr_2)_2]^+$: A (а), В (б), С (в) и аниона $[ZnCl_4]^{2-}$ (г) соединения I. Эллипсоиды 50%-ной вероятности; неокрашенными эллипсоидами обозначены статистически разупорядоченные атомы углерода в позиции *B*.

В состав соединения II, кроме нецентросимметричных катионов золота(III), входят гетеровалентные анионы золота: центросимметричный [AuCl₄]⁻ плоско-квадратного строения (dsp^2 -гибридное состояние центрального атома) и линейный нецентросимметричный [AuCl₂]⁻ (*sp*-гибридизация) (рис. 46, 4в).

Супрамолекулярный уровень структурной самоорганизации комплекса I характеризуется проявлением множественных вторичных взаимодействий Au…S и S…Cl между ионными структурными единицами [52, 53]. Так, между катионами А и С реализуются относительно слабые парные невзаимодействия первого валентные типа: Au(1)…S(8) 3.6714 Å и Au(3)…S(4) 3.7257 Å, что приводит к формированию линейных катионных триад [A…C…A] с межатомным расстоянием Au(1)…Au(3) 4.0045(2) Å (рис. 5). В триадах нецентросимметричные катионы А ориентированы друг относительно друга антипараллельно, а взаимное расположение катионов А и С таково, что их биссекторальные плоскости, проходящие через бициклическую систему $[CS_2AuS_2C]$, образуют угол (80°), близкий к прямому. При этом дополнительная координация золотом атомов серы в аксиальные положения приводит к формальному повышению КЧ Au(1) до 5 [AuS₄₊₁], а для Au(3) – до 6 [AuS₄₊₂] с достраиванием полигонов металла до

искаженной тетрагональной пирамиды и октаэдра соответственно (рис. 5).

Каждый из изомерных катионов В, в свою очередь, симметрично взаимодействуя с двумя анионами $[ZnCl_4]^{2-}$, образует вторичные связи S(5)…Cl(1)^c и S(5)^b...Cl(1)^d 3.3349 Å, ∠C(15)S(5)Cl(1)^c 170.8(2)^o, следствием чего является построение линейных анион-катионных триад { $[ZnCl_4]$ ···*B*···[ZnCl_4]}, pacстояние Au(2)–Zn(1)^с 6.2188(5) Å (рис. 5). Обсуждаемые анион-катионные триады выполняют структурную функцию двойных линкеров, объединяющих ближайшие катионные триады, за счет двух пар несимметричных вторичных связей: Cl(3)^{c/d}...S(2)^{a/e} 3.3834 Å, ∠C(1)^aS(2)^aCl(3)^c 167.3(1)[°] и $Cl(3)^{c/d...}S(4)^{a/e}$ 3.5045 Å, $\angle C(8)^{a}S(4)^{a}Cl(3)^{c}$ 171.0(1)°. Совокупное проявление всех этих вторичных взаимодействий приводит к структурному упорядочению ионных триад двух типов в форме зигзагообразных (∠Au(3)Au(1)^aZn(1)^c 83.598(5)[°]) псевдополимерных лент типа {…[A…C…A]…[Zn- Cl_4]···*B*···[ZnCl₄]···}_n, ориентированных в направлении кристаллографической оси у. Парность вторичных взаимодействий S…Cl между линкером и каждой из катионных триад обуславливает существенно более короткое расстояние Au-Zn на этих участках супрамолекулярной ленты: Au(1)^a–Zn(1)^c 5.6976(4) Å. Следует также отметить, что длина вторичных связей S…Cl (3.3349-

Рис. 4. Структура комплексного катиона $[Au(S_2CN-Pr_2)_2]^+$ (а) и анионов $[AuCl_4]^-$ (б) и $[AuCl_2]^-$ (в) соединения II. Эллипсоиды 50%-ной вероятности.

3.5045 Å) во всех случаях заметно меныше суммы ван-дер-ваальсовых радиусов атомов серы и хлора 3.55 Å [50], а значения ∠CSCl лежат в диапазоне 167.3°–171.0°. В соответствии с данными работ [54, 55], приведенные структурные характеристики позволяют более определенно классифицировать обсуждаемые взаимодействия как халькогенные (халькоген-галогенные) связи.

