УДК 542.973:546.97'56'33'131:542.954.1:547.211:541.124

ПРЯМОЕ КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ПРОПАНА: ВЛИЯНИЕ ИНГИБИТОРОВ

© 2022 г. Е. Г. Чепайкин^{1,*}, Г. Н. Менчикова¹, С. И. Помогайло¹

¹Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН, г. Черноголовка Московской области, 142432 Россия *E-mail: echep@ism.ac.ru

> Поступила в редакцию 7 сентября 2021 г. После доработки 7 апреля 2022 г. Принята к публикации 6 мая 2022 г.

Изучено влияние ионола (2,6-ди-*трет*-бутил-4-метилфенола) и CCl_4 в качестве ингибиторов радикальных реакций при окислении пропана кислородом в присутствии совосстановителей. Эти соединения ингибируют действие каталитической системы Pd/C–FeSO₄–H₂. Гомогенные каталитические системы на основе соединений Pd или Rh, сокатализаторов и совосстановителей действуют по молекулярным механизмам. Исключением является система $Pd(\alpha,\alpha-bipy)Cl_2$ –FeSO₄–CO, где происходит ингибирование как ионолом, так и CCl_4 .

Ключевые слова: катализ, пропан, окисление, ингибирование, монооксид углерода, водород, палладий, родий

DOI: 10.31857/S0028242122040098, EDN: IIDIKE

Одной из актуальных проблем катализа остается получение ключевых продуктов нефтехимического синтеза – спиртов, альдегидов, кетонов, кислот – прямым окислением алканов молекулярным кислородом [1]. Подходящее сырье для этого – алканы природного и попутного нефтяного газов. Кислород, являющийся в мягких условиях довольно инертным, необходимо переводить в двухэлектронный окислитель – пероксид водорода или его эквиваленты путем введения совосстановителей [2]. В качестве совосстановителей привлекательны водород и монооксид углерода. Однако эти совосстановители также необходимо активировать. В протонных средах на металлах платиновой группы и их комплексах можно активировать как алканы, так и водород и монооксид углерода [2]. Оба эти совосстановителя пригодны для гомогенных катализаторов, но для гетерогенных катализаторов, таких как Pd/C, монооксид углерода является ядом. Этот факт подтвержден нами при окислении пропана на каталитической системе Pd/C-FeSO₄ в среде AcOH-H₂O [3].

Ранее сообщалось также об использовании водорода в качестве совосстановителя при окислении циклогексана до циклогексанола и циклогексанона в присутствии Pd/Al₂O₃ и сокатализаторов – соединений железа или ванадия [4].

Кроме того, исследовано окисление метана в присутствии Pd/C и соединений меди и ванадия под действием H_2 и O_2 в смеси трифторуксусной кислоты (AcfOH) и трифторуксусного ангидрида [5]. Роль Pd/C заключалась в образовании H_2O_2 из смеси H_2 и O_2 (реакция (1)).

$$H_2 + O_2 \xrightarrow{Pd/C} H_2O_2, \qquad (1)$$

$$Cu(OAc_f)_2 + H_2O_2 \rightarrow Cu(OAc_f)OOH + Ac_fOH,$$
 (2)

$$Cu(OAc_f)OOH + CH_4 \rightarrow Cu(OAc_f)OH + CH_3OH, \quad (3)$$

$$CH_3OH + Ac_fOH \rightarrow Ac_fOCH_3 + H_2O.$$
 (4)

Найдено, что на скорость окисления метана не влияют добавление ионола – ингибитора цепных

свободнорадикальных процессов, и CCl₄ – ловушки алкильных радикалов. По реакции (2) образуется активный окислитель – гидропероксид меди(II). Метан активируется на одном из атомов кислорода гидропероксидной группы, и этот атом кислорода внедряется по связи C–H с образованием метанола (реакция (3)). По реакции (4) образуется продукт окисления – метилтрифторацетат. Следовательно, в системе Pd/C и соединений меди в среде Ac_fOH окисление метана идет по молекулярному механизму.

