УДК 544.3:662.75

СОВМЕСТНАЯ ПЕРЕРАБОТКА ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ И ЛУЗГИ ПОДСОЛНЕЧНИКА В СИНТЕТИЧЕСКИЕ УГЛЕВОДОРОДЫ

© 2022 г. А. Н. Салиев^{1,*}, В. Б. Ильин^{1,**}, А. А. Савостьянов¹, О. П. Папета¹, А. П. Савостьянов¹, Р. Е. Яковенко¹

¹ Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, Новочеркасск, 346400 Россия

*E-mail: saliev.aleksei@yandex.ru

**E-mail: ilvin07@gmail.com

> Поступила в редакцию 30 ноября 2021 г. После доработки 16 июля 2022 г. Принята к публикации 14 октября 2022 г.

Исследован процесс совместной переработки тяжелых нефтяных остатков и отходов растительной биомассы в синтетические углеводороды, включающий стадии газификации и синтеза углеводородов методом Фишера—Тропша. Проведены теоретические исследования процесса газификации с целью определения значений технологических параметров, обеспечивающих получение генераторного газа с отношением $\rm H_2/CO$, равным 2.0. Посредством экспериментальных исследований процесса газификации и синтеза углеводородов уточнены состав сырья и технологические условия, позволяющие получать синтетические углеводороды из тяжелых нефтяных остатков и отходов растительной биомассы. Синтезированные углеводороды преимущественно состоят из бензиновой и дизельной фракции с повышенным содержанием изопарафинов.

Ключевые слова: растительная биомасса, тяжелые нефтяные остатки, газификация, синтез-газ, синтетические жидкие углеводороды

DOI: 10.31857/S0028242122060181, EDN: NRJZPO

Экономика Российской Федерации характеризуется сырьевой направленностью с явным доминированием нефтегазового сектора, доля которого в ВВП страны за 2021 г. составило 17.4% [1]. За тот же год было добыто порядка 524 млн т нефти, из которых около 280 млн т было поставлено на переработку [2]. Учитывая, что средняя глубина переработки нефти составляет не более 84% [3], можно оценить, что количество оставшихся тяжелых нефтяных остатков (ТНО) составляет около 45 млн т.

К числу ТНО можно отнести мазут, гудрон и тяжелые каталитические газойли, переработка которых традиционными методами затруднена в связи с их высокой вязкостью, повышенным содержанием высокомолекулярных, в том числе гетероатомных соединений, вызывающих дезактивацию катализаторов из-за отложений кокса и металлов, и нега-

тивно влияющих на качество товарных продуктов [4]. Таким образом, совершенствование существующих и разработка новых способов квалифицированной переработки ТНО является приоритетной задачей для нефтеперерабатывающей промышленности, решение которой в конечном итоге позволит эффективно использовать потенциал нефтяного сырья.

Перспективной технологией переработки ТНО является газификация — перевод органической части углеродсодержащих веществ в синтез-газ (смесь СО и Н₂). Последний является ценным сырьем для химического, нефтехимического синтезов и используется, например, в получении метанола, синтетических углеводородов по методу Фишера—Тропша, а также в процессах карбонилирования [5–8]. Процесс газификации хорошо освоен в про-

мышленности и широко используется для получения синтез-газа из различных углеродсодержащих веществ [9–11].

В современной научной литературе, посвященной изучению процесса газификации, наблюдается тенденция к исследованию и разработке способов совместной газификации различных углеродсодержащих веществ, включающих: уголь, нефтяной кокс, твердые бытовые отходы, совместно с растительной биомассой [12-15]. Использование последней обусловлено рядом причин: широкое распространение, воспроизводимость, реакционная способность. Наиболее распространенной и доступной формой биомассы являются растениеводческие отходы сельского хозяйства (солома, лузга зерновых культур, кукурузные стебли, початки, подсолнечник и др.), которые ежегодно образуются в количестве около 230 млн т [16]. Основной способ их переработки – сжигание для получения тепловой энергии. Однако это приводит к загрязнению окружающей среды за счет выбросов в атмосферу оксидов углерода, азота и серы [17]. В этой связи привлекательным является проведение совместной газификации ТНО и растительной биомассы. Такой подход позволит, с одной стороны, увеличить глубину переработки нефти, с другой – расширить сырьевую базу нефтехимии за счет вовлечения в переработку нового вида сырья биомассы.

При совместной газификации ТНО и растительной биомассы необходимо учитывать, что указанные вещества находятся в разных агрегатных состояниях, что может вызывать сложности при их совместной переработке, например при транспортировке и подаче в газификатор. Поэтому выбор способа газификации и, как следствие, получение транспортабельного сырья на основе ТНО и растительной биомассы является важным в технологии их совместной переработки. Одно из решений указанной проблемы – проведение газификации водных суспензий и эмульсий на основе ТНО и растительной биомассы [18, 19]. Однако данный способ предполагает получение высокодисперсных, устойчивых во времени систем, что требует значительных энергетических затрат, а также использования стабилизаторов, выбор которых зависит от типа получаемых суспензий и природы используемого сырья. Поэтому, по мнению авторов, наиболее простым способом газификации ТНО и растительной биомассы является проведение процесса в стационарном слое топлива, т.е. слоевая газификация, что предполагает применение сыпучего сырья. В этой связи растительную биомассу удобно использовать в качестве впитывающего наполнителя для ТНО, что позволит получить транспортабельное, сыпучее сырье, подходящее для дозировки в газификатор, например с помощью шнекового оборудования.

Получаемый в результате газификации синтез-газ должен соответствовать ряду требований, например для синтеза углеводородов по методу Фишера-Тропша в присутствии кобальтсодержащих катализаторов важным условием является соотношение Н₂/СО, которое должно быть на уровне 2.0. Для получения синтез-газа с подобным соотношением указанных компонентов преимущественно применяют парокислородное или паровоздушное дутье. Выбор последнего экономически оправдан, так как в этом случае используются дешевые и доступные окислители. Состав продуктов газификации зависит от технологических параметров процесса: температуры, давления, состава и отношения расходов сырья и окислителей. В этой связи, перед проведением экспериментальных исследований процесса совместной газификации ТНО и растительной биомассы необходимо выполнить теоретические исследования методами химической термодинамики, что позволит определить влияние технологических параметров на процесс газификации и подобрать оптимальные режимы для получения синтез-газа с заданным соотношением Н₂/СО.

