УДК 66.045.1

МОДЕЛИРОВАНИЕ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ МЕТАНА И ОБРАЗОВАНИЯ ТВЕРДЫХ УГЛЕРОДНЫХ ЧАСТИЦ

© 2020 г. И. В. Кудинов¹, А. А. Пименов¹, Г. В. Михеева^{1, *}

¹Самарский государственный технический университет, Самара, 443100 Россия *E-mail: galinn21@list.ru

> Поступила в редакцию 03.07.2020 г. После доработки 05.07.2020 г. Принята к публикации 10.07.2020 г.

Выполнена разработка и верификация математических моделей разложения метана при его пиролизе, включающих нестационарные уравнения диффузии с учетом и без учета конвективной составляющей процесса разложения. Получены их точные аналитические решения, которые были использованы при исследовании математической модели образования твердых углеродных частиц, возникающих при прогреве метана до температуры пиролиза. В ходе исследований скорости и интенсивности образования твердых углеродных частиц показано, что частицы наименьших размеров получаются при более высоких температурах разложения и за более короткое время.

Ключевые слова: термическое разложение метана, нестационарное уравнение диффузии, точное аналитическое решение, образование твердых углеродных частиц

DOI: 10.31857/S002824212006012X

Разложение метана посредством пиролиза используется для получения водорода и наночастиц углерода (нанотрубки, фуллерены, карбин и др.). Преимущество этого способа заключается в том, что процесс пиролиза в данном случае не сопровождается выбросом в атмосферу углекислого газа [1-5]. Наиболее перспективным методом пиролиза является нагрев метана путем его пропускания через слой расплавленного металла (олово, свинец, алюминий и др.). В зависимости от эффективности применяемых катализаторов, температура пиролиза может превышать 1000°С. Исследование математических моделей процессов разложения метана и образования твердых углеродных частиц представляет научный и практический интерес ввиду их использования как при проектировании установок для пиролиза, так и при выполнении экспериментальных исследований.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ МЕТАНА

Реакция термического разложения метана описывается уравнением [6, 7]:

$$\frac{dC(t)}{dt} = -C(t)k \exp\left(-\frac{E}{RT}\right),\tag{1}$$

где C — объемная концентрация метана, кг/м³; t — время, с; k — константа скорости реакции, 1/с; E —

энергия активации, Дж/моль; *R* – универсальная газовая постоянная, Дж/(моль K); *T* – температура, К.

Разделяя переменные в уравнении (1) и интегрируя, находим:

$$\ln C(t) = -k \exp\left(-\frac{E}{RT}\right)t + C_1,$$
(2)

где C_1 — константа интегрирования.

Соотношение (2) можно представить в виде

$$C(t) = \exp\left[-k \exp\left(-\frac{E}{RT}\right)t + C_1\right] =$$

= $C_2 \exp\left[-k \exp\left(-\frac{E}{RT}\right)t\right],$ (3)

где $C_2 = \exp C_1$ определяется из начального условия C(0) = 1. Подставляя (3) в данное начальное условие, находим $C_2 = 1$. Соотношение (3) с учетом найденного значения постоянной интегрирования принимает вид:

$$C(t) = \exp\left[-k \exp\left(-\frac{E}{RT}\right)t\right].$$
 (4)

ИССЛЕДОВАНИЕ ПРОЦЕССА РАЗЛОЖЕНИЯ МЕТАНА С УЧЕТОМ СКОРОСТИ ЕГО ТЕЧЕНИЯ

В уравнении (1) учитывается лишь временно́е разложение метана без учета скорости его течения по пространственной переменной. Учет скорости приводит к следующему диффузионному уравнению:

$$\frac{\partial C(x,t)}{\partial t} + W \frac{\partial C(x,t)}{\partial x} = -kC(x,t), \qquad (5)$$

где x — координата, м; W — скорость течения метана в направлении координаты x, м/с.

Решение уравнения (5) будем находить при краевых условиях

$$C(x,0) = 1;$$
 (6)

$$C(0,t) = 1. (7)$$

Следуя методу разделения переменных [8–10], решение задачи (5)–(7) принимается в виде:

$$C(x,t) = \varphi(t)\psi(x), \qquad (8)$$

где $\varphi(t)$ и $\psi(x)$ — неизвестные функции (времени и пространственной переменной).

Подставляя (8) в (5), находим:

$$\frac{d\varphi(t)}{dt} + (k+\nu)\varphi(t) = 0; \qquad (9)$$

$$W\frac{d\psi(x)}{dx} + v\psi(x) = 0, \qquad (10)$$

где v – некоторая постоянная.

Интегрируя уравнения (9), (10), получаем:

$$\varphi(t) = C_1 \exp\left[-(k+\nu)t\right],\tag{11}$$

$$\Psi(x) = C_2 \exp\left(\frac{vx}{W}\right),\tag{12}$$

где C_1, C_2 – константы интегрирования.