Как и в случае соединения I, супрамолекулярная структура II формируется при участии вторичных взаимодействий Au…S и S…Cl, дополняемых водородными связями C-H…Cl (табл. 3). Выполняя роль узла связывания, каждый из анионов [AuCl₄]⁻ взаимодействует с четырьмя катионами $[Au(S_2CNPr_2)_2]^+$. Наиболее значимые парные вторичные связи Cl(1)^{/а}...S(2)^{b/c} 3.3200 Å. ∠C(1)S(2)^bCl(1) 168.40(7)° и Cl(1)^{/а}...S(3)^{b/c} 3.2835 Å, ∠C(8)^bS(3)^bCl(1) 168.08(8)° реализуются между анионом и одной из пар катионов золота(III): в структурном фрагменте $Au(1)^b - Au(2) - Au(1)^c$ межатомное расстояние Au-Au составляет 5.5667(2) Å (рис. 6). В связывание со второй парой катионов, кроме диагональных атомов хлора аниона, вовлекается и комплексообразователь, что приводит к возникновению двух разнородных вторичных $Cl(2)^{/a} ... S(4)^{/a}$ взаимодействий: 3.3730 Å, ∠C(8)S(4)Cl(2) 152.06(7)° и Au(2)…S(1)/^a 3.5302 Å

(последнее значение несколько превышает сумму ван-дер-ваальсовых радиусов атомов золота и серы 3.46 Å [50]) и существенно меньшему межатомному расстоянию Au-Au 4.6788(2) Å во втором структурном фрагменте $Au(1) - Au(2) - Au(1)^{a}$ (рис. 6). Описанный способ связывания ионных структурных единиц комплекса II сопровождается построением псевдополимерных лент состава $\{\cdots [AuCl_4] \cdots 2 [Au(S_2CNPr_2)_2] \cdots \}_n, в общую стабили$ зацию которых вносят вклад также и водородные связи C(3)-H(3B)…Cl(2)^а (рис. 7, табл. 3). Анионы $[AuCl_2]^-$, в свою очередь, образуя систему неклассических водородных связей C-H···Cl (при участии атомов ближайших групп -CH₂- в алкильных заместителях лигандов Pr₂Dtc) объединяют обсуждаемые супрамолекулярные ленты в псевдополимерный слой (рис. 7). Геометрические параметры обсуждаемых водородных связей, приведенные в табл. 3, довольно типичны [56].

Термическое поведение полученных комплексов исследовано методом СТА с одновременной регистрацией кривых ТГ и ДСК. Установлено, что соединения I/II термически устойчивы до 178/160°С.

Термолиз I, отображаемый кривой ТГ, формально проходит в два этапа (рис. 8*a*). На первый. круто падающий участок кривой ТГ (178-348°С). приходится основная потеря массы (54.57%), значение которой указывает на протекание термолиза по катиону (с восстановлением золота до элементного состояния) и аниону (с высвобождением ZnCl₂). В этом варианте расчетная потеря массы (59.41%) превышает экспериментальную величину на 4.84%. Очевидно, что второй, пологий участок кривой ТГ, обусловленный последующим постепенным испарением продуктов термолиза, может включать эту недостающую величину. Однако фиксируемая в этом случае потеря массы (10.22%) существенно больше обсуждаемых 4.84%.

Для понимания причин этого несоответствия рассмотрим совокупность экспериментальных данных по остаточному веществу, масса которого при 1100°С (34.71% от исходной) превышает ожидаемую для восстановленного золота (расч. 30.15%) на 4.56%. Эту избыточную массу следует отнести к образовавшемуся в процессе термолиза ZnS¹ (α/β-модификация ZnS возгоняется при 1178/1185°С [58]), для которого требуется 61.13% цинка, имеющегося в составе комплекса. Таким образом, остальные 38.87% цинка высвободились в форме ZnCl₂ (*T*_{пл}/*T*_{кип} 317/733°С [58]), который, составляя 4.06% исходной массы комплекса, испаряется наряду с другими продуктами термолиза.

¹ Формирование сульфидов металлов при термолизе соответствующих комплексов с серосодержащими лигандами в работе [57] обосновывается с позиций термодинамики.

Рис. 5. Супрамолекулярная катион-анионная псевдополимерная лента {…[A…C…A]…[$ZnCl_4$]…B…[$ZnCl_4$]…}_n соединения I. Вторичные связи Au…S и S…Cl показаны пунктиром. Алкильные заместители не приведены. Симметрические преобразования: ^a –1/2 + x, 1/2 - y, 1/2 + z; ^b1/2 + x, 3/2 - y, 1/2 + z; ^c1/2 - x, -1/2 + y, 3/2 - z; ^d1/2 + x, 3/2 - y, -1/2 + z; ^e3/2 - x, 1/2 + y, 1/2 - z.