Цель работы – проведение теоретических и экспериментальных исследований процесса совместной слоевой газификации ТНО и растительной биомассы и определение возможности проведения синтеза углеводородов на полученном посредством газификации синтез-газе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения теоретических и экспериментальных исследований процесса совместной газификации ТНО и растительной биомассы в качестве сырья использовали гудрон, являющегося остатком вакуумной перегонки нефти, и лузгу подсолнечника. Определение состава органической массы ука-

Сырье	Технический анализ*, мас. %				Элементный анализ, мас. %				
	W ^r	A^r	V^r	C_f^r	\mathbf{C}^r	\mathbf{H}^{r}	S^r	N ^r	O_d^r
Гудрон	_	_	90.4	9.6	85.3	11.0	2.5	0.5	0.7
Лузга подсолнечника	3.0	9.8	67.0	20.2	52.1	7.3	0.1	0.8	39.7

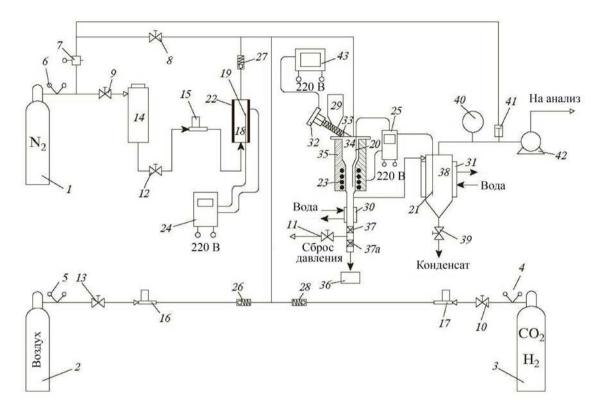
Таблица 1. Данные элементного и технического анализа сырья для совместной газификации

Примечание: * – по данным термогравиметрического анализа.

занных материалов проводили на CHNS-анализаторе Thermo Flash 2000 (Thermo Fisher Scientific, Великобритания). Результаты анализа лузги подсолнечника и гудрона, а также их технические характеристики представлены в табл. 1.

Теоретические исследования влияния технологических параметров на характеристики процесса совместной газификации гудрона и лузги подсолнечника проводили с использованием пакета прикладных программ «Технолог» (разработка ООО «ТЕХНОСОФТ-Компьютерный центр») [20]. Расчеты выполнялись для сухого беззольного сырья с массовым отношением гудрона и лузги: 0/1, 0.25/0.75, 0.5/0.5, 0.75/0.25, 1/0.

В качестве газифицирующих агентов использовали воздух усредненного состава, об. %: $N_2 - 76.9$; $O_2 - 20.6$; Ar - 0.9; $CO_2 - 0.03$; $H_2O - 1.4$ и водяной пар.


Расчет процесса газификации был выполнен на 100 кг сырья при атмосферном давлении в интервале температур 800-1000°C. Расход воздуха задавался через коэффициент избытка α (отношение реального количества воздуха к теоретически необходимому для полного окисления органической части сырья). При выборе значений коэффициента избытка воздуха руководствовались ранее выполненными расчетами процесса газификации различных углеродсодержащих веществ, которые позволили определить его оптимальное значение -0.3 [21, 22]. Количество пара задавали в виде массового отношения Н₂О/сырье в интервале значений 0.3-1.2. Расчеты проводили, используя модель равновесного изотермического реактора. Считали, что в реакторе устанавливается термодинамическое равновесие, равновесный состав рассчитывается исходя из критерия минимального значения изобарно-изотермического потенциала ΔG в системе, используя модель Пенга-Робинсона.

Для проведения экспериментальных исследований процесса газификации были приготовлены смеси на основе гудрона и лузги подсолнечника. Лузгу подсолнечника в виде пеллет измельчали с помощью конусной дробилки. После измельчения отбирали фракцию 2–3 мм, которую сушили для удаления свободной влаги при температуре 110°С в течение 2 ч. Гудрон предварительно разогревали на водяной бане до 80°С, после чего в него добавляли высушенную лузгу в заданном количестве и перемешивали до равномерной пропитки при постоянной температуре.

Термогравиметрические исследования смесей на основе гудрона и лузги подсолнечника проводили на приборе синхронного термического анализа STA 449 F5 (Netzsch, Германия) при следующих условиях: скорость нагрева 20°С/мин, среда инертная (гелий) и окислительная (21% кислорода по объему, остальное гелий). По результатам съемок определяли: влажность, зольность, количество летучих веществ и связанного углерода.

Экспериментально процесс совместной газификации гудрона и лузги подсолнечника изучали с использованием газификатора обращенного типа с прямоточной подачей углеродсодержащего сырья и газифицирующих агентов (рис. 1) [21, 23]. Из бункера 29 шнеком 33 в газификатор 34 дозировали гранулы смеси гудрона и лузги подсолнечника размером 2–3 мм. В качестве газифицирующих агентов применяли воздух и паровоздушную смесь, которые готовили с помощью расходомеров 15, 16.

Синтез углеводородов осуществляли в проточной установке [24] с изотермическим трубчатым реактором со стационарным слоем катализатора. Синтез проводили на модельном синтез-газе, по составу приближенном к генераторному газу, полученному в условиях газификации смеси гудрона и лузги подсолнечника, на кобальтовом цеолит-

Рис. 1. Схема установки газификации: 1–3 – газовые баллоны; 4–6 – редукторы; 7, 41 – регуляторы давления; 8–13, 39 – запорные вентили; 14 – бак для воды; 15–17 – расходомеры; 18 – испаритель; 19–21 – термопары; 22, 23 – нагревательные элементы; 24, 25 – регуляторы температуры; 26–28 – обратные клапаны; 29 – бункер загрузки сырья; 30, 31 – холодильники; 32 – редуктор; 33 – шнековое загрузочное устройство; 34 – газогенератор; 35 – изоляция; 36 – бункер золы; 37, 37a – краны; 38 – сепаратор-холодильник; 40 – манометр; 42 – газовый счетчик; 43 – блок управления.

содержащем катализаторе, совмещающем функции синтеза и гидрооблагораживания (крекинг, изомеризация) углеводородов.

Катализатор готовили методом смешения покатализатора синтеза углеводородов $Co-Al_2O_3/SiO_2$ (Co – 21 mac. %, Al_2O_3 – 1 mac. %, остальное SiO₂), цеолита ZSM-5 и бёмита в соотношении 1:0.85:1 [25]. Катализатор предварительно восстанавливали водородом при температуре 400°С, давлении 0.1 МПа, объемной скорости газа $(OC\Gamma)$ 3000 ч⁻¹ в течение 1 часа и активировали синтез-газом при давлении 2.0-3.0 МПа и ОСГ 1000-1500 ч⁻¹ путем ступенчатого подъема температуры от 150°C до заданной. Синтез проводили при температуре 250°C, давлении 2.0-3.0 МПа, ОСГ 1000-1500 ч $^{-1}$, время непрерывной работы катализатора 70 ч.

