УДК 543.442.2;543.442.3;543.51;546.47;547.333.4;547.466

ПОЛУЧЕНИЕ ВОДОРАСТВОРИМЫХ КОМПЛЕКСОВ ЦИНКА(II) С ЭТИЛЕНДИАМИНТЕТРАУКСУСНОЙ КИСЛОТОЙ. МОЛЕКУЛЯРНАЯ СТРУКТУРА ТРИГИДРАТА ЭТИЛЕНДИАМИНТЕТРААЦЕТАТА ЦИНКА

© 2023 г. В. В. Семенов^{1,} *, Н. В. Золотарева¹, О. В. Новикова¹, Б. И. Петров¹, Н. М. Лазарев¹, Р. В. Румянцев¹, М. А. Лопатин¹, Т. И. Лопатина¹, Т. А. Ковылина¹, Е. Н. Разов^{2, 3}

¹Институт металлоорганической химии им. Г.А. Разуваева РАН. Нижний Новгород. Россия

²Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

³Институт проблем машиностроения РАН — филиал Федерального исследовательского центра

"Институт прикладной физики РАН", Нижний Новгород, Россия

*e-mail: vvsemenov@iomc.ras.ru Поступила в редакцию 28.06.2022 г. После доработки 16.10.2022 г. Принята к публикации 02.11.2022 г.

Малорастворимый этилендиаминтетраацетатоцинкат цинка Zn[ZnL] реагирует с натриевой Na₄L, калиевой K₄L, аммониевой (NH₄)₄L, 2-аминийэтанольной (H₃NCH₂CH₂OH)₄L и гексаметилен-1,6-диаминиевой {H₃N(CH₂)₆NH₃}₂L солями этилендиаминтетрауксусной кислоты H₄L, образуя хорошо растворимые этилендиаминтетраацетатоцинкаты натрия Na₂[ZnL], калия K₂[ZnL], аммония (NH₄)₂[ZnL], 2-аминийэтанола (H₃NCH₂CH₂OH)₂[ZnL] и гексаметилен-1,6-диаминия {H₃N(CH₂)₆NH₃}[ZnL]. *Тетракис*(триэтиламиниевая) соль {(C₂H₅)₃NH₄L в реакции с Zn[ZnL] образует не ожидаемый этилендиаминтетраацетатоцинкат *бис*(триэтиламиния) {(C₂H₅)₃NH₂[ZnL], а этилендиаминтетраацетатоцинкат моно(триэтиламиния) – {(C₂H₅)₃NH}H[ZnL], который в водном растворе генерирует малорастворимый этилендиаминтетраацетат цинка H₂[ZnL(H₂O)] · 2H₂O, структура которого исследована методом PCA (CCDC № 2172274).

Ключевые слова: соли этилендиаминтетрауксусной кислоты, 2-аминоэтанол, гексаметилен-1,6-диамин, триэтиламин, этилендиаминтетраацетатоцинкаты аминов, комплексы цинка, молекулярная структура

DOI: 10.31857/S0132344X22600436, EDN: CULYTK

Координационные соединения цинка, полученные на основе промышленных комплексонов с карбоксильными и фосфоновыми группами, используются [1] в медицине, сельском хозяйстве, машиностроении. Для практических приложений чаще всего необходимы водные растворы. В то же время многие из известных соединений имеют плохую растворимость. Хорошо растворяются производные щелочных металлов. Комплексы 3d-металлов с фосфоновыми лигандами обычно растворяются лучше, чем с карбоксильными. Высокая дентатность лиганда способствует повышению растворимости. Предложенные так называемые промоторы растворимости [2] представляют собой амины с гидроксильными или олигоэтиленоксидными фрагментами. Наиболее доступными из них являются производимые химическими предприятиями хорошо растворимые в водной среде моно-, ди- и триэтаноламины. Присоединяясь к молекуле комплексоната, они легко переводят его в водную фазу. Присоединение может происходить не только к катиону металла, но также к оставшимся свободными кислотным группам.

 $RC(O)OH + H_2NCH_2CH_2OH \rightarrow$ $\rightarrow RC(O)O^{-+}H_3NCH_2CH_2OH,$ $RP(O)OH + H_2NCH_2CH_2OH \rightarrow$ $\rightarrow RP(O)O^{-+}H_3NCH_2CH_2OH.$

В [3] показана возможность переведения комплексоната в водную фазу обработкой аминами, неимеющими гидрофильных группировок (триэтиламин, трибутиламин, *трет*-бутиламин). Их действие объясняется деструкцией координационного полимера. В настоящей работе исследованы реакции оксида цинка с этилендиаминтетрауксусной кислотой (ЭДТА, H₄L) и последующие превращения полученных продуктов. В кристаллическом состоянии и в растворе ЭДТА имеет бетаиновое строение [1].

Комплексобразование цинка с ЭДТА изучалось спектрофотометрическим [4], полярографическим [5] методами и дифференциальной импульсной вольтамперометрией [6]. Методом радиоизотопного обмена была измерена кинетика замещение катиона цинка(II) в его комплексе с ЭДТА [7]. Проведены испытания возможности применения этилендиаминтетраацетата цинка в качестве пищевой добавки в корм животных [8]. На примере ячменя, картофеля, горчицы и люпина изучены [9, 10] поглощение и перенос цинка корневыми побегами растений из почвы, загрязненной цинком при возрастающих концентрациях ЭДТА в почве.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали динатриевую соль ЭДТА (Трилон-Б) квалификации "ч." (АО "Химреактив", Н. Новгород); 2-аминоэтанол квалификации "ч." (ООО "Синтез ОКА", г. Дзержинск); ЭДТА получали обработкой динатриевой соли соляной кислотой.