В каталитической системе $Pd/C-NH_4VO_3$ ионол не влияет на скорость окисления метана, но CCl_4 при концентрации 0.94 М снижает скорость окисления метана в 10 раз. В данном случае, по-видимому, реакция идет с промежуточным образованием метильного радикала. Отметим, что водород в качестве совосстановителя использовался также в каталитических системах Pd/C–FeSO₄ [6] и Pd–Au/CNT (углеродные нанотрубки) для окисления метана в водной среде [7].

Мы исследовали ранее окисление пропана в среде водной уксусной кислоты (AcOH) и установили влияние природы катализатора (Pd/C, Pd(α,α -bipy)Cl₂, RhCl₃), сокатализатора (FeSO₄, CuSO₄) и совосстановителя (H₂, CO) на ход процесса [3]. Варьирование состава каталитических систем в определенной степени позволяет регулировать селективность процесса. В частности, выход карбонильных соединений – ацетона и пропаналя достигает 90% в присутствии системы Pd/C–FeSO₄–H₂, действующей по механизму Фентона. В то же время в присутствии системы RhCl₃–CuSO₄–CO выход пропилацетатов составлял 64.5%.

В данной работе изучено влияние ингибитора радикальных реакций – ионола и ловушки алкильных радикалов – CCl₄ на процесс окисления пропана с целью выявления механизма процесса (радикальный или молекулярный) в зависимости от природы катализатора, сокатализатора и совосстановителя.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и материалы

Катализатор Pd/C (с содержанием 0.3 мас. % Pd) приготовлен пропиткой активированного угля

НЕФТЕХИМИЯ том 62 № 4 2022

марки АГ-3М (фракция 0.10–0.16 мм) водным раствором K_2PdCl_4 , с последующим восстановлением натрийборгидридом. K_2PdCl_4 , синтезировали согласно методике [8]. Остальные реагенты использовали готовыми: RhCl₃·4H₂O (34.5 мас. % Rh, «ч.», ГК «Аурат»); FeSO₄·7H₂O («х.ч.», OOO «Сигма Тек»); NaCl («х.ч.», OOO «Русхим.ру»); CuSO₄·5H₂O («х.ч.», OOO «Экокем»); CH₃COOH (99.9%, «х.ч.», AO «Экос-1»), H₂SO₄ («х.ч.», AO «Экос-1»); α,α -дипиридил («ч.д.а.», Sigma-Aldrich); H₂O (бидистиллят). Ингибиторы: ионол (техн. марка А 99.8%, Башхим), четыреххлористый углерод («ч.д.а.», AO «Экос-1»).

Ацетон, метанол, этанол, пропанол, изопропанол и *н*-бутанол (все – марки «х.ч.», ООО «Сигма Тек») перегоняли. Пропаналь (99.5%, Sigma-Aldrich). Газы: СО (99.9%, ООО «БК Групп»); С₃H₈ (99.8%, ООО «БК Групп»); О₂ (99.99%, «ос.ч.», ТУ 2114-001-057988345-2007, ОАО «Московский газоперерабатывающий завод»); H₂ – электролитический; гелий – марки «А»).

Каталитические опыты

Опыты проводили в термостатируемом реакторе из нержавеющей стали объемом 34 см³, футерованном фторопластом. Контактный раствор (объем жидкой фазы составлял 2.5 мл) готовили в специальном стеклянном контейнере. Компоненты каталитической системы для более точной дозировки взвешивали на аналитических весах, а затем содержимое контейнера загружали в реактор. Реактор присоединяли к установке подачи газов и последовательно вводили газы до парциальных давлений: $C_{3}H_{8} = 0.68$ MIIa, $O_{2} = 0.4$ MIIa, CO = 0.88 MIIa. На линии подачи газов был установлен образцовый манометр на 10.0 МПа с ценой деления 0.04 МПа для точного дозирования газов. После подачи газов кран реактора перекрывали, реактор присоединяли к заранее нагретому до температуры опыта термостату и включали перемешивание. По окончании опыта реактор охлаждали проточной водой до комнатной температуры. Газовую и жидкую фазу анализировали методом Г.Х.