Рис. 6. Построение супрамолекулярной псевдополимерной ленты {…[AuCl₄]…2[Au(S₂CNPr₂)₂]…}_n соединения II. Вторичные связи Au…S и S…Cl показаны пунктиром. Алкильные заместители не приведены. Симметрические преобразования: ^a 1/2 - x, 3/2 - y, 1 - z; ^b 1/2 - x, 1/2 - y, 1 - z; ^c x, 1 + y, z.

Рис. 7. Объединение супрамолекулярных лент $\{\dots [AuCl_4] \dots 2[Au(S_2CNPr_2)_2] \dots \}_n$ в псевдополимерные слои при участии анионов $[AuCl_2]^-$. Вторичные связи Au···S и водородные связи C–H···Cl показаны пунктиром.

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 1 2023

Рис. 8. Кривые ТГ (*a*) и ДСК (б) комплекса I. Укрупненный фрагмент дна тигля (*в*) с восстановленным золотом и ZnS; энергодисперсионный спектр ZnS, включающего микрочастицы восстановленного золота (*г*).

При вскрытии тигля на дне обнаружено восстановленное золото и белый налет порошкообразного вещества (рис. 8σ), которое было исследовано методом микрозонда. Энергодисперсионный спектр анализируемого образца (рис. 8σ), наряду с основными характеристическими пиками цинка и серы, включает также и пики золота, что указывает на присутствие микрочастиц последнего в идентифицированном ZnS.

Кривая ДСК I включает несколько эндоэффектов (рис. 8б). Первый, с экстремумом при 169.0°С (экстраполированная $T_{\pi\pi} = 165.9$ °С), отнесен к плавлению комплекса. При независимом определении температуры плавления образца в стеклянном капилляре соответствующий фазовый переход наблюдали при 166-168°С. Последующий уширенный эндоэффект при 247.8°С (экстраполированная температура 220.4°С) проецируется на крутопадающий участок кривой ТГ в точке, которой соответствует максимальная скорость потери массы в процессе интенсивного термолиза комплекса I. В высокотемпературной области кривая ДСК фиксирует эндоэффект плавления восстановленного золота, экстраполированная $T_{\pi\pi} = 1062.0^{\circ}$ C.

Кривая ТГ комплекса II (рис. 9*a*) регистрирует формально одностадийный процесс термолиза в узком температурном интервале ~160–300°С, с последующей плавной десорбцией летучих продуктов разложения до 780°С. В процессе термических превращений вещества ожидаемой представляется регенерация металлического золота в качестве единственного финального продукта. Крутопадающий участок кривой ТГ отражает основную потерю массы в 49.32%, что указывает на протекание термолиза II одновременно по катиону и анионам, с восстановлением золота(III) и золота(I) до элементного состояния.

Кривая ДСК II (рис. 96) до начала потери массы фиксирует суперпозицию эндо- и экзоэффектов с экстремумами при 100.6 и 105.1°С соответственно, что можно объяснить переходом вещества в полиморфную модификацию, устойчивую при повышенной температуре. Последующий эндоэффект при 142.1°С (экстраполированная температура 139.5°С) обусловлен плавлением комплекса. При независимом определении в стеклянном капилляре плавление установлено в диапазоне 142– 144°С. Основная потеря массы, обусловленная термолизом II, отображается на кривой ДСК интенсивным эндоэффектом с экстремумом при 280.0°С.

По данным энергодисперсионного анализа (рис. 9*в*), конечным продуктом термической деструкции II является восстановленное металлическое золото, для которого кривая ДСК фиксирует соответствующий эндоэффект плавления при 1063.4°С (экстраполированная $T_{nn} = 1061.3^{\circ}$ С). При 1100°С остаточная масса, составляющая 45.33%, несколько занижена относительно расчетного значения (46.19%). На дне тигля обнаружены мелкие золотые шарики в обрамлении красно-розового напыления тонкодисперсного золота.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Элементный анализ и ИК-спектроскопия выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН. Спектры СР-MAS ЯМР ¹³С и ¹⁵N получены в Университете технологий г. Лулео (Швеция) в

Рис. 9. Кривые ТГ (а) и ДСК (б) комплекса II. Энергодисперсионный спектр восстановленного золота (в).