Подставляя (11), (12) в (8), обозначив $C_3 = C_1 C_2$, находим:

$$C(x,t) = C_3 \exp\left[\frac{\mathbf{v}x}{W} - (k+\mathbf{v})t\right].$$
 (13)

Соотношение (13) содержит две неизвестные постоянные C_3 и v. Для их определения используем краевые условия (6), (7). Подставляя (13) в (6), (7), относительно C_3 и v получаем систему двух трансцендентных уравнений, из решения которой находим:

$$C_3 = kx \left(\frac{t}{tW + x}\right),\tag{14}$$

$$v = -kt \left(\frac{W}{tW + x}\right). \tag{15}$$

Подставляя (14), (15) в (13), после некоторых преобразований получаем:

$$C(x,t) = \exp\left[-\frac{ktx}{tW+x}\right].$$
 (16)

Соотношение (16) представляет точное аналитическое решение задачи (5)–(7).

ИССЛЕДОВАНИЕ ИНТЕНСИВНОСТИ ОБРАЗОВАНИЯ ТВЕРДЫХ УГЛЕРОДНЫХ ЧАСТИЦ

Оценку интенсивности образования твердых углеродных частиц будем выполнять на основе методики, изложенной в [6, 7]. Рассмотрим ее применение для полученных выше решений (4), (16). Согласно этой методике изменение объема сферической частицы за время протекания процесса будет:

$$\frac{dV}{dt} = S\frac{j}{\rho_{\rm C}},\tag{17}$$

где $V = 4\pi r^3/3$ – объем сферической частицы, м³; t – время, с; $S = 4\pi r^2$ – площадь поверхности сферической частицы, м²; $j = \beta(C - C')$ – удельный массовый поток вещества газовой фазы на поверхность частицы площадью *S*, кг/(м² c); β – коэффициент массоотдачи (массовый коэффициент диффузии), м/с; r – радиус сферической частицы, м; *C* – концентрация газа в потоке, кг/м³; *C*' – концентрация газа вблизи поверхности частицы, кг/м³; $\rho_{\rm C}$ – плотность углерода, кг/м³.

Так как объем частицы зависит от радиуса, то, следовательно,

$$\frac{dV}{dt} = \frac{dV}{dr}\frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt} = S\frac{dr}{dt}.$$
 (18)

Сравнивая (17) и (18), будем иметь:

$$\frac{dr}{dt} = \frac{j}{\rho_{\rm C}}.$$
(19)

Полагая, что образование твердого вещества на поверхности частицы является реакцией первого порядка, находим [6]

$$j = K_S C', \tag{20}$$

где K_S , м/с — кинетический коэффициент поверхностной реакции, описывающий реакцию осаждения углерода из метана, находящегося вблизи поверхности частицы и определяемый по формуле Аррениуса

$$K_{S} = 4.5 \times 10^{13} \exp\left(-\frac{381000}{8.314T}\right)$$

Объединяя формулы для *j*, находим:

$$\beta(C-C') = K_S C'. \tag{21}$$

НЕФТЕХИМИЯ том 60 № 6 2020

Выражая С' из (21) и подставляя в (20), получаем:

$$j = K_s^* C, \tag{22}$$

где $K_{S}^{*} = K_{S}\beta/(K_{S} + \beta) C(t)$ – находится по формуле (4).

Подставляя (22) в (19) с учетом (4), находим:

$$\frac{dr}{dt} = \frac{K_S^*}{\rho_C} \exp\left[-k \exp\left(-\frac{E}{RT}\right)t\right] \cdot \frac{\partial^2 \Omega}{\partial u^2}$$
(23)

Интегрируя уравнение (23) получаем:

$$r(t) = \frac{K_{S}^{*}}{\rho_{C}K\exp\left(-\frac{E}{RT}\right)}\exp\left[-k\exp\left(-\frac{E}{RT}\right)t\right] + C_{1}, (24)$$

где C_1 — константа интегрирования, определяемая из начального условия r(0) = 0. Формула для нее будет

$$C_1 = \frac{k_s^*}{\rho_{\rm C}k \exp\left(-\frac{E}{RT}\right)}.$$
(25)

Соотношение (24) с учетом (25) принимает вид:

$$r(t,T) = \frac{K_{S}^{*}}{\rho_{C} \exp\left(-\frac{E}{RT}\right)} \times \exp\left[1 - \exp\left(-k \exp\left(-\frac{E}{RT}\right)t\right)\right].$$
(26)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исходные данные для решения задачи были следующие:

$$k = 4.5 \times 10^{13}$$
 l/c; $E = 381000$ Дж/моль;
 $R = 8.314$ Дж/(моль K). (27)

Результаты расчетов по формуле (4) при различных значениях температуры приведены на рис. 1. Из их анализа следует, что при T > 1500 К время реакции разложения метана составляет менее 0.1 с.