Анализ

Газовую фазу анализировали на хроматографе ЛХМ-2000 с программой «Z-Lab» при 55°C, ДТП.

ЧЕПАЙКИН и др.

Таблица 1. Влияние ингибиторов (ионола и CCl₄) на окисление пропана кислородом в системе Pd/C–FeSO₄–H₂. Катализатор – 0.3% Pd/C (20 мг), сокатализатор [FeSO₄] = 0.01 M, совосстановитель – H₂, в среде 2.5 мл CH₃COOH– H₂O (объемное соотношение компонентов 4 : 1), [H₂SO₄] = $1.5 \cdot 10^{-2}$ M, [H₂O] = 11.7 M. Начальное давление газов: C₃H₈ – 0.68 МПа, H₂ – 0.88 МПа, O₂ – 0.42 МПа, *T* = 60°C, $\tau = 1$ ч

	[Ингибитор], М	ΔP , ΜΠα		[Продукты реакции], М·10 ³				
№ опыта			О ₂ , об.%	[u30-ProOAc]	[<i>H</i> -ProOAc]	ацетон	пропаналь	
				Σ		Σ		
1	0	9.0	10.6	3.0	2.9	28.0	15.3	
				5.	.9	43.3		
2	[Ионол], 0.01	2.0	18.6	1.3	1.5	6.8	10.0	
				2.	.8	16.8		
3	[Ионол], 0.02	3.5	17.9	1.3	1.6	4.2	7.0	
				2.9		11.2		
4	[CCl ₄], 0.05	5.5	12.2	4.4	3.2	21.8	11.6	
				7.	.6	33.4		
5	[CCl ₄], 0.1	4.3	15.0	4.9	2.4	12.5	9.1	
				7.	.3	21.6		

 ΔP – падение давления газовой смеси в реакторе за время проведения опыта; O_2 – остаточное содержание кислорода.

Колонки: молекулярные сита 5 Å, зернение 0.2– 0.3 мм, l = 3 м, d = 3 мм, He = 30 мл/мин (O₂, N₂, CH₄, CO); порапак Q, зернение 0.115–0.200 мм, l = 2 м, d = 2.5 мм, He = 20 мл/мин (CO₂, пропан).

Жидкую фазу анализировали на газовом хроматографе «Кристаллюкс 4000М» в режиме ПИД с использованием программы NetChromV2.1 for Windows. Использовали капиллярную колонку CP-Sil-5CB Agilent, l = 25 м, d = 0.15 мм, с программированием температуры от 40 до 150°С со скоростью 5 град/мин, He = 20 мл/мин, входное давление на колонку 0.13 МПа; деление потока 1 : 70, расход 0.287 мл/мин. Введению проб в испаритель хроматографа предшествовала подготовка пробы.

Пробоподготовка для ГХ-анализа

Катализат с введенным внутренним стандартом $(H-C_4H_9OAc)$ загружали в специальный реактор с хроматографической силиконовой мембраной, который термостатировали при 50°C в течение 10 мин. Затем нагретым до 60°C хроматографическим газовым шприцем GASTIGHT (Hamilton) отбирали парогазовую пробу. В испаритель хроматографа вводили 100–150 мкл пробы.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В проведенных опытах мы варьировали состав каталитической системы: катализатор, сокатализатор и совосстановитель. В качестве совосстановителей использовали водород и монооксид углерода. Ранее мы разработали ряд каталитических систем для окисления алканов, включающих СО в качестве совосстановителя [9]. Известно, что в присутствии воды некоторые катализаторы активны в реакции (5), приводящей к образованию пероксида водорода [10]:

$$\mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{O}_2 \to \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}_2. \tag{5}$$

Результаты опытов по окислению пропана в присутствии каталитических систем Pd/C- сокатализатор-совосстановитель представлены в табл. 1.