Состав продуктов газификации, синтеза углеводородов, а также групповой и индивидуальный

состав жидких углеводородов C_{5+} определяли хроматографически [24, 25].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Теоретические исследования процесса газификации

Согласно проведенным теоретическим исследованиям газификации смеси гудрона и лузги подсолнечника основными компонентами генераторного газа являлись N_2 , CO, CO_2 , H_2 и H_2O . Содержание соединений серы и азота не превышало 0.5 об. %.

В условиях воздушной газификации (табл. 2) генераторный газ более чем на 40% забалластирован азотом, суммарное содержание СО и H_2 находится на уровне 50%, а доля остальных продуктов не превышает 7%. При повышении температуры от 800 до 1000°C содержание H_2 и СО в генераторном газе

НЕФТЕХИМИЯ том 62 № 6 2022

Отношение	T, °C		Соде	ержание, с	H ₂ /CO	Степень			
гудрон/лузга	1, C	H ₂	СО	CO_2	CH ₄	N ₂	H ₂ /CO	газификации, %	
	800	24.8	25.8	1.0	0.3	48.1	0.96	88.8	
1/0	900	25.1	27.3	0.2	0.1	47.3	0.92	92.9	
	1000	25.3	27.7	0.1	0.1	46.8	0.91	93.8	
	800	24.6	27.5	1.2	0.3	46.4	0.89	94.6	
0.75/0.25	900	24.9	29.2	0.3	0.1	45.5	0.85	99.1	
	1000	25.1	29.5	0.1	0.0	45.3	0.85	100.0	
	800	24.3	29.0	1.7	0.2	44.8	0.84	99.5	
0.5/0.5	900	24.5	29.4	1.4	0.0	44.7	0.83	100.0	
	1000	24.4	29.6	1.2	0.0	44.8	0.82	100.0	
	800	23.9	28.6	3.6	0.1	43.8	0.83	100.0	
0.25/0.75	900	23.7	29.3	3.1	0.0	43.9	0.81	100.0	
	1000	23.4	29.7	2.8	0.0	44.1	0.79	100.0	
	800	23.0	27.9	6.6	0.0	42.5	0.82	100.0	
0/1	900	22.5	28.9	5.9	0.0	42.7	0.78	100.0	
	1000	22.0	29.7	5.3	0.0	43.0	0.74	100.0	

Таблица 2. Равновесный состав сухого генераторного газа воздушной газификации в зависимости от состава сырья и температуры при $\alpha = 0.3$

растет на 0.6–2.5% в зависимости от состава сырья, однако их соотношение при этом уменьшается на 5–10 отн. %.

Одной из причин, вероятно, является сдвиг равновесия реакции Будуара ($\mathrm{CO}_2 + \mathrm{C} \leftrightarrow 2\mathrm{CO}$) в сторону образования CO с ростом температуры, что приводит к уменьшению содержания CO_2 в генераторном газе и увеличению степени газификации (отношение количества прореагировавшего углерода в процессе газификации к общему содержанию углерода в сырье).

Изменение соотношения гудрона и лузги подсолнечника в сторону увеличения доли последней приводит к уменьшению содержания водорода в составе сырья и, как следствие, наблюдается снижение концентрации водорода в генераторном газе на 1.8-3.3%; при этом концентрация СО возрастает на 1.6-2.1%, что приводит к снижению соотношения H_2 /СО. Положительным эффектом увеличения содержания лузги подсолнечника в сырье является достижение полной газификации для смесей, содержащих лузгу от 50 мас. % и более. Кроме этого, увеличение доли лузги повышает содержание кислорода в сырье, в результате чего количество воздуха, необходимого для проведения газификации, снижается в два раза. Следует отметить, что

с ростом отношения O_2/C_s в исходной смеси увеличивается равновесная концентрация CO_2 в генераторном газе. Для достижения полной степени газификации и получения повышенного соотношения H_2/CO процесс газификации следует проводить при температуре более 800° C, но менее 1000° C, например при 900° C

Паровоздушное дутье позволяет повысить содержание водорода в генераторном газе за счет реакций паровой газификации и водяного сдвига. Последняя реакция способствует не только получению водорода, но и снижению концентрации СО, благодаря чему растет соотношение Н₂/СО, что видно из табл. 3. В пользу этого предположения говорит тот факт, что увеличение парциального давления водяного пара в дутье смещает равновесие реакции водяного сдвига в сторону образования продуктов водорода и углекислого газа. Вследствие этого и наблюдается рост соотношения Н₂/СО, а также увеличение содержания СО2 в генераторном газе. Общее содержание СО и Н2 в генераторном газе в зависимости от массового соотношения вода/сырье меняется незначительно и в среднем находится на уровне 46-53%.

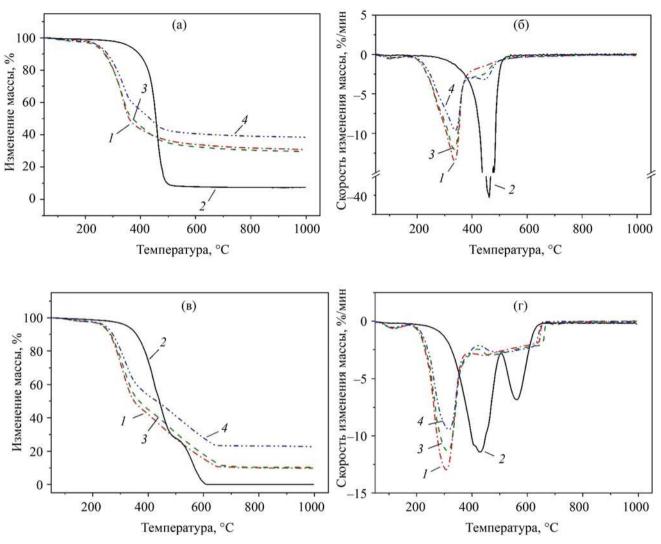
Равновесный состав генераторного газа зависит от соотношения гудрон/лузга в сырье – умень-