Результаты расчетов по формуле (16) при исходных данных (27) для различных температур и скоростей течения среды приведены на рис. 2–4. Из их анализа следует, что при достаточно высокой для пиролиза метана температуре T = 1400 K за время t = 10 с более 90% метана разлагается (рис. 2).

При уменьшении температуры процесса пиролиза до 1200 К процесс разложения метана происходит гораздо медленнее, причем количество разлагаемого метана составляет менее 50% (рис. 3).

НЕФТЕХИМИЯ том 60 № 6 2020

Рис. 1. Зависимость концентрации метана при различных температурах реакции от времени.

Однако, при уменьшении скорости течения газа с 2 до 0.1 м/с количество разлагаемого метана можно увеличить вплоть до 100% (рис. 4), но реакция будет протекать намного медленнее (10000 с), чем при T = 1400 K.

Результаты расчетов по формуле (26) при исходных данных (27), а также при $\beta = 0.2$ м/с и $\rho_{\rm C} = 1900$ кг/м³, приведены на рис. 5.

Из их анализа следует, что с увеличением температуры пиролиза радиус образовывающихся углеродных частиц уменьшается. Обнаружено замедление роста углеродных частиц с уменьшением температуры пиролиза. Максимально возмож-

Рис. 2. Зависимость концентрации метана по длине канала от времени при T = 1400 K, W = 2 м/с.

Рис. 3. Зависимость концентрации метана по длине канала от времени при T = 1200 K, W = 2 м/с.

Рис. 4. Зависимость концентрации метана по длине канала от времени при T = 1200 K, W = 0.1 м/с.

ный радиус углеродных частиц при любых температурах не превышает 0.5 мм. Отметим что в данном случае рассмотрен лишь диффузионный режим изменения размеров частиц, то есть, когда $K_S \ge \beta$ и скорость роста частиц в основном определяется величиной β .

ЗАКЛЮЧЕНИЕ

1. Разработаны математические модели процесса разложения метана при его пиролизе, включающие нестационарные уравнения диффузии с учетом и без учета его движения. Получены их точные аналитические решения и выполнен детальный анализ, из которого следует, что глубина разложения метана существенно зависит от температуры пиролиза и скорости течения метана.

2. На основе решений выполнены исследования скорости и интенсивности образования твердых углеродных частиц. В частности, показано, что частицы наименьших размеров получаются при более высоких температурах разложения и за более короткое время.

Рис. 5. Зависимость радиуса образующихся твердых углеродных частиц при различных температурах пиролиза от времени.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках соглашения № 05.607.21.0311 от 02.12.19, уникальный идентификатор соглашения RF-MEFI60719X0311.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Кудинов Игорь Васильевич, д.т.н., ORCID: 0000-0002-9422-0367

Пименов Андрей Александрович, д.т.н., ORCID: 0000-0001-8923-2550

Михеева Галина Вениаминовна, ORCID: 0000-0002-0642-634X

СПИСОК ЛИТЕРАТУРЫ

 Баранов Н.Н. Нетрадиционные источники и методы преобразования энергии. М.: Издательский дом МЭИ, 2012. 384 с.

- 2. Фортов В.Е., Попель О.С. Энергетика в современном мире. Долгопрудный: Издательский дом "Интеллект", 2011. 167 с.
- 3. Ячиков И.М., Миронова Г.А., Петин С.Н. // Приложение математики в экономических и технических и исследованиях. 2007. № 1. С. 170.
- 4. Serban M., Lewis M.A., Marshall C.L., Doctor R.D. // Energy&Fuels. 2003. V. 17. P. 705.
- Upham D.C., Agarwal V., Khechfe A., Snodgrass Z.R., Gordon M.J. Metiu H., McFarland E.W. // Science. 2017. V. 358. № 6365. P. 917.
- 6. *Харин А.А., Яновский Л.С.* // Вестник Самарского государственного аэрокосмического университета. Технические науки. 2002. № 1. С. 110.
- Франк-Каменецкий Д.А. Основы макрокинетики. Диффузия и теплопередача в химической кинетике. Долгопрудный: Издательский Дом "Интеллект", 2008. 408 с.
- Kudinov I.V., Kudinov V.A. // Mechanics of Solids. 2014. V. 49. № 5. P. 531. https://doi.org/10.3103/S0025654414050057
- Kudinov I.V., Kudinov V.A., Gavrilova T.E. // Internat. J. of Heat and Mass Transfer. 2019. V. 138. P. 326. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.011
- Kudinov I.V., Eremin A.V., Kudinov V.A., Dovgyallo A.I., Zhukov V.V. // Internat. J. of Solids and Structures. 2020. V. 200–201. P. 231. https://doi.org/10.1016/j.ijsolstr.2020.05.018.2020