Синтез этилендиаминтетраацетатоцинкат цинка(II) дигидрата Zn[ZnL] \cdot 2H₂O (I). Смешивали и растирали в ступке 5.00 г (1.72 × 10⁻² моль) ЭДТА и 2.80 г (3.45 × 10⁻² моль) ZnO. Полученный белый порошок присыпали к 50 мл H₂O при перемешивании. Через 15 мин суспензия растворялась. Смесь упаривали, остаток сушили при 110°С, смешивали с 200 мл H₂O, нагревали до кипения и фильтровали в горячем виде. Осадок на фильтре сушили при 110°С. Выход I 5.15 г в виде белой массы, легко размалывающейся до белого порошка.

ИК-спектр (v, см⁻¹): 3300, 3026, 1694, 1611, 1584, 1450, 1420, 1402, 1388, 1331, 1310, 1286, 1262, 1239, 1125, 1107, 1006, 981, 970, 935, 920, 866, 815, 771, 726, 661, 619, 586, 562, 532, 503, 470.

Найдено, %:	C 26.41;	H 3.93;	N 6.02.
Для C ₁₀ H ₂₀ N ₂ O ₁₀	$Zn_{2}(I)$		
вычислено, %:	C 26.16;	H 4.39;	N 6.10.

Фильтрат упаривали, остаток сушили при 110°С. Дополнительный выход I 1.80 г, всего 6.95 г (1.51 × 10^{-2} моль, 88%). Растворимость 0.98 г в 100 мл H₂O при 80°С.

Синтез Na₂[ZnL] (II). Смешивали и растирали в ступке 5.00 г (1.72 × 10⁻² моль) ЭДТА и 2.80 г $(3.45 \times 10^{-2} \text{ моль})$ ZnO. Полученный белый порошок присыпали к 50 мл H₂O при перемешивании. Через 20 мин суспензия растворилась. К реакционной смеси присыпали мелкими порциями 6.40 г (1.72 × 10⁻² моль) соль Na₂H₂L и затем прибавляли по каплям 1.40 г (3.44 × 10⁻² моль) NaOH в 10 мл H₂O. Прозрачный бесцветный раствор (pH 6) упаривали, остаток сушили при 110°C. Выход II 13.50 г (3.38 × 10⁻² моль, 98%) в виде белого мягкого порошка.

ИК-спектр (v, см⁻¹): 3583, 3446, 3363, 3285, 1614, 1590, 1459, 1435, 1393, 1322, 1292, 1247, 1173, 1110, 1006, 979, 964, 860, 842, 804, 762, 720, 658, 640, 583, 538, 515, 467.

Найдено, %:	C 30.55;	Н 3.56;	N 7.14.
Для C ₁₀ H ₁₂ N ₂ O ₈]	Na ₂ Zn (II)		
вычислено, %:	C 30.06;	Н 3.03;	N 7.01.

Синтез K₂[ZnL] · H₂O (III). Смешивали и растирали в ступке 5.00 г (1.72×10^{-2} моль) ЭДТА и 2.80 г (3.45×10^{-2} моль) ZnO. Полученный белый порошок присыпали к 50 мл H₂O при перемешивании. Через 20 мин к реакционной смеси приливали 30 мл раствора соли K₄L, полученной из 5.00 г (1.72×10^{-2} моль) ЭДТА и 3.86 г (6.88×10^{-2} моль) КОН. Через 12 ч из прозрачной смеси выпадал осадок. Смесь упаривали, остаток сушили при 110°С. Выход 13.00 г (3.01×10^{-2} моль, 88%) III в виде белой прочной твердой массы, размалывающейся до белого порошка. Из пересыщенного водного раствора выпадали очень мелкие кристаллы в форме коротких палочек.

ИК-спектр (v, см⁻¹): 3607 пл, 3402 ш, 1718 пл, 1614, 1593, 1447, 1402, 1325, 1307, 1280, 1268, 1110, 1003, 979, 932, 854, 717, 640, 595, 532, 506, 461.

Найдено, %:	C 26.77;	Н 3.45;	N 6.48.
Для C ₁₀ H ₁₄ N ₂ O ₉	K ₂ Zn (III)		
вычислено, %:	C 26.70;	H 3.14;	N 6.23.

Синтез (NH₄)₂[ZnL] · H₂O (IV). Смешивали и растирали в ступке 5.00 г (1.72×10^{-2} моль) ЭДТА и 2.80 г (3.45×10^{-2} моль) ZnO. Полученный белый порошок присыпали к 50 мл H₂O при перемешивании. Через 20 мин к реакционной смеси приливали 20 мл раствора соли (NH₄)₄L, полученной из 5.00 г (1.72×10^{-2} моль) ЭДТА и 6.63 мл раствора NH₄OH 10.37 моль л⁻¹ (6.88×10^{-2} моль). Через 12 ч смесь фильтровали, фильтрат упаривали, остаток сушили при 110°С. Выход 11.80 г ($3.03 \times$ $\times 10^{-2}$ моль, 95%) IV в виде мягкого белого порошка. Из пересыщенного водного раствора выпадали мелкие кристаллы в форме иголок.

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 4 2023

ИК-спектр (v, см⁻¹): 3440, 3214, 1709, 1590, 1459, 1444, 1396, 1331, 1319, 1310, 1268, 1247, 1221, 1173, 1110, 1006, 976, 935, 917, 854, 810, 768, 723, 646, 610, 589, 538, 506, 461.

Найдено, %:	C 29.49;	H 5.41;	N 13.24.
Для C ₁₀ H ₂₂ N ₄ O ₉ Z	Zn (IV)		
Вычислено, %:	C 29.46;	H 5.44;	N 13.74.