Отношение	Отношение		II /CO				
гудрон/лузга	вода/сырье	H_2	СО	CO ₂	CH ₄	N ₂	H ₂ /CO
	0.3	27.7	25.8	2.1	0.0	44.4	1.1
1/0	0.6	29.3	23.0	4.3	0.0	43.4	1.3
	1.2	31.7	19.0	7.5	0.0	41.8	1.7
	0.3	27.5	25.5	3.2	0.0	43.8	1.1
0.75/0.25	0.6	29.3	22.4	5.6	0.0	42.7	1.3
	1.2	31.7	18.2	8.9	0.0	41.2	1.7
	0.3	27.1	24.9	4.8	0.0	43.2	1.1
0.5/0.5	0.6	29.0	21.6	7.3	0.0	42.1	1.3
	1.2	31.6	17.2	10.7	0.0	40.5	1.8
	0.3	26.7	24.2	6.9	0.0	42.2	1.1
0.25/0.75	0.6	28.8	20.7	9.6	0.0	40.9	1.4
	1.2	31.5	16.1	13.0	0.0	39.4	2.0
	0.3	26.0	23.2	10.1	0.0	40.7	1.1
0/1	0.6	28.2	19.4	12.9	0.0	39.5	1.5
	1.2	31.1	14.7	16.3	0.0	37.9	2.1

Таблица 3. Равновесный состав сухого генераторного газа паровоздушной газификации в зависимости от состава сырья и расхода воды при температуре 900° С и $\alpha = 0.3$

шение доли гудрона, с одной стороны, приводит к снижению суммарного содержания CO и H_2 на 4–5%, но при этом повышается соотношение H_2/CO , что особенно заметно при массовом отношении вода/сырье 0.6–1.2.

Таким образом, в результате проведенных термодинамических расчетов установлено, что при воздушной газификации смесей гудрона и лузги подсолнечника в состоянии равновесия отношение H_2 /СО в генераторном газе не превышает 0.8–0.9. Получение синтез-газа с соотношением H_2 /СО на уровне 2.0 возможно в условиях паровоздушной газификации смесей гудрона и лузги подсолнечника с массовым отношением не более 0.25/0.75 при коэффициенте избытка воздуха 0.3, температурах до 900°С и массовом отношении H_2 О/сырье 0.6–1.2.


Экспериментальное исследования процесса газификации и синтез углеводородов

Для проведения экспериментальных исследований были приготовлены смеси гудрона и лузги подсолнечника с массовым соотношением 0.1/0.9 и 0.2/0.8. При содержании гудрона 10 мас. % получается сыпучая смесь, которую удобно транспортировать и дозировать шнеком в газификатор. Увеличение концентрации гудрона до 20 мас. % приводит

к потере сыпучести, что выражается в склонности полученного материала к слеживаемости. В целях сохранения сыпучести полученные гранулы были обработаны методом опудривания модифицированным бентонитом Тарасовского месторождения в количестве 25 мас. % с сохранением массового отношения гудрона и лузги подсолнечника 0.2/0.8.

Для дальнейших исследований были выбраны смеси с соотношением гудрона и лузги подсолнечника 0.1/0.9 без добавки бентонита и 0.2/0.8 с добавкой бентонита. Полученные смеси были исследованы методом термогравиметрии в инертной и окислительной средах с целью определения содержания влаги, летучих веществ, зольности, а также температурных режимов, при которых протекают процессы термической деструкции и окисления органической части образцов. В качестве референсов использовали термограммы лузги подсолнечника и гудрона, снятых в идентичных условиях.

Согласно полученным данным (рис. 2), потерю массы смесей с соотношением гудрона/лузга 0.1/0.9 и 0.2/0.8 с добавкой бентонита можно разделить на несколько стадий. Первая – процесс удаления физически абсорбированной влаги в интервале температур 70–155°С характеризуется уменьшением массы до 3%. Последующие стадии – процессы

Рис. 2. Термогравиметрические кривые лузги подсолнечника (1), гудрона (2) и их смесей с соотношение гудрон/лузга 0.1/0.9 (3) и 0.2/0.8 с добавкой бентонита (4): а, б – интегральная и дифференциальная кривые в инертной атмосфере; в, г – интегральная и дифференциальная кривая в окислительной среде.

термической деструкции и окисления органической части, протекающие в температурном диапазоне 200–680°С. В инертной среде термическая деструкция происходит в интервале температур 200–500°С и имеет два максимума при температурах 336–344 и 440–448°С, что связанно с разложением лузги подсолнечника и гудрона. Общая потеря массы достигает около 58–68%. Остаточная масса, представляющая собой связанный углерод и минеральную часть, для образца с соотношением гудрон/лузга 0.1/0.9 составляет около 30%, а для образца с отношением гудрон/лузга 0.2/0.8 с добавкой бентонита находится на уровне 42%.

В окислительной среде процессы термической деструкции немного смещаются в низкотемпературную область и протекают в диапазоне температур 200–400°С. Максимумы приходятся на температуры 312–335 и 450°С. Общая потеря массы составляет 45–55%. Заключительной стадией является окисление углеродного остатка, образовавшегося после термической деструкции органической части в диапазоне температур от 440 до 680°С и с потерей 28–33% массы. Остаточная масса составляет около 10% для образца с соотношением гудрон/лузга 0.1/0.9 и 24% для образца с соотношением гудрон/лузга 0.2/0.8 и добавкой бентонита.

	,								
Сырье	Torra poor division in	T 0C	Состав	сухого г	H ₂ /CO	В _{г.з.} , м ³ /кг			
	Тип газификации	T, °C	СО	H ₂	CH ₄	CO ₂	N ₂	H ₂ /CO	$\mathbf{D}_{\Gamma,3.}, \mathbf{M}^{\circ}/\mathbf{K}\Gamma$
Гудрон/лузга 0.1/0.9	D	900	11.9	12.2	1.4	17.6	56.9	1.0	1.8
	Воздушная		29.8*	22.4*	0.0*	4.0*	43.8*	0.7*	_
	Паровоздушная	850	19.9	18.7	5.2	19.4	36.8	0.9	2.1
			16.6*	30.3*	0.0*	13.8*	39.3*	1.8*	_
	D	900	10.9	11.1	3.2	23.3	51.5	1.0	1.7
Гудрон/ лузга 0.2/0.8 с бентонитом	Воздушная		30.0*	22.8*	0.0*	2.9*	44.3*	0.8*	_
	П	850	12.1	23.8	5.4	23.7	35.0	1.9	1.9
	Паровоздушная		17.2*	30.4*	0.0*	12.5*	39.9*	1.8*	_

Таблица 4. Экспериментальные и расчетные (*) данные воздушной и паровоздушной газификации смесей гудрона и лузги подсолнечника ($P = 0.1 \text{ M}\Pi a$)

Примечание: *– расчетное значение, $B_{r.s.}$ – выход генераторного газа с кг сырья.