Как следует из результатов оп. 1–3 (табл. 1) ионол существенно снижает концентрацию продуктов реакции окисления пропана в присутствии каталитической системы Pd/C–FeSO₄–H₂. Таким же образом влияет и введение CCl_4 (табл. 1, оп. 1, 4, 5).

По мнению авторов [6] эта система действует по радикальному механизму Фентона (реакции (1), (6)–(8)).

$$H_2O_2 + Fe^{2+} \rightarrow OH^{\bullet} + OH^{-} + Fe^{3+}, \qquad (6)$$

$$CH_4 + OH^{\bullet} \rightarrow CH_3^{\bullet} + H_2O,$$
 (7)

$$CH_3^{\bullet} + O_2 \rightarrow продукты.$$
 (8)

Полученные нами данные по ингибированию окисления пропана ионолом и CCl₄ подтверждают вышеприведенную схему.

Отметим также, что при окислении пропана на каталитической системе Pd/C–FeSO₄–H₂ наблюдается высокая селективность по карбонильным соединениям – ацетону и пропаналю по сравнению с пропилацетатами. Это может быть косвенным указанием на реализацию механизма Фентона. Окисление пропана по механизму Фентона можно представить реакциями (9)–(13). По реакции (9) образуются пропильные радикалы:

$$CH_3-CH_2-CH_3+OH^{\bullet} \longrightarrow CH_3-CH^{\bullet}-CH_3 \qquad (9)$$

Изопропильный радикал более стабилен по сравнению с *н*-пропильным и маршрут с его участием должен быть более интенсивным. Далее пропильные радикалы взаимодействуют с кислородом и образуют пероксорадикалы, деструкция которых приводит к получению продуктов реакции – ацетона и пропаналя. При этом выделяются и ОН[•]-радикалы, что обуславливает продолжение цепи (реакции (10), (11)):

$$CH_{3}-CH^{\bullet}-CH_{3}+O_{2} \rightarrow CH_{3}-CH-CH_{3}$$

$$O$$

$$\parallel$$

$$\rightarrow CH_{3}-C-CH_{3}+OH^{\bullet}, \quad (10)$$

$$CH_{3}-CH_{2}-CH_{2}^{\bullet}+O_{2} \rightarrow CH_{3}-CH_{2}-CH_{2}O_{2}^{\bullet}$$
$$\rightarrow CH_{3}-CH_{2}-CHO + OH^{\bullet}.$$
(11)

Обрыв цепи происходит взаимодействием пропильных радикалов и ОН[•]-радикалов (реакции (12), (13)).

НЕФТЕХИМИЯ том 62 № 4 2022

$$CH_3 - CH^{\bullet} - CH_3 + OH^{\bullet} \rightarrow CH_3 - CH - CH_3, \quad (12)$$

$$CH_3 - CH_2 - CH_2^{\bullet} + OH^{\bullet} \rightarrow CH_3 - CH_2 - CH_2 - OH.$$
 (13)

При этом образуются пропиловые спирты, а затем наблюдаемые продукты реакции – пропилацетаты. Кроме того, указанием на реализацию механизма Фентона может быть высокая селективность образования карбонильных соединений – ацетона и пропаналя по сравнению с селективностью образования эфиров пропиловых спиртов.

Результаты опытов в присутствии каталитических систем на основе комплексов $Pd(\alpha, \alpha$ -bipy) Cl_2 сокатализатор-совосстановитель представлены в табл. 2. В системе $Pd(\alpha, \alpha$ -bipy) Cl_2 -FeSO₄-H₂ ионол практически не влияет на концентрацию образующихся пропилацетатов, но почти в 2 раза снижает концентрации ацетона и пропаналя (табл. 2, оп. 1–2). В то же время CCl_4 практически не влияет на концентрацию пропилацетатов, но в ≈1.5, раза увеличивает концентрации ацетона и пропаналя (табл. 2, оп. 1, 3).