Реакция Zn[ZnL] \cdot 2H₂O с 2-аминоэтанолом. К суспензии 4.60 г (1.00 × 10⁻² моль) Zn[ZnL] \cdot 2H₂O в 30 мл H₂O прибавляли по каплям 1.22 г (2.00 × × 10⁻² моль) H₂NCH₂CH₂OH в 10 мл H₂O. Смесь кипятили при перемешивании 1 ч, охлаждали, фильтровали, осадок промывали метанолом, сушили при 110°С. Получили 1.30 г твердой массы, размалывающейся до белого порошка. Фильтрат упаривали, остаток сушили при 110°С. Выход 3.80 г (7.95 × 10⁻³ моль, 79%) (H₃NCH₂CH₂OH)₂[ZnL] (V) в виде белой пены, размалывающейся до белого порошка.

ИК-спектр (v, см⁻¹): 3500–2200 ш., 1727, 1599, 1459, 1393, 1379, 1319, 1274, 1221, 1113, 1066, 1015, 1006, 970, 920, 860, 723, 649, 595, 515, 467.

Найдено, %:	C 35.69;	H 5.89;	N 11.98.
Для C ₁₄ H ₂₈ N ₄ O ₁₀	Zn		
вычислено, %:	C 35.19;	H 5.91;	N 11.73.

Синтез этилендиаминтетраацетатоцинката 2-аминийэтанола (H₃NCH₂CH₂OH)₂[ZnL] (V). Смешивали и растирали в ступке 5.00 г (1.72×10^{-2} моль) ЭДТА и 2.80 г (3.45 × 10⁻² моль) ZnO. Полученный белый порошок присыпали к 30 мл H₂O при перемешивании. Через 20 мин к реакционной смеси приливали 20 мл раствора соли (NH₃CH₂CH₂OH)₄L, полученной из 5.00 г (1.72 × 10⁻² моль) ЭДТА и 4.20 г (6.88 × 10⁻² моль) 2-аминоэтанола. Смесь фильтровали, фильтрат упаривали, остаток сушили при 110°С. Выделили 16.60 г светло-желтой массы в виде парафина, плавящегося при нагревании до 100°С. После нагревания в вакууме до 175°С выход V в виде рыхлой пены, размалывающейся до белого порошка, составил 13.00 г (2.72 × $\times 10^{-2}$ моль, 79%). Соединение умеренно растворяется в метаноле и образует на стекле прозрачную бесцветную пленку, не растворяется в диоксане, ацетоне и ацетонитриле, не подвергается переосаждению из водного раствора при добавлении вышеуказанных органических растворителей.

ИК-спектр (v, см⁻¹): 3279, 3086, 1733, 1587, 1459, 1390, 1379, 1322, 1310, 1274, 1221, 1176, 1116,

1069, 1015, 1003, 973, 923, 860, 810, 723, 649, 592, 518, 467.

Найдено, %:	C 36.09;	Н 5.79;	N 11.90.
Для C ₁₄ H ₂₈ N ₄ O ₁	$_{0}$ Zn (V)		
вычислено, %:	C 35.19;	Н 5.91;	N 11.73.

Синтез этилендиаминтетраацетатоцинката гексаметилен-1,6-диаминия ${H_3N(CH_2)_6NH_3}[ZnL]$ (VI). Смешивали и растирали в ступке 5.24 г (1.81 × × 10⁻² моль) ЭДТА и 2.94 г (3.61 × 10⁻² моль) ZnO. Полученный белый порошок присыпали к 30 мл H₂O при перемешивании. Через 20 мин к реакционной смеси приливали раствор соли ${H_3N(CH_2)_6NH_3}_2L$, полученной из 5.24 г (1.81 × × 10⁻² моль) ЭДТА и 4.20 г (3.61 × 10⁻² моль) гексаметилен-1,6-диамина в 20 мл Н₂О. Смесь фильтровали, фильтрат упаривали, остаток сушили при 110°С. Получили 16.90 г твердой массы, размягчающейся при нагревании до 100°С. После нагревания в вакууме до 165°C выход VI 14.15 г $(3.00 \times 10^2$ моль, 83%) в виде светло-желтых крупных кусков, легко размалывающихся до кремового порошка.

ИК-спектр (v, см⁻¹): 3443, 3133, 3000–2200 ш., 2091, 1602, 1483, 1462, 1390, 1379, 1325, 1271, 1173, 1110, 1000, 964, 917, 863, 839, 723, 658, 625, 589, 550, 509, 461.

Найдено, %:	C 41.38;	H 7.01;	N 11.81.
Для C ₁₆ H ₃₀ N ₄ O ₈	Zn (VI)		
вычислено, %:	C 40.73;	H 6.41;	N 11.87.

Соединение растворяется в метаноле, этиленгликоле, плохо растворяется в ацетонитриле и ДМСО, не растворяется в ацетоне. Из раствора в метаноле образует на стекле прозрачную пленку.

Синтез этилендиаминтетраацетатоцинката триэтиламиния гидрата {(C_2H_5)₃NH}H[ZnL] · H₂O (VII). Смешивали и растирали в ступке 5.00 г (1.72 × × 10⁻² моль) ЭДТА и 2.80 г (3.45 × 10⁻² моль) ZnO. Полученный белый порошок присыпали к 30 мл H₂O при перемешивании. Через 20 мин к реакционной смеси приливали раствор соли {(C_2H_5)₃NH}₄L, полученной из 5.00 г (1.72 × 10⁻² моль) ЭДТА и 6.96 г (6.88 × 10⁻² моль) триэтиламина в 20 мл H₂O. Смесь фильтровали, фильтрат упаривали, остаток сушили при 110°С. Получили 14.90 г твердой белой массы, с трудом размалывающейся до белого порошка. После нагревания порошка в вакууме до 150°С выход VII 14.30 г (2.56 × 10⁻² моль, 74%).