Согласно термогравиметрическому анализу, процесс полного окисления органической части смесей гудрона и лузги подсолнечника заканчивается до 700°С, что указывает на высокую реакционную способность полученных смесей. Можно ожидать, что в условиях воздушной и паровоздушной газификации будет достигнута полная степень превращения органической части сырья.

Экспериментальные исследования газификации проводили при значениях коэффициента избытка воздуха 0.3 и массовом отношении вода/сырье 0.9. Результаты экспериментальных исследований, а также расчетные данные равновесного состава генераторного газа представлены в табл. 4.

В условиях воздушной газификации суммарное содержание Н2 и СО в составе сухого генераторного газа находилось на уровне 22-24%, а их соотношение составило порядка единицы. Содержание СО2 изменялось от 17 до 23%, количество СН4 находилось в пределах 1-3% независимо от состава используемого сырья. При этом генераторный газ значительно разбавлен азотом (51-57%) и соотношение Н₂/СО не превышает 1.0. Паровоздушное дутье способствует повышению суммарного содержания СО и Н₂ до 35-38%, доля азота в данном случае уменьшается до 35-37%. Соотношение Н₂/СО в генераторном газе, зависит от состава использованного сырья: для смеси с соотношением гудрон/лузга 0.1/0.9 оно составляет 0.9, а для сырья с соотношением гудрон/лузга 0.2/0.8 с добавкой бентонита – около 1.9. Однако, согласно тео-

ретическим расчетам (табл. 4), соотношение Н₂/ СО близкое к двум может быть получено и при использовании смесей с соотношением гудрон/ лузга 0.1/0.9 в выбранных условиях газификации. Вероятно, данное различие составов образующегося генераторного газа может быть вызвано каталитическим действием бентонита, выражающимся в ускорении достижения равновесия, что и приводит к получению значений соотношения Н₂/СО, близким к расчетным. В целом, полученный генераторный газ в ходе экспериментальных исследований характеризуются заниженным содержанием СО и H_{2:} при этом концентрация CO₂ и CH₄ наоборот – значительно выше расчетной, что особенно характерно для опытов с воздушной газификацией, где, например, суммарное содержание СО и Н2 практически в два раза меньше расчетного. В случае с паровоздушной газификацией отличия полученного генераторного газа менее значительны и, например, суммарное содержание СО и Н2 отличается в 1.3 раз. Подобные отличия составов генераторного газа, полученного в ходе экспериментальных исследований, и равновесного газа связанны, вероятно, с особенностью протекания процесса газификации в стационарном слое топлива. Известно, что для слоевой газификации характерно распределение температур по высоте слоя и наличие нескольких зон, в которых протекают окислительные и восстановительные процессы. Термодинамические же расчеты характеризуют предельно возможное равновесное состояние системы и не учитывают

Таблица 5. Показатели процесса синтеза углеводородов на модельном синтез-газе в присутствии кобальтового
цеолитсодержащего катализатора в зависимости от давления и нагрузки по синтез-газу (при $T = 250$ °C)

P. MHa. OCE	ОСГ, ч ⁻¹	V 0/	X _{CO2} , %		Селектив	вность, %	C ====(1, -3 ===)	D 7/23	
P, MIIIa	P , МПа $\left \text{ ОСГ, } \mathbf{y}^{-1} \right X_{\text{CO}}$	X_{CO} , %	A_{CO_2} , A_{CO_2}	CH ₄	C ₂ –C ₄	C ₅₊	CO ₂	$G_{C_{5+}}$, $\kappa\Gamma/(M_{\kappa ar}^3 \cdot \Psi)$	$B_{C5+}, \Gamma/M^3$
2.0	1000	85.6	0.0	23.0	15.7	56.3	5.0	41.8	37.6
2.0	1000	91.7	3.1	18.1	13.9	68.0	_	49.3	48.7
3.0	1500	80.6	3.0	24.4	15.4	60.2	_	56.5	37.9

 $\textbf{Примечание:} \ X_{\text{CO}}, X_{\text{CO}_2} - \text{конверсия CO и CO}_2; \ G_{\text{C}_{5+}} - \text{производительность по углеводородам C}_{5+}; \ B_{\text{C}_{5+}} - \text{выход углеводородов C}_{5+}.$

градиенты температур и концентраций, а также кинетические характеристики процесса.

Таким образом, в результате экспериментальных исследований установлено, что в условиях паровоздушной газификации смеси с массовым содержанием гудрон/лузга 0.2/0.8 с добавкой бентонита возможно получение генераторного газа с соотношение $H_2/CO \approx 2$, что соответствует требованиям, предъявляемым к синтез-газу для синтеза углеводородов по методу Фишера—Тропша на кобальтовых катализаторах.

Синтез углеводородов на кобальтовом цеолитсодержащем катализаторе проводили на модельном газе состава, %: СО - 12.3; $H_2 -$ 23.6; $CO_2 -$ 17.2; $CH_4 -$ 3.8; $N_2 -$ 43.1, приближенном к генераторному газу, полученному в ходе паровоздушной газификации смеси с массовым содержанием гудрон/лузга 0.2/0.8 с добавкой бентонита.

Синтез углеводородов при давлении 2.0 МПа и ОСГ $1000 \, \,\mathrm{q}^{-1}$ характеризуется высокой степенью конверсии СО и селективностью по газообразным углеводородам — до 86 и 39%, соответственно (табл. 5).

Высокая селективность по метану может быть вызвана, с одной стороны реакцией гидрирования СО на центрах метанообразования, которая интенсивно протекает при повышенных температурах [26], с другой стороны может являться следствием различных скоростей диффузии СО и H_2 через поры цеолита, что приводит к увеличению концентрации водорода у поверхности активного компонента синтеза углеводородов [27, 28]. Увеличение селективности по газообразным углеводородам (C_2 – C_4), вероятно, вызвано гидрокрекингом

углеводородов с большей молекулярной массой на кислотных центрах цеолита. В итоге селективность и производительность по целевым продуктам синтеза (углеводородам C_{5+}) составляют 56% и 41.8 кг/(м³ кат·ч), соответственно.