Таким образом, с одной стороны ингибирование процесса окисления пропана ионолом свидетельствует об образовании ОН[•]-радикалов. С другой стороны, влияние CCl_4 , а именно, увеличение концентрации ацетона и пропаналя, говорит о неучастии алкильных радикалов в окислении пропана. Можно полагать, что окислителем в данном случае является H_2O_2 , образующийся при димеризации OH[•]-радикалов по реакции (14).

$$2OH^{\bullet} \to H_2O_2, \tag{14}$$

В этом случае активный окислитель действует по реакции (15).

$$CH_3 - CH_2 - CH_3 + 2H_2O_2 \rightarrow CH_3 - C - CH_3 + 3H_2O.$$
(15)

Влияние CCl₄ скорее всего связано с изменением свойств среды, возможно, с увеличением растворимости пропана.

ЧЕПАЙКИН и др.

[112004]	1.0 10 10	1 , [1120]	111, 111, 114, 1441	вное давя	ennie russi	. 03118 0		0.00 111	u , 0 <u>2</u> 0.	12 101114	
		Р					[Продукты реакции], М·10 ³				
Nº oiibita	Сокатализтор	овосстановител	[Ингибитор], М	<i>T</i> , °С (т, ч)	<i>ΔР</i> , МПа	О ₂ , об. %	[<i>u30</i> -PrOAc]	[<i>H</i> -PrOAc]	ацетон	пропаналь	
		O					Σ		Σ		
1	FeSO ₄	H ₂	0	70	4.8	13.8	6.5	4.0	15.8	15.6	
				(1.5)			10.	5 31.4		.4	
2	FeSO ₄	H_2	[Ионол], 0.02	70	2.8	20.4	4.0	3.9	5.8	9.8	
				(1.5)			7.9) 15.		.6	
3	FeSO ₄	H_2	[CCl ₄], 0.1	70	5.0	15.7	6.7	4.1	21.4	21.5	
				(1.5)			10.	8	42	.9	
4	CuSO ₄	СО	0	70	2.6	13.7	48.7	31.5	24.4	7.0	
				(1.0)			80.	.2 31		.4	
5	CuSO ₄	СО	[Ионол], 0.02	70	3.2	12.6	40.35	31.2	23.5	4.5	
				(1.0)			71.	6	28	.0	
6	CuSO ₄	CO	[CCl ₄], 0.1	70	0.8	14.6	25.9	15.9	6.9	2.6	
				(1.0)			41.	8	9.	5	
7	FeSO ₄	CO	0	80	2.0	15.6	11.6	5.4	47.9	25.3	
				(2.0)			17.	0	73	.2	
8	FeSO ₄	CO	[Ионол], 0.02	80	2.1	16	4.1	2.31	20.6	16.5	
0		~ ~	Frankland	(2.0)		100	6.4	+	37	.1	
9	FeSO ₄	co	$[CCI_4], 0.1$	80	1.6	19.8	12.0	7.3	15.4	9.2	

Таблица 2. Влияние ингибиторов (ионола и CCl₄) на окисление пропана кислородом в присутствии: катализатора $[Pd(\alpha,\alpha-bipy)Cl_2]$. Концентрация катализатора $5 \cdot 10^{-3}$ M, сокатализаторов – $[FeSO_4]$, или $[CuSO_4] = 5 \cdot 10^{-3}$ M, совосстановителя – H₂ (CO), в среде 2.5 мл смеси CH₃COOH–H₂O (объемное соотношение компонентов 4 : 1); [H₂SO₄] = $1.5 \cdot 10^{-2}$ M, [H₂O] = 11.7 M, Начальное давление газов: C₂H₂ – 0.68 МПа, H₂ (CO) – 0.88 МПа, O₂ – 0.42 МПа

 ΔP – падение давления газовой смеси в реакторе за время проведения опыта; О₂ – остаточное содержание кислорода.