ИК-спектр (v, см⁻¹): 3583, 3476, 3378, 3294, 3011 пл., 2684, 2636, 2576, 2499, 1715, 1656, 1620, 1587, 1447, 1429, 1405, 1376, 1346, 1319, 1301, 1262,

1206, 1170, 1113, 1066, 1033, 1006, 982, 932, 917, 884, 857, 845, 810, 765, 723, 646, 589, 556, 526, 464.

Найдено, %:	C 40.77;	H 6.76;	N 9.03.
Для C ₁₆ H ₃₁ N ₃ O ₉ Z	Zn (VII)		
вычислено, %:	C 40.47;	H 6.58;	N 8.85.

Синтез этилендиаминтетраацетат цинка тригидрата $H_2[ZnL(H_2O)] \cdot 2H_2O$ (VIII). Насыщали 10 мл H_2O соединением {(C_2H_5)₃NH}H[ZnL] \cdot H_2O (растворилось 10.40 г (2.19 × 10⁻² моль) при перемешивании без нагревания. Через 2 сут из раствора выпадали крупные кристаллы кубической формы. Кристаллы отфильтровывали, промывали метанолом, ацетоном, сушили на воздухе. Выход VIII 1.80 г (4.23 × 10⁻³ моль, 19%).

ИК-спектр (v, см⁻¹): 3372, 3214, 2657, 2526, 2231, 1927, 1712, 1605, 1465, 1390, 1367, 1331, 1313, 1292, 1253, 1116, 1003, 970, 932, 914, 860, 726, 681, 646, 604, 562, 506, 455.

Найдено, %:	C 28.94;	H 5.09;	N 6.86.
Для $C_{10}H_{20}N_2O_{11}$	Zn (VIII)		
вычислено, %:	C 29.32;	H 4.92;	N 6.84.

Синтез КН[ZnL] (IX). К 7 мл дистиллированной воды добавили 2.60 г (5.78×10^{-2} моль) K₂[ZnL], размешивали, добавляли 7 капель 8 N H₂SO₄. От выпавшего обильного осадка смесь загустевала. Осадок отильтровывали, промывали водой, сушили при 110°С. Выход IX 0.85 г (2.16 × × 10⁻² моль, 37%) в виде белого порошка.

ИК-спектр (v, см⁻¹): 2705, 2576, 2492, 1911, 1724, 1691, 1593, 1462, 1441, 1429, 1396, 1322, 1304, 1253, 1197, 1176, 1113, 1009, 970, 929, 908, 881, 860, 812, 759, 723, 696, 634, 598, 577, 503, 467.

Найдено, %:	C 31.03;	Н 3.57;	N 7.41.
Для C ₁₀ H ₁₃ N ₂ O ₈ Z	Zn (IX)		
вычислено, %:	C 30.51;	Н 3.33;	N 7.12.

ИК-спектры соединений в виде суспензии в вазелиновом (область 1400–400 см⁻¹) и фторированном (4000–1400 см⁻¹) маслах между пластинами КВг регистрировали на ИК Фурье-спектрометре ФСМ 1201. Элементный анализ выполняли на автоматическом элементном анализаторе Vario EL cube (Elementar Analysensysteme GmbH) в конфигурации CHNS, газ-носитель – гелий марки 6.0. Электронные спектры поглощения (ЭСП) водных растворов измеряли на спектрофотометре Perkin-Elmer Lambda 25. Оптическая микроскопия выполнена на микроскопе Микромед 3 производства "Нингбо Шепт Хенг Оптикс энд Электроникс Ко., ЛТД" с цифровой камерой ТоирСат14МР, КНР; ООО "Наблюдательные приборы", С.-Петербург. Рентгенофазовый анализ (РФА) выполняли на рентгеновском дифрактометре Shimadzu XRD-7000, термогравиметрический анализ (TГА) – на приборе синхронного термического анализа TGA/DSC 3+ METTLER TOLEDO (скорость нагрева 5 град/мин, скорость подачи аргона 20 мл/мин). Измерения проводили в температурном интервале от 25 до 500°C.

Для регистрации масс-спектров соединений использовали хромато-масс-спектрометр Trace GC Ultra/Polaris Q (Thermo Electron Corporation, США), оснашенный системой прямого ввода, масс-анализатор – ионная ловушка. Исследуемое вешество в количестве, достаточном для создания ионного тока, превышающего фоновый в 100 раз, втирали во внутреннюю поверхность стандартного стеклянного тигля системы прямого ввода. После предварительного вакуумирования тигель с веществом с помощью штока помещали в непосредственной близости от источника ионизации. Масс-спектры в режиме положительных ионов регистрировали при энергии ионизирующих электронов 70 эВ в диапазоне массовых чисел 50-700. Температуру образца изменяли по следующей программе: мгновенный нагрев до 50°С, изотерма в течение 1 мин, нагрев со скоростью 100°С мин⁻¹ до 450°С. Температура ионного источника составляла 230°С.

Сканирующую электронную микроскопию (СЭМ) выполняли на сканирующем электронном микроскопе Tescan VEGA II. Микрорельеф исследовали при увеличениях от $500 \times \text{до} 50000 \times$. Съемку проводили при ускоряющем напряжении 20 кВ и рабочем расстоянии 2—8 мм, использовали детекторы вторичных электронов (SE) и обратно рассеянных электронов (BSE).