2017 г. Рентгенодисперсионные исследования проведены в ЦКП "Амурский центр минералого-геохимических исследований" ИГиП ДВО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Tiekink E.R.T. // Crystals. 2018. V. 8. № 7. P. 292.
- Wyttenbach A., Bajo S. // Anal. Chem. 1975. V. 47. № 11. P. 1813.
- Cicotti M. // Handbook of Residue Analytical Methods for Agrochemicals / Ed. Lee P.W. Chichester: Wiley, 2003. V. 2. P. 1089.
- Parny M., Bernad J., Prat M. et al. // Cell Biol. Toxicol. 2021. V. 37. № 3. P. 379.
- Len C., Boulogne-Merlot A.-S., Postel D. et al. // J. Agric. Food Chem. 1996. V. 44. № 9. P. 2856.
- Nieuwenhuizen P.J. // Appl. Catal. A. 2001. V. 207. P. 55.
- 7. Anamika, Yadav C.L., Drew M.G.B. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6446.
- 8. *Fan H.B., Wang H.L., Guo X.P., Zheng J.S.* // Anti-Corrosion Meth. Mater. 2002. V. 49. № 4. P. 270.
- Komatsu T. // Nippon Gomu Kyokaishi. 2009. V. 82. P. 33.
- 10. *Tangavaloo V., Yuhana N.Y., Jiun Y.L.* // Prog. Rubber Plast. Recycl. Technol. 2021. V. 37. № 4. P. 340.
- Shi F., Li X., Bai Y. et al. // Appl. Polym. Mater. 2021. V. 3. № 10. P. 5188.
- 12. Islam H.-U., Roffey A., Hollingsworth N. et al. // Nanoscale Adv. 2020. V. 2. P. 728.
- Nyamen L.D., Nejo A.A., Pullabhotla V.S.R. et al. // Polyhedron. 2014. V. 67. P. 129.
- 14. Onwudiwe D.C., Adeyemi J.O., Papane R.T. et al. // Open Chem. 2021. V. 19. P. 1134.

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 1 2023

- Emegha J.O., Elete E.D., Efe F.O., Adebisi A.C. // J. Mater. Sci. Res. Rev. 2019. V. 4. P. 1.
- 16. Snopok B.A., Zavyalova L.V., Tatyanenko N.P. et al. // Mater. Adv. 2021. V. 2. № 11. P. 3637.
- Hogarth G. // Mini-Rev. Med. Chem. 2012. V. 12. P. 1202.
- Tan Y.S, Ooi K.K., Ang K.P. et al. // J. Inorg. Biochem. 2015. V. 150. P. 48.
- Irfandi R., Santi S., Raya I. et al. // J. Mol. Struct. 2022. V. 1252. Art. 132101.
- 20. *Ajibade P.A., Fatokun A.A., Andrew F.P.* // Inorg. Chim. Acta. 2020. V. 504. Art.119431.
- 21. Adeyemi J.O., Onwudiwe D.C. // Inorg. Chim. Acta. 2020. V. 511. Art.119809.
- Takamune N., Misumi S., Shoji S. // Biochem. Biophys. Res. Commun. 2000. V. 272. P. 351.
- 23. Watanabe K., Kazakova I., Furniss M., Miller S.C. // Cell. Signal. 1999. V. 11. P. 371.
- 24. Lang J.-M., Trepo C., Kirstetter M. et al. // Lancet. 1988. V. 332. P. 702.
- Иванов А.В., Лосева О.В., Родина Т.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 8. С. 1028 (Ivanov A.V., Loseva O.V., Rodina T.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 8. Р. 807). https://doi.org/10.1134/S0036023614080105
- 26. Иванов А.В., Родина Т.А., Лосева О.В. // Коорд. химия. 2014. Т. 40. № 12. С. 707 (Ivanov A.V., Rodina T.A., Loseva O.V. // Russ. J. Coord. Chem. 2014. V. 40. № 12. P. 875).

https://doi.org/10.1134/S1070328414120069

 Лосева О.В., Родина Т.А., Иванов А.В. // Коорд. химия. 2013. Т. 39. № 6. С. 361 (Loseva O.V., Rodina T.A., Ivanov A.V. // Russ. J. Coord. Chem. 2013. V. 39. № 6. P. 463). https://doi.org/10.1134/S1070328413050060