С целью повышения селективности и производительности по углеводородам С₅₊ были выполнены испытания при более высоких значениях давления и ОСГ. Повышение давления до 3.0 МПа приводит к увеличению степени конверсии СО до 92%, селективности по углеводородам С₅₊ до 68% и росту производительности по C_{5+} до 49.3 кг/ $(M_{KRT}^3 \cdot Y)$ при выходе 48.7 г/ M^3 . Было обнаружено, что с ростом давления уменьшается количество СО2 на выходе из реактора, что вероятно связанно с участием СО₂ в синтезе углеводородов – степень конверсии СО2 составила около 3%. Повышение ОСГ до 1500 ч⁻¹ приводит к снижению степени конверсии СО до 81% и селективности по углеводородам C_{5+} до 60%, но за счет возросшей нагрузки по синтез-газу производительность по C_{5+} увеличилась до 56 кг/(м³ кат · ч).

Компонентный состав углеводородов C_{5+} представлен, в основном, бензиновой (C_5 – C_{10}) и дизельной (C_{11} – C_{18}) фракциями, а также длинноцепочечными углеводородами C_{19+} , содержание которых зависит от условий синтеза (табл. 6 и рис. 3).

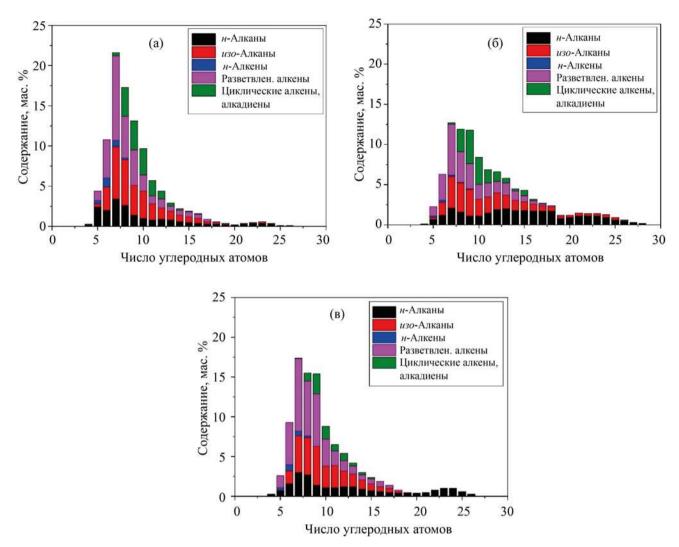
Так, при давлении 2.0 МПа образуются продукты, характеризующиеся высоким содержанием бензиновой и дизельной фракций — до 97%, что обусловлено реакциями гидрокрекинга высокомолекулярных углеводородов на кислотных центрах цеолита ZSM-5. Повышение давления до 3.0 МПа приводит к росту доли высокомолекулярных угле-

Таблица 6. Групповой состав углеводородов C_{5+} , полученных на модельном синтез-газе в присутствии кобальтового цеолитсодержащего катализатора при T = 250°C

P , МПа ОСГ, ч $^{-1}$	ОСГ, ч ⁻¹	Продукты	Групповой со	изо/н				
		C ₅ -C ₁₀	C ₁₁ -C ₁₈	C ₁₉₊				
		н-Алканы	13.0	4.6	2.0			
		изо-Алканы	22.6	7.1	0.6			
2.0	1000	Алкены	2.6	_	_	2.9		
2.0	1000	Разветвленные алкены	28.2	4.9	0.1			
		Циклические алкены, алкадиены	10.7	3.6	_			
		Сумма	77.1	20.2	2.7			
		н-Алканы	7.9	13.9	7.5			
		изо-Алканы	14.9	10.3	2.4			
	1000	н-Алкены	1.0	_	_	1.8		
	1000	Разветвленные алкены	19.3	7.3	0.1			
		Циклические алкены, алкадиены	7.1	8.3	_			
2.0		Сумма	50.2	39.8	10.0			
3.0		н-Алканы	10.8	6.6	5.0			
		изо-Алканы	18.6	9.8	0.1			
	1,500	н-Алкены	1.9	_	_	2.0		
	1500	Разветвленные алкены	32.8	6.5	_	2.8		
		Циклические алкены, алкадиены	5.2	2.7	_			
		Сумма	69.3	25.6	5.1			

Примечание: изо/н – отношение содержания углеводородов изостроения к содержанию углеводородов нормального строения.

водородов в составе продуктов – до 10%, что, вероятно, связанно с включением олефинов в растущую цепь углеводородов [29]. При увеличении ОСГ до 1500 ч⁻¹ доля высокомолекулярных углеводородов снижается до 5%. Реакции гидрокрекинга, наряду с реакциями изомеризации, способствуют образованию углеводородов изостроения, в следствии чего компонентный состав продуктов синтеза характеризуется повышенным содержанием *изо*-алканов и разветвлённых алкенов, суммарное количество которых составляет в среднем 70%.


В продуктах синтеза также были обнаружены ненасыщенные углеводороды, класс которых не удалось однозначно идентифицировать в виду того, что их масс-спектры совпадают с масс-спектрами алкадиенов и циклических алкенов. Вполне вероятно, что в продуктах синтеза может находиться какой-нибудь из указанных выше классов углеводородов или же их смесь. Согласно работам [30, 31] алкадиены и циклические алкены могут образовываться в условиях синтеза Фишера—Тропша

в присутствии цеолитсодержащих катализаторов за счет реакций дегидрирования соответствующих алифатических алкенов и циклизации образовавшихся акладиенов на кислотных центрах цеолита. Представленная цепочка превращений может приводить к образованию и ароматических углеводородов за счет дегидрирования циклических углеводородов [31]. Однако в продуктах синтеза данный класс углеводородов был обнаружен в следовых количествах, что может быть связанно с относительно низкими температурами синтеза, например, согласно [30] образованию ароматических углеводородов способствуют температуры синтеза от 280°C.

выводы

1. Выполнены термодинамические расчеты воздушной и паровоздушной газификации смеси гудрона и лузги подсолнечника. Установлено, что получение генераторного газа с соотношением H₂/CO равным 2.0 возможно для сырья с массо-

НЕФТЕХИМИЯ том 62 № 6 2022

Рис. 3. Молекулярно-массовое распределение углеводородов C_{5+} , полученных на модельном синтез-газе при T=250°C: a-P=2.0 МПа, $OC\Gamma=1000$ ч⁻¹; 6-P=3.0 МПа, $OC\Gamma=1000$ ч⁻¹; 6-P=3.0 МПа, $OC\Gamma=1500$ ч⁻¹.

вым содержанием гудрона до 25 мас. % при температуре 900°С и массовом отношении вода/сырье 1.2. Рассчитано, что за счет повышения химически связанного кислорода при увеличении доли лузги подсолнечника в составе сырья растёт степень газификации и снижается количество воздуха, необходимого для проведения газификации.