РСА соединения VIII проведен на дифрактометре Oxford Xcalibur Eos (графитовый монохроматор, Мо K_{α} -излучение, ω -сканирование, $\lambda = 0.71073$ Å) при 298(2) К. Экспериментальные наборы интенсивностей интегрированы с помощью программы CrysAlisPro [11]. Поправки на поглощение введены с использованием алгоритма масштабирования SCALE3 ABSPACK, реализованного в программе CrysAlisPro. Структура решена с использованием программы SHELXT [12] и уточнена полноматричным МНК по F_{hkl}^2 в анизотроп-ном приближении для всех неводородных атомов с помощью программы SHELXL [13]. Атомы водорода H(1)-H(4) локализованы объективно из разностного Фурье-синтеза и уточнены в изотропном приближении. Остальные атомы водорода помещены в геометрически рассчитанные положения и уточнены в изотропном приближении с использованием модели "наездника" $(U_{\mu_{30}}(H) = 1.2 \ U_{_{3KB}}(C)).$ Основные кристаллографические характеристики комплекса VIII приведены в табл. 1.

VIII	
Параметр	Значение
Брутто-формула	$C_{10}H_{20}N_2O_{11}Zn$
M	409.65
Пр. группа	C2/c
a, Å	10.97710(9)
b, Å	9.75975(7)
c, Å	14.56413(13)
β, град	95.5401(8)
<i>V</i> , Å ³	1553.02(2)
Ζ	4
ρ(выч.), г/см ³	1.752
μ, см ⁻¹	1.644
Т, К	298
Размеры кристалла, мм	0.55 imes 0.45 imes 0.35
<i>F</i> (000)	848
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le h \le 15, -13 \le k \le 13, -20 \le l \le 20$
$(\sin\theta/\lambda)_{\rm max}$	0.704
Число отражений измеренных/независимых	45657/2283
R _{int}	0.0199
Число параметров	127
S	1.058
R_1/wR_2 (все отражения)	0.0198/0.0572
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0204/0.0576
Коэффициент экстинкции	0.0087(5)
$\Delta \rho_{\min} / \Delta \rho_{\max}, e/Å^3$	0.517/-0.364

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры VIII

Полный набор рентгеноструктурных параметров структуры H₂[ZnL(H₂O)] · 2H₂O депонирован в Кембриджском банке структурных данных (CCDC № 2172274; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Этилендиаминтетраацетаты двухвалентных металлов M[ML] · nH_2O , M = Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Pb²⁺) получают взаимодействием суспензий их оксидов и карбонатов с ЭДТА, или водорастворимых солей металлов с натриевыми производными ЭДТА [4]. Соединения отличаются малой растворимостью в водной среде. Для марганца она составляет 0.13 моль/л, а для цинка 0.039 моль/л. Производное цинка I взаимодействует с солью Na₄L, образуя растворимый этилендиаминтетраацетатоцинкат натрия II [14]:

$$Zn[ZnL] + Na_4L = 2Na_2[ZnL]$$
(I)
(II)
(1)

Синтез соединения I из оксида цинка и ЭДТА протекает в две стадии. На первой получается хорошо растворимый мономерный (или олигомерный) продукт, который через 10-12 ч выпадает из раствора в виде крупных кристаллов. Хранение раствора или его упаривание и сушка остатка вызывают полимеризацию мономера и приводят к получению малорастворимого соединения. Реакция (1) реализуется не только для натриевой, но также для калиевой, аммониевой, моноэтаноламиниевой и гексаметилен-1,6-диаминиевой солей ЭДТА. Все эти производные K₂[ZnL] (III), (NH₄)₂[ZnL] (IV), (H₃NCH₂CH₂OH)₂[ZnL] (V), {H₃N(CH₂)₆NH₃][ZnL] (VI) имеют высокую растворимость в водной среде.

$$Zn[ZnL] + (H_3NCH_2CH_2OH)_4 L = 2(H_3NCH_2CH_2OH)_2[ZnL]$$
(1)
(V)
$$Zn[ZnL] + \{H_3N(CH_2)_6NH_3\}_2L = 2\{H_3N(CH_2)_6NH_3\}[ZnL]$$
(2)

$$\begin{aligned} \text{Cn}[\text{ZnL}] + \{\text{H}_{3}\text{N}(\text{CH}_{2})_{6}\text{NH}_{3}\}_{2}\text{L} &= 2\{\text{H}_{3}\text{N}(\text{CH}_{2})_{6}\text{NH}_{3}\}[\text{ZnL}] \\ \text{(I)} & (\text{VI}) \end{aligned} \tag{3}$$

Иначе ведет себя *тетракис* (триэтиламиниевая) соль ЭДТА. В реакции с Zn[ZnL] образуется не ожидаемый этилендиаминтетраацетатоцинкат *бис* (триэтиламиния) {(C_2H_5)₃NH}₂[ZnL], а этилендиаминтетраацетатоцинкат моно(триэтиламиния).

$$Zn[ZnL] + \{(C_2H_5)_3NH\}_4L =$$

$$2\{(C_2H_5)_3NH\}H[ZnL] + 2(C_2H_5)_3N.$$
(4)

После сушки при 110°С соединение удерживает в своем составе одну молекулу воды и представляет собой моногидрат $\{(C_2H_5)_3NH\}H[ZnL] \cdot H_2O$ (VII). Его ИК-спектр существенным образом отличается от производных первичных аминов V и VI. На рис. 1 показаны ИК-спектры VII и VI. Известно, что соли третичных аминов поглощают при 2700–2250 см⁻¹. В спектре VII в этой области присутствует широкая интенсивная полоса поглощения. Соли первичных аминов поглощения облае широком диапазоне от 3300 до 2200 см⁻¹, как это видно из спектра производного гексаметилен-1,6-диаминия VI. Существенная разница в спектрах этих соединений наблюдается

в области валентных (3600-3250 см⁻¹) и деформационных (1750-1550 см⁻¹) колебаний связей N-H и O-H. Характерная особенность ИК-спектра соединения VII заключается в наличии двух интенсивных острых полос поглощения 3583 и $3476 \, \text{см}^{-1}$. Отнести их к колебаниям связи N–H не представляется возможным. Следовательно, они могут быть обусловлены валентными колебаниями связей О–Н в молекуле координационно связанной воды и свободной группы –СОО–Н кислоты. Наличие группы -СОО-Н подтверждается полосой поглощения при 1715 см⁻¹ в области деформационных колебаний О-Н. Поглощение в области 1600 см⁻¹ обусловлено валентными колебаниями связи С=О карбоксилатного аниона – СОО-, свободной группы –СООН и деформационных колебаний связи N-H.