- Родина Т.А., Лосева О.В., Смоленцев А.И., Иванов А.В. // Журн. структур. химии. 2016. Т. 57. № 1. С. 151 (Rodina T.A., Loseva O.V., Smolentsev A.I., Ivanov A.V. // J. Struct. Chem. 2016. V. 57. № 1. Р. 146). https://doi.org/10.1134/S0022476616010182
- 29. Родина Т.А., Лосева О.В., Иванов А.В. // Журн. структур. химии. 2021. Т. 62. № 1. С. 126 (Rodina T.A., Loseva O.V., Ivanov A.V. // J. Struct. Chem. 2021. V. 62. № 1. Р. 123). https://doi.org/10.1134/S0022476621010157
- 30. Лосева О.В., Родина Т.А., Иванов А.В. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 356 (Loseva O.V., Rodina T.A., Ivanov A.V. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. Р. 307). https://doi.org/10.1134/S0036023615030134
- 31. Лосева О.В., Родина Т.А., Иванов А.В. и др. // Коорд. химия. 2018. Т. 44. № 5. С. 303 (*Loseva O.V., Rodina T.A., Ivanov A.V. et al.* // Russ. J. Coord. Chem. 2018. V. 44. № 10. Р. 604).

https://doi.org/10.1134/S107032841810007X

- 32. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- Sreehari N., Varghese B., Manoharan P.T. // Inorg. Chem. 1990. V. 29. P. 4011.
- 34. Иванов А.В., Ивахненко Е.В., Герасименко А.В., Форшлине В. // Журн. неорган. химии. 2003. Т. 48. № 1. С. 52 (Ivanov A.V., Ivakhnenko E.V., Gerasimenko A.V., Forsling W. // Russ. J. Inorg. Chem. 2003. V. 48. № 1. P. 45).
- Афанасьева В.А., Глинская Л.А., Клевцова Р.В., Миронов И.В. // Коорд. химия. 2011. Т. 37. № 5. С. 323.
- 36. APEX2. Madison (WI, USA): Bruker AXS Inc., 2012.
- 37. *Sheldrick G.M.* // Acta Crystallogr. A. 2015 V. 71. № 1. P. 3.
- 38. *Sheldrick G.M.* // Acta Crystallogr. C. 2015 V. 71. № 1. P. 3.
- Pines A., Gibby M.G., Waugh J.S. // J. Chem. Phys. 1972. V. 56. № 4. P. 1776.
- 40. Earl W.L., VanderHart D.L. // J. Magn. Reson. 1982. V. 48. № 1. P. 35.

- 41. *Morcombe C.R., Zilm K.W.* // J. Magn. Reson. 2003. V. 162. № 2. P. 479.
- 42. *Ratcliffe C.I., Ripmeester J.A., Tse J.S.* // Chem. Phys. Lett. 1983. V. 99. № 2. P. 177.
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во ИЛ, 1963. 590 с.
- 44. *Casas J.S., Sánchez A., Bravo J. et al.* // Inorg. Chim. Acta. 1989. V. 158. № 1. P. 119.
- 45. *Yin H., Li F, Wang D.* // J. Coord. Chem. 2007. V. 60. № 11. P. 1133.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Rodina T.A., Loseva O.V., Smolentsev A.I. et al. // Inorg. Chim. Acta. 2020. V. 508. Art. 119630.
- Korneeva E.V., Smolentsev A.I., Antzutkin O.N., Ivanov A.V. // Inorg. Chim. Acta. 2021. V. 525. 120383.
- 49. *Pauling L*. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. London: Cornell Univ. Press, 1960. 644 p.
- 50. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
- 51. *Yang L., Powel D.R., Houser R.P.* // Dalton Trans. 2007. V. 9. P. 955.
- Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972.
 V. 15. № 1. P. 1.
- 53. *Haiduc I., Edelmann F.T.* Supramolecular Organometallic Chemistry. Weinheim: Wiley-VCH, 1999. 471 p.
- 54. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132.
- 55. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. № 5. P. 1313.
- 56. Бахтиярова Ю.В., Аксунова А.Ф., Галкина И.В. и др. // Изв. АН. Сер. хим. 2016. № 5. С. 1313.
- 57. Разуваев Г.А., Алмазов Г.В., Домрачев Г.А. и др. // Докл. АН СССР. 1987. Т. 294. № 1. С. 141.
- Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987. 319 с.