2. Предложен способ решения проблемы газификации тяжелых нефтяных остатков совместно с растительной биомассой в газификаторах со шнековой подачей. Показано, что лузгу подсолнечника можно использовать в качестве впитывающего наполнителя для гудрона. Установлено, что при массовом соотношении гудрон/лузга 0.1/0.9 об-

разуются легко транспортируемая сыпучая смесь. Повышение доли гудрона до 0.2 приводит к образованию смеси, имеющей склонность к слеживаемости, что решается за счет добавления 25% масс. бентонита.

- 3. Показано, что для получения синтез-газа с повышенным содержанием водорода в условиях совместной газификации гудрона и лузги подсолнечника целесообразно проводить паровоздушную газификацию.
- 4. Выполнены экспериментальные исследования синтеза углеводородов по методу Фишера—Тропша на модельном синтез-газе, по составу приближен-

ному к генераторному газу, полученном в ходе совместной газификации гудрона и лузги подсолнечника. В результате исследований была достигнута высокая степень превращения CO- до 92%, производительность катализатора по углеводородам C_{5+} составила 56.5 кг/($M_{\text{кат}}^3$ -ч). Полученные продукты преимущественно состоят из бензиновой (C_5 – C_{10}) и дизельной (C_{11} – C_{18}) фракций углеводородов, в которых присутствует значительное количество изо-соединений. Выход жидких углеводородов составил 76 г/1 кг сырья.

БЛАГОДАРНОСТИ

Результаты работы были получены с использованием оборудования ЦКП «Нанотехнологии» ЮРГПУ (НПИ), ЦКП «Аналитический центр проблем глубокой переработки нефти и нефтехимии» ИНХС РАН

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках реализации национального проекта «Наука и университеты» при поддержке Министерства науки и высшего образования РФ, проект № 075-03-2021-016/4 в лаборатории «Новые композиционные и функциональные материалы со специальными свойствами».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Салиев Алексей Николаевич, к.т.н., научный сотрудник, ORCID: https://orcid.org/0000-0002-5787-3393

Ильин Владимир Борисович, к.т.н., доцент, старший научный сотрудник, ORCID: https://orcid.org/0000-0001-8229-1697

Савостьянов Андрей Александрович, инженер-исследователь, ORCID: https://orcid.org/0000-0002-4687-7321

Папета Ольга Павловна, инженер-исследователь, ORCID: https://orcid.org/0000-0002-7334-1821

Савостьянов Александр Петрович, д.т.н., профессор, главный научный сотрудник, ORCID: https://orcid.org/0000-0002-5349-2443

Яковенко Роман Евгеньевич, к.т.н., старший научный сотрудник, ORCID: https://orcid.org/0000-0001-9137-7265

СПИСОК ЛИТЕРАТУРЫ

- 1. Официальный сайт Федеральной службы государственной статистики [Электронный ресурс]. URL: https://rosstat.gov.ru/folder/313/document/174229 (дата обращения 21.12.2022).
- Деловой журнал Neftegaz.RU [Электронный ресурс]. URL: https://neftegaz.ru/news/finance/719930-rossiya-v-2021-g-uvelichila-dobychu-nefti-na-2-2-gaza-na-10/ (дата обращения 21.12.2022).
- 3. *Чеботова В.И.*, *Уланов В.В.* Глубина переработки нефти в России // Деловой журнал Neftegaz.RU. 2021. № 1(109). С. 14–17.
- 4. Колытов М.А., Головко А.К., Кирик Н.П., Аншиц А.Г. Термические превращения высокомолекулярных компонентов тяжелых нефтяных остатков // Нефтехимия. 2013. Т. 53. № 1. С. 16–21. https://doi.org/10.7868/S0028242113010085 [Kopytov M.A., Golovko A.K., Kirik N.P., Anshits A.G. Thermal transformations of high-molecular-mass-components of heavy petroleum residues // Petrol. Chemistry. 2013. V. 53. № 1. P. 14–19. https://doi.org/10.1134/S0965544113010076].
- 5. Weng Q., Toan S., Ai R., Sun Z., Sun Z. Ammonia production from biomass via a chemical looping—based hybrid system // J. of Cleaner Production. 2021. V. 289. №. 125749. https://doi.org/10.1016/j.jclepro.2020.125749
- 6. Asif M., Haq I., Dong P., Xi X. Thermal analysis of methanol production from low grade coal of Thar coalfield: an alternate route to utilize indigenous coal efficiently // Intern. J. of Global Warming. 2020. V. 21. № 3. P. 260–273. https://doi.org/10.1504/IJGW.2020.108674
- 7. Мордкович В.З., Синева Л.В., Кульчаковская Е.В., Асалиева Е.Ю. Четыре поколения технологии получения синтетического жидкого топлива на основе синтеза Фишера—Тропша (Исторический обзор) // Катализ в промышленности. 2015. № 5. С. 23–45. https://doi.org/10.18412/1816-0387-2015-5-23-45
- 8. Zhang Y., Ding C., Wang J., Jia Y., Xue Y., Gao Z., Yu B., Gao B., Zhangc K., Liuc P. Intermediate product regulation over tandem catalysts for one-pass conversion of syngas to ethanol // Catalysis Science & Technology. 2019. V. 9. №. 7. P. 1581–1594. https://doi.org/10.1039/C8CY02593B
- 9. Xu J., Yang Y., Li Y.-W. Recent development in converting coal to clean fuels in China // Fuel. 2015. V. 152. P. 122–130. https://doi.org/10.1016/j.fuel.2014.11.059