Попытка произвести перекристаллизацию $\{(C_2H_5)_3NH\}H[ZnL]$ из пересыщенного водного раствора неожиданно привела к получению нового соединения — этилендиаминтетраацетата цинка $H_2[ZnL] \cdot 2H_2O$.

$$\{(C_{2}H_{5})_{3}NH\}H[ZnL] + 3H_{2}O = H_{2}[ZnL(H_{2}O)] \cdot 2H_{2}O + (C_{2}H_{5})_{3}N.$$
(VIII)
(5)

Комплекс цинка VIII выпал в осадок в виде крупных кристаллов кубической формы (рис. 2) и связал три молекулы воды. ИК-спектр VIII (рис. 1) характеризуется очень интенсивным поглощением в области валентных колебаний связей О–Н трех кристаллизационных молекул воды и фрагмента –СОО–Н. Наличие последнего отчетливо проявляется в диапазоне деформационных колебаний О–Н при 1712 см⁻¹.

Формирование кристаллической структуры представляет собой сложный процесс, как это следует из данных СЭМ (рис. 3). Процесс начинается с появления в растворе нано- и микрокристаллов, которые слипаются до крупных "глыб". В "глыбы" впечатаны (рис. 3а) успевшие вырасти до крупных размеров кристаллы. Из данных РФА следует, что выпавший осадок практически не содержит аморфной составляющей (рис. 4, 3), которая могла бы выступить в качестве связующего при образовании крупных агломератов из мелких кристаллов. По-видимому, в качестве связующего выступают образования нанометрового размера. Выпадение из матрицы микрокристаллов приводит к образованию нерегулярной ячеистой струк-

v, см⁻¹ В Рис. 1. ИК-спектры соединений VI (1), VII (2), VIII (3). Дл

_

Рис. 2. Оптическое изображение кристаллов VIII. Увеличение ×40 (а), увеличение ×100 (б).

Рис. 3. СЭМ изображение (а-в) кристаллов VIII.

туры (рис. 36) с размером ячейки 1.5–2.5 мкм. Благоприятным фактором, способствующим удачному проведению рентгеноструктурного эксперимента, является наличие "свободных" достаточно крупных кристаллов. При большом увеличении видно, что они не монолитны (рис. 3в). На их поверхности можно заметить параллельно расположенные нанотрещины.

Для соединений III—VIII был выполнен рентгенофазовый анализ. Производное 2-аминоэтанола V оказалось аморфным, в то время как остальные кристаллическими. Аморфный характер V проявился во внешнем поведении. После синтеза оно представляло собой воскоподобное вещество, которое вспучивалось при нагревании в вакууме. На рис. 4 представлены рентгенограммы комплексов VI—VIII, из которых следует, что они кристаллизуются в различных кристаллографических формах. Аморфная составляющая практически отсутствовала. Соединение VI, несмотря на его высококристалличный характер, не удалось перекристаллизовать (переосадить) из концентрированного водного раствора смешиванием с диоксаном или метанолом. Насыщения также не удалось достигнуть. Очень высокая растворимость в водной среде выразилась в получении вязкого раствора, переходящего в смолу. Аналогичными качествами обладало также производное 2-аминоэтанола V. Чрезвычайно высокой оказалась и растворимость соединения VII (10.4 г в 10 мл H₂O). Однако насыщенный раствор не был стабильным и генерировал осаждение нового соединения VIII.

Водные растворы комплексов цинка не окрашены. В ЭСП отсутствовали явно выраженные полосы в диапазоне 250–400 нм (рис. 5). Только раствор соединения VI имел слабый желтый оттенок. В ЭСП присутствовала полоса поглощения с максимумом при 280 нм, простирающаяся с убывающей интенсивностью до 400 нм (рис. 5, 3).

Как было сказано выше, ион цинка не имеет полос поглощения в УФ-области спектра, поскольку электронные переходы в 3*d*-конфигура-

Рис. 4. Рентгенограммы комплексов VI (*1*), VII (*2*), VIII (*3*).

ции для иона цинка не характерны. Положение спектральных полос в исследованных комплексах определяется полем лигандов и зависит от характера лигандов. В целом тенденция сдвига имеет гипсохромный характер, причем этот сдвиг не зависит от природы центрального атома. По этой причине отнесение полосы 280 нм в спектре соединения VI к переходу лиганд-металл маловероятно. Возможная причина появления серии полос в этой области – фото- или термохимические изменения в лиганде, которые могут инициировать появление примесей в процессе очистки комплекса. Общеизвестна склонность аминов при действии света и тепла приобретать желтый цвет из-за появления полос поглощения в ближней УФ-области спектра. Сплошное поглощение до 270 нм появляется также (рис. 5, 2) и у раствора производного 2-аминоэтанола V.