В каталитической системе $Pd(\alpha, \alpha$ -bipy) Cl_2 – CuSO₄–CO влияние ионола не обнаружено, но введение CCl₄ снижает концентрацию продуктов (табл. 2, оп. 4–6). В этой системе OH[•]-радикалы не образуются, а, следовательно, должны отсутствовать и алкильные радикалы, и поэтому влияние CCl₄ не связано с его общепринятым ингибирующим действием.

Можно предположить, что первоначально происходит окислительное присоединение CCl₄ к низковалентному комплексу Pd, а затем образование неактивных стабильных ацильных комплексов – балластных соединений. Это выводит из каталитического процесса активные частицы (реакции (16)):

Другой вероятной возможностью влияния CCl₄ путем образования балластных комплексов может быть его дегалоидирование (реакция (17)) [11]:

$$R-H + CCl_4 \rightarrow R-Cl + CHCl_3.$$
(17)

Образующийся хлороформ реагирует с комплексами Pd(0) или Pd(II). При этом генерируется Pd-дихлорметильное производное [12, 13], которое может карбонилироваться [14] (реакции (18)):

НЕФТЕХИМИЯ том 62 № 4 2022

Таблица 3. Влияние ингибиторов (ионола или CCl₄) на окисление пропана кислородом в присутствии катализатора RhCl₃–сокатализатор–совосстановитель. Концентрация [RhCl₃] =: $2.5 \cdot 10^{-3}$ M, [NaCl] = $7.5 \cdot 10^{-3}$ M, сокатализаторов [FeSO₄], или [CuSO₄] = $1 \cdot 10^{-2}$ M, совосстановителя – H₂, или CO. Среда – 2.5 мл смеси CH₃COOH–H₂O (объемное соотношение компонентов 4 : 1), [H₂SO₄] = $1.5 \cdot 10^{-2}$ M, [H₂O] = 11.7 M. Начальное давление газов: C₃H₈ – 0.68 MПa, H₂ (CO) – 0.88 MПa, O₂ – 0.42 МПa

	Сокатализтор	Совосстановитель	[Ингибитор], М	<i>T</i> , °С (т, ч)	<i>ΔР</i> , МПа	О ₂ , об. %	[Продукты реакции], М·10 ³				
№ опыта							[<i>u30</i> -PrOAc]	[<i>H</i> -PrOAc]	ацетон	пропаналь	
							Σ			Σ	
1	FeSO ₄	H ₂	0	70	3.7	17.5	4.0	3.00	10.4	6.6	
				(1.6)			7.0		17.0		
2	FeSO ₄	H ₂	[Ионол], 0.02	70	3.8	17.4	2.93	3.23	7.7	8.9	
				(1.6)			3.1		16.6		
3	FeSO ₄	H_2	[CCl ₄], 0.1	70	9.3	11.7	4.4	3.60	14.2	7.0	
		-		(1.6)			8.0		21.2		
4	CuSO ₄	СО	0	70	2.5	14.4	25.3	23.30	19.0	7.6	
				(2.1)			48.6		26.6		
5	CuSO ₄	СО	[Ионол], 0.02	70	2.0	13.4	31.7	12.80	18.7	9.5	
			L 3.	(2.1)			42.5		26.2		
6	CuSO ₄	СО	$[CCl_4], 0.1$	70	0.8	14.6	25.9	15.90	6.9	2.6	
			E 13.				41.8			9.5	

 ΔP – падение давления газовой смеси в реакторе за время проведения опыта. О₂ – остаточное содержание кислорода.

Действие каталитической системы $Pd(\alpha,\alpha-bipy)Cl_2-FeSO_4-CO$ отличается от действия системы $Pd(\alpha,\alpha-bipy)Cl_2-CuSO_4-CO$. В случае $Pd(\alpha,\alpha-bipy)Cl_2-FeSO_4-H_2$ наблюдается ингибирование как ионолом, так и CCl_4 (табл. 2, оп. 7–9). В связи с этим можно считать, что в этой каталитической системе осуществляется радикальный механизм окисления пропана.