- Marchese M., Marchese M., Chesta S., Santarelli M., Lanzini A. Techno-economic feasibility of a biomassto-X plant: Fischer-Tropsch wax synthesis from digestate gasification // Energy. 2021. V. 228. I. 120581. https:// doi.org/10.1016/j.energy.2021.120581
- 11. *Pio D.T., Tarelho L.A.C.* Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives // Renewable and Sustainable Energy Reviews. 2021. V. 145. I. 111108. https://doi.org/10.1016/j.rser.2021.111108
- 12. Edreis E.M.A., Li X., Atya A.H.A., Sharshir S.W., Elsheikh A.H., Mahmoud N.M., Luo G., Yao H. Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H₂O cogasification // Intern. J. of Hydrogen Energy. 2020. V. 45. № 46. P. 24502–24517. https://doi.org/10.1016/j.ijhydene.2020.06.239
- Gajera Z.R., Verma K., Tekade S.P., Sawarkar A.N. Kinetics of co-gasification of rice husk biomass and high sulphur petroleum coke with oxygen as gasifying medium via TGA // Bioresource Technology Reports. 2020. V. 11. I. 100479. https://doi.org/10.1016/j. biteb.2020.100479
- 14. Jiang P., Meng Y., Lu Z., Xu L., Yang G., Luo X., Shi K., Wu T. Kinetic and thermodynamic investigations of CO₂ gasification of coal chars prepared via conventional and microwave pyrolysis // Intern. J. of Coal Science & Technology. 2020. V. 7. № 3. P. 422–432. https://doi.org/10.1007/s40789-020-00358-5
- 15. Diao R., Yuan X., Sun M., Zhu X. Thermogravimetric investigation on the effect of reaction temperature and blend ratio on co-gasification characteristics of pyrolytic oil distillation residue with biochar // Bioresource technology. 2020. V. 309. I. 123360. https://doi.org/10.1016/j.biortech.2020.123360
- 16. Голубев И.Г., Шванская И.А., Коноваленко Л.Ю., Лопатников М.В. Рециклинг отходов в АПК: справочник. М.: ФГБНУ «Росинформагротех», 2011. 296 с.
- 17. Ren X., Sun R., Meng X., Vorobiev N., Schiemann M., Levendis Y.A. Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass // Fuel. 2017. V. 188. P. 310–323. https://doi.org/10.1016/j.fuel.2016.10.017
- 18. *Горлов Е.Г., Шумовский А.В., Крылова А.Ю.* Получение синтез-газа газификацией смесей гудрона и биомассы и синтез из него метанола // Химия твердого топлива. 2019. № 6. С. 47–54. https://doi.org/10.1134/s0023117719060033
- Шумовский А.В., Горлов Е.Г. Особенности подготовки смесей биомассы и нефтяных остатков к газификации для получения синтез-газа // Химия твердого топлива. 2021. № 4. С. 59–65. https://doi.org/10.31857/ S0023117721040071

- 20. Ильин В.Б., Яковенко Р.Е., Белашов Д.М., Земляков Н.Д., Савостьянов А.П. Термодинамическое исследование конверсии попутных нефтяных газов в метан // Нефтехимия. 2019. Т. 59. № 6. С. 815—824. https://doi.org/10.1134/S0028242119070098 [Ilyin V.B., Yakovenko R.E., Belashov D.M., Zemlyakov N.D., Savost'yanov A.P. Thermodynamic study of associated petroleum gas reforming to methane // Petrol. Chemistry. 2019. V. 59. № 6. P. 641–649. https://doi. org/10.1134/S0965544119060100)
- 21. Ильин В.Б., Нарочный Г.Б., Зубенко А.Ф., Савостьянов А.А., Яковенко Р.Е. Получение моторных фракций углеводородов из биомассы лузги подсолнечника // Химия твердого топлива. 2021. № 1. С. 58–66. https://doi.org/10.31857/S0023117721010047
- 22. Салиев А.Н., Ильин В.Б., Савостьянов А.А., Яковенко Р.Е. Термодинамическое моделирование процесса паровоздушной газификации тяжелых нефтяных остатков // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. 2021. № 1. С. 56–62. https://doi.org/10.17213/0321-2653-2021-1-56-62.
- 23. Ильин В.Б., Нарочный Г.Б., Яковенко Р.Е., Зубенко А.Ф., Савостьянов А.А. Переработка углей и природных органических веществ в синтетические углеводороды. Часть 7. получение углеводородов моторных фракций из древесины сосновых пород // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. 2019. № 1. С. 88–93. https://doi.org/10.17213/0321-2653-2019-1-88-93.
- 24. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer-Tropsch synthesis combined with hydroprocessing // Catalysis Science & Technology. 2020. V. 10. № 22. P. 7613–7629. https://doi.org/10.1039/D0CY00975J
- 25. Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Салиев А.Н., Сулима С.И., Зубков И.Н., Некроенко С.В., Митченко С.А. Получение низкозастывающего дизельного топлива на композитном кобальтсодержащем катализаторе // Heфтехимия. 2017. Т. 57. № 6. С. 809−812. https://doi.org/10.7868/S0028242117060326 [Savost'yanov A.P., Narochnyi G.B., Yakovenko R.E., Saliev A.N., Sulima S.I., Zubkov I.N., Nekroenko S.V., Mitchenko S.A., Synthesis of lowpour-point diesel fuel in the presence of a composite cobalt-containing catalyst // Petrol. Chemistry. 2017. V. 57. № 12. P. 1186−1189. https://doi.org/10.1134/S0965544117060251].
- 26. Ma W., Jacobs G., Das T.K., Masuku C.M., Kang J., Pendyala R., Davis B.H., Klettlinger J.L.S., Yen C.H.

- Fischer-Tropsch synthesis: kinetics and water effect on methane formation over $25\%\text{Co/}\gamma\text{-Al}_2\text{O}_3$ catalyst // Industrial & Engineering Chemistry Research. 2014. V. 53. No 6. P. 2157–2166. https://doi.org/10.1021/ie402094b
- 27. Sartipi S., Makkee M., Kapteijn F., Gascon J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review // Catalysis Science and Technology. 2014. V. 4. № 4. P. 893–907. https://doi.org/10.1039/C3CY01021J
- 28. *Tsubaki N., Yoneyama Y., Michiki K., Fujimoto K.* Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer–Tropsch synthesis // Catalysis Communications. 2003. V. 4. № 3. P. 108–111. https://doi.org/10.1016/S1566-7367(03)00003-7
- Dinse A., Aigner M., Ulbrich M., Johnson G.R., Bell A.T. Effects of Mn promotion on the activity and selectivity of Co/SiO₂ for Fischer–Tropsch Synthesis // J. of Catalysis. 2012. V. 288. P. 104–114. https://doi.org/ 10.1016/j. jcat.2012.01.008
- 30. Weber J.L., Martínez del Monte D., Beerthuis R., Dufour J., Martos C., Jong K.P., Jongh P.E. Conversion of synthesis gas to aromatics at medium temperature with a fischer tropsch and ZSM-5 dual catalyst bed // Catalysis Today. 2021. V. 369. P. 175–183. https://doi.org/10.1016/j.cattod.2020.05.016
- 31. *Лапидус А.Л*. Механизм синтеза углеводородов из CO и $\rm H_2$ на кобальтовых катализаторах (обзор) // Химия твердого топлива. 2013. № 6. С. 5. https://doi.org/10.7868/S0023117713060078