По данным термогравиметрического анализа, соединения IV-VI начинают быстро терять вес только при температуре 290-300°С (рис. 6). Производное триэтиламина VII и продукт его дезаминирования VIII менее устойчивы. Массы положительно заряженной части (NH_4^+ , $H_3N^+CH_2CH_2OH$, H₃N⁺(CH₂)₆NH₃⁺, (C₂H₅)₃NH⁺) комплексов в соединениях IV, V, VI, VII составляют соответственно 13, 25, 25, 25% (для IV и VII вместе с H₂O). Полное удаление этой наиболее летучей части происходит при достижении 300, 370, 360, 260°С. В низкотемпературной области (до 150°С) соединение VIII наименее устойчиво. В диапазоне 100-140°С происходит быстрая потеря 14% массы. Данная ступень на кривой ТГА отражает удаление трех молекул воды. Комплекс VII интенсивно разлагается с образованием летучих продуктов в две стадии: при 220-280 и 350-400°С. Из всех ис-

Рис. 5. ЭСП комплексов цинка с ЭДТА: IV (1), V (2), VI (3), VII (4), где *c*, моль $\pi^{-1} = 1.2 \times 10^{-1}$, 4.8×10^{-2} , 9.2×10^{-2} , 8.2×10^{-2} соответственно.

следованных комплексов он теряет наибольшее количество массы (74%) при достижении 500°С.

Структурное родство серии соединений вытекает при анализе их масс-спектров. Обычно наблюдается наличие достаточно большой серии осколочных ионов. характерных для каждого соединения [3]. Полной аналогии не наблюдается. особенно относительно интенсивностей. В настоящей работе мы наблюдали полную аналогию масс-спектров для всех изученных соединений І-VIII. На рис. 7 в качестве примера показаны три масс-спектра для существенно различающихся по химическому составу соединений III, V и VIII. Абсолютное совпадение спектров возможно в том случае, когда в результате электронной бомбардировки положительно заряженная часть комплекса превращается в нейтральную молекулу (или атом для I–III) и не регистрируется. Ионизации с получением положительно заряженных осколков подвергается "ядро", одинаковое для всего ряда соединений, т.е. [ZnL]²⁻, вследствие чего и наблюдается практически полное совпадение спектров исследованных комплексов. Молекулярный ион был зарегистрирован только для комплекса VIII, однако его интенсивность невелика. Интересно, что для комплекса III при отсутствии молекулярного иона были зарегистрированы осколочные ионы $[K_2[ZnL]]^+$ и $[K[ZnL] \cdot H_2O]^+$, однако их интенсивность также мала. Для других комплексов подобных осколочных ионов зарегистрировано не было.

Комплекс VIII изоструктурен ранее опубликованному аналогу $H_2[FeL(H_2O)] \cdot 2H_2O$ [15]. В независимой области ячейки находится половина молекулы комплекса и одна сольватная молекула воды. Дианион этилендиаминтетрауксусной кислоты связан с атомом цинка четырьмя атомами кислорода и двумя атомами азота. Кроме того, одна молекула воды координирована на атом цинка (рис. 8). Таким образом, координационное число атома цинка равно семи, а координационное окружение представляет собой пентагональную бипирамиду. Расстояния Zn–O до двух независимых карбоксильных групп лиганда существенно отличаются (табл. 2). Связи C(1)–O(1) (1.2034(16) Å) и C(3)–O(4) (1.2381(14) Å) существенно короче по сравнению со связями C(1)–O(2) (1.3045(15) Å) и C(3)–O(3) (1.2728(13) Å).

Таким образом, связь Zn(1)–O(1) (2.4273(12) Å) является координационной в отличие от связи Zn(1)–O(3) (2.0311(8) Å). Подобная тенденция распределения длин связей в координационной сфере атома металла наблюдалась и в родственном комплексе железа [15].

Атомы водорода карбоксильных групп C(1)O(1)O(2)H(1) комплекса VIII в кристалле направлены на атомы кислорода сольватных молекул воды. Расстояние H(1)...O(6) 1.77(3) Å свидетельствует о наличии сильного межмолекулярного специфического взаимодействия [16]. В свою очередь, атомы водорода молекул воды принимают участие в формировании межмолекулярных взаимодействий О-Н...О с другими молекулами комплекса (табл. 3). Расстояния Н...О варьируются в интервале 1.96(2)-2.06(2) Å, что также позволяет отнести данные межмолекулярные взаимодействия к сокращенным контактам [16]. В результате формируется 3D-сеть водородных связей (рис. 9).

Рис. 6. Термогравиметрический анализ соединений: IV (*1*), V (*2*), VI (*3*), VII (*4*), VIII (*5*).

Необычное поведение VII в сравнении с производными $M_2[ZnL]$ (M = калий, аммоний, моноэтаноламиний, гексаметилен-1,6-диаминий), возможно, объясняется присутствием в его молекуле свободной (не анионной) группой –СООН, создающей в водном растворе слабую кислотную среду. Проверка на соединении калия показала, что подкисление его водного раствора не привело к образованию этилендиаминтетраацетата цинка.

Связь, Å	VIII	Угол, град	VIII
Zn(1)-O(3)	2.0311(8)	O(3)Zn(1)O(3A)	165.95(5)
Zn(1)–O(5)	2.0376(13)	O(3)Zn(1)O(5)	97.02(2)
Zn(1) - N(1)	2.2715(9)	O(3)Zn(1)N(1)	79.97(3)
Zn(1)–O(1)	2.4273(12)	O(3A)Zn(1)N(1)	89.18(3)
O(1)–C(1)	1.2034(16)	O(5)Zn(1)N(1)	140.38(2)
O(2)–C(1)	1.3045(15)	O(3)Zn(1)N(1A)	89.18(3)
O(3)–C(3)	1.2728(13)	O(3A)Zn(1)N(1A)	79.97(3)
O(4)–C(3)	1.2381(14)	N(1)Zn(1)N(1A)	79.24(5)
N(1)–C(4)	1.4756(14)	O(3)Zn(1)O(1)	89.59(5)
N(1)–C(2)	1.4696(14)	O(3A)Zn(1)O(1)	94.66(5)
N(1)–C(5)	1.4781(15)	O(5)Zn(1)O(1)	72.34(3)
C(1)–C(2)	1.5021(18)	N(1)Zn(1)O(1)	68.16(4)
C(3)–C(4)	1.5251(15)	N(1A)Zn(1)O(1)	147.07(4)
C(5)-C(5A*)	1.519(2)	N(1A)Zn(1)O(1A)	68.16(4)
		O(1)Zn(1)O(1A)	144.69(5)

Таблица 2. Избранные длины связей (Å) и углы (град) в комплексе VIII

* Операция симметрии, используемая для генерации эквивалентных атомов в комплексе VIII: (A) -x + 2, $y_{-} - z + 1/2$.