Результаты опытов по исследованию каталитических систем RhCl₃-сокатализатор-совосстановитель представлены в табл. 3.

В каталитической системе $RhCl_3$ -FeSO₄-H₂ ионол не влияет на концентрацию образующихся продуктов (табл. 3, оп. 1, 2), а введение CCl_4 заметно повышает концентрации ацетона и пропаналя (табл. 3, оп. 1, 3). Следует отметить, что система

НЕФТЕХИМИЯ том 62 № 4 2022

RhCl₃–FeSO₄–CO совершенно неактивна. В каталитической системе RhCl₃–CuSO₄–CO ионол практически не влияет на концентрацию продуктов (табл. 3, оп. 4, 5), а CCl₄ снижает концентрацию продуктов (табл. 3, оп. 4, 6). Последний факт можно объяснить так же, как и в случае каталитической системы Pd(α,α -bipy)Cl₂–CuSO₄–CO образованием балластных форм катализатора (см. выше).

ЗАКЛЮЧЕНИЕ

 Методом применения ингибиторов радикальных реакций установлено, что механизм окисления пропана (радикальный или молекулярный) зависит от природы катализатора, сокатализатора и совосстановителя.

2. Радикальный механизм установлен для каталитических систем Pd/C–FeSO₄–H₂ и Pd(α,α-bipy)Cl₂–FeSO₄–CO.

3. Механизм действия каталитических систем Pd(α,α-bipy)Cl₂-CuSO₄-CO, RhCl₃-FeSO₄-H₂ и RhCl₃-CuSO₄-CO – молекулярный.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Чепайкин Евгений Григорьевич, к.х.н., в.н.с., ORCID: 0000-0002-1631-021X

Менчикова Галина Николаевна, н.с., ORCID: 0000-0003-3128-0837

Помогайло Светлана Ибрагимовна, к.х.н., н.с. ORCID: 0000-0001-8200-0706

СПИСОК ЛИТЕРАТУРЫ

- Shilov A.E., Shul'pin G.B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. New York, Boston, Dordrecht, Moscow. Kluwer Academic Publishers, 2000. 536 p.
- Чепайкин Е.Г. Гомогенный катализ в окислительной функционализации алканов в протонных средах // Успехи химии 2011. Т. 80. № 4. С. 384–416. [*Chepaikin E.G.* Homogeneous catalysis in the oxidative functionalization of alkanes in protic media // Russ. Chem. Rev. 2011. V. 80. № 4. Р. 363–396. https://doi.org/10.1070/RC2011v080n04ABEH004131].
- Чепайкин Е.Г., Менчикова Г.Н., Помогайло С.И. Окисление пропана: влияние природы катализатора, сокатализатора и совосстановителя // Нефтехимия. 2021. Т. 61. № 4. С. 540–546. https://doi.org.10.31857/ S0028242121040092 [*Chepaikin E.G., Menchikova G.N., Pomogailo S.I.* Oxidation of propane: influence of the nature of catalyst, cocatalyst, and coreductant // Petrol. Chemistry. 2021. V. 61. № 7. Р. 781–786. https://doi. org/10.1134/S0965544121070094].
- Remias J.E., Sen A. Palladium-mediated aerobic oxidation of organic substrates: the role of metal versus hydrogen peroxide // J. Mol. Catal. A: Chem. 2002. V. 189. P. 33–38. http://doi.org.10.1016/S1381-1169(02)00195-4
- Park E.D., Hwang Y.-S., Lee C.W., Lee J.S. Copper- and vanadium-catalyzed methane oxidation into oxygenates with in situ generated H₂O₂ over Pd/C // Appl. Catal. A. General. 2003. V. 247. P. 269–281. https://doi. org/10.1016/S0926-860X(03)00125-X
- 6. *Kang J., Park E.D.* Aqueous-phase selective oxidation of methane with oxygen over iron salts and pd/c in the

presence of hydrogen // ChemCatChem. 2019. V. 11. № 7. P. 4247–4251. https://doi.org/10.1002/cctc.201900919

- He Y., Luan C., Fang Y., Feng X., Peng X., Yang G., Tsubaki N. Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles // Catal. Today. 2020. V. 339. P. 48–53. https://doi.org/10.1016/j.cattod.2019.02.043
- Синтез комплексных соединений металлов платиновой группы // Под ред. И.И. Черняева. М.: Наука, 1964. 339 с.
- Чепайкин Е.Г., Менчикова Г.Н., Помогайло С.И. Гомогенные каталитические системы для окислительной функционализации алканов: дизайн, окислители, механизмы // Изв. АН. Сер. хим. 2019. № 8. С. 1465–1477 [*Chepaikin E.G., Menchikova G.N., Pomogailo S.I.* Homogeneous catalytic systems for the oxidative functionalization of alkanes: design, oxidants, and mechanisms // Russ. Chem. Bull. Int. Ed. 2019. V. 68. № 8. Р. 1465–1477. https://doi.org/10.1007/s11172-019-2581-5].
- Bianchi D., Bortolo R., D'Aloisio R., Ricci M. A novel palladium catalyst for the synthesis of hydrogenperoxide from carbon monoxide, water and oxygen // J. Mol. Cat. A: Chem. 1999. V. 150. P. 87–94. https://doi. org/10.1016/S1381-1169(99)00218-6
- Зеликман В.М., Тарханова И.Г., Хомякова Е.В. Катализаторы на основе иммобилизованных комплексов меди с четвертичными аммониевыми основаниями для хлорирования алканов четыреххлористым углеродом // Кинетика и катализ. 2012. Т. 53. № 2. С. 232–240 [Zelikman V.M., Tarkhanova I.G., Khomyakova E.V. Catalysts based on the immobilized complexes of copper with quaternary ammonium bases for chlorination of alkanes with carbon tetrachloride // Kinet. and Catal. 2012. V. 53. P. 222–230. https://doi. org/10.1134/S0023158412020164].
- Калия О.Л., Темкин О.Н., Кирченкова Г.С., Смирнова Е.М., Кимельфельд Я.М., Флид Р.М. Окислительное присоединение хлороформа к тетракис(трифенилфосфин)палладию // Изв. АН СССР. Сер. хим. 1969. № 12 С. 2854–2855 [Kaliya O.L., Temkin O.N., Kirchenkova G.S., Smirnova E.M., Flid R.M. Oxidative coupling of chloroform with tetrakis (triphenylphosphine) palladium // Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.). 1969. V. 18. № 12. Р. 2690–2691].

546

- Кимельфельд Я.М., Смирнова Е.М., Першикова Н.И., Калия О.Л., Темкин О.Н., Флид Р.М. Колебательные спектры и структура Pd(PPh₃)₂CHCI₃ // Журн. структурной химии. 1971. Т. 12. № 6. С. 1097–1098 [Kimel'fel'd Y.M., Smirnova E.M., Pershikova N.I., Kaliya O.L., Temkin O.N., Flid R.M. Vibrational spectra and structure of the Pd[p(C₆H₅)₃]₂CHCl₃ complex // J. Struct. Chem. 1972. V. 12. P. 1014–1015. https://doi. org/10.1007/BF00744179].
- Темкин О.Н., Калия О.Л., Шестаков Г.К., Брайловский С.М., Флид Р.М., Асеева А.П. Взаимодействие галоидорганических соединений с окисью углерода и олефинами в растворах тетракис(трифенилфосфин) палладия(0) // Кинетика и катализ. 1970. Т. 11. № 6. С. 1592–1593 [*Теткіп О.N., Kaliya O.L., Schestakov G.K.,* Brailovskii S.M., Flid R.M., Aseeva A.P. // Kinetika i Kataliz. 1970. V. 11. № 6. Р. 1592–1593].