Рис. 7. Масс-спектры K₂[ZnL] (1), (H₃NCH₂CH₂OH)₂[ZnL] (2), H₂[ZnL(H₂O)] · 2H₂O (3).

Таблица 3. Геометрические характеристики, соответствующие взаимодействиям О-Н...О в кристалле VIII

D-HO	Расстояние, Å			VEOR DHO, FRAM
	D-H	НО	D0	этол Бпо, град
O(2)-H(1)O(6)	0.83(3)	1.77(3)	2.5803(18)	166(3)
O(5)-H(2)O(4B*)	0.83(2)	1.98(2)	2.7938(12)	169(2)
O(6)-H(3)O(4B)	0.83(2)	2.06(2)	2.8620(15)	161(2)
O(6)-H(4)O(3C*)	0.78(2)	1.96(2)	2.7208(13)	167(2)

* Операции симметрии, используемые для генерации эквивалентных атомов в кристалле VIII: (B) -x + 3/2, y + 1/2, -z + 1/2; (C) x, -y + 2, z + 1/2.

Рис. 8. Молекулярная структура комплекса VIII. Тепловые эллипсоиды приведены с 30%-ной вероятностью. Некоторые атомы водорода не приведены для наглядности.

Рис. 9. 3D-сеть водородных связей в кристалле VIII. Некоторые атомы водорода не приведены для наглядности.

Вместо этого наблюдалось быстрое выпадение труднорастворимого осадка IX в виде мелкодисперсных частиц.

$$K_{2}[ZnL] + 0.5H_{2}SO_{4} = KH[ZnL] + 0.5K_{2}SO_{4}.$$
(III)
(IX)

Авторы заявляют об отсутствии конфликта интересов.

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 4 2023

БЛАГОДАРНОСТИ

При выполнении работы использовали приборы Центра коллективного пользования ННГУ Научнообразовательного центра "Физика твердотельных наноструктур".

ФИНАНСИРОВАНИЕ

Исследования выполнены в рамках госзадания (тема № 45.4 "Химия функциональных материалов", рег.

№ 0094-2016-0012) с использованием оборудования центра коллективного пользования "Аналитический центр ИМХ РАН" в Институте металлоорганической химии им. Г.А. Разуваева РАН при поддержке гранта "Обеспечение развития материально-технической инфраструктуры центров коллективного пользования научным оборудованием" (уникальный идентификатор RF-2296.61321X0017, соглашение № 075-15-2021-670). Монокристальные рентгеноструктурные исслелования соелинений провелены в рамках госзалания (тема № 44.2, рег. № АААА-А16-116122110053-1). Эксперименты с использованием сканирующей электронной микроскопии выполнены в рамках государственного задания Института прикладной физики РАН на проведение фундаментальных научных исследований на 2021-2023 гг. по теме № 0030-2021-0025.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. 544 с.
- Семенов В.В., Золотарева Н.В., Петров Б.И. Патент РФ 2015110362/04 (016255) // БИ. 2017. № 4.
- 3. Семенов В.В., Золотарева Н.В., Новикова О.В. и др. // Изв. АН. Сер. хим. 2022. № 5. С. 980.
- 4. Леонтьева М.В., Дятлова Н.М. // Коорд. химия. 1990. Т. 16. С. 823.
- Lakshminarayanan R. // J. Electrochem. Soc. India. 1997. V. 46. P. 45.

- Borowiec M., Hoffmann K., Hoffmann J. // Intern. J. Environmen. Anal. Chem. 2009. V. 89. P. 717. https://doi.org/10.1080/03067310802691672
- Jervis R.E., Krishnan S.S. // J. Inorg. Nucl. Chem. 1967. V. 29. P. 97. https://doi.org/10.1016/0022-1902(67)80149-0
- Bampidis V., Azimonti G., de Lourdes Bastos M. et al. // Eur. Food Safety Authority. 2020. V. 18. e06145. https://doi.org/10.2903/j.efsa.2020.6024
- Collins R.N., Merrington G., McLaughlin M.J., Knudsen C. // Environ. Toxicol. Chem. 2002. V. 21. P. 1940. https://doi.org/10.1002/etc.5620210923
- Soulages O.E., Acebal S.G., Grassi R.L., Vuano B.M. // Anales de la Asociacion Quimica Argentina. 1997. V. 85. P. 261.
- 11. Rigaku Oxford Diffraction. CrysAlis Pro Software System. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
- 12. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 13. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Фридман А.Я., Леонтьева М.В., Дятлова Н.М. // Коорд. химия. 1986. Т. 12. С. 736.
- Mizuta T., Wang J., Miyoshi K. // Inorg. Chim. Acta. 1995. V. 230. P. 119. https://doi.org/10.1016/0020-1693(94)04311-I
- Зефиров Ю.В., Зоркий П.М. // Успехи химии. 1995. Т. 64. С. 446 (Zefirov Yu.V., Zorky P.M. // Russ. Chem. Rev. 1995. V. 64. P. 415). https://doi.org/10.1070/RC1995v064n05ABEH000157