УДК 544.431.24

КИНЕТИЧЕСКАЯ МОДЕЛЬ И МЕХАНИЗМ ГЕТЕРОГЕННОГО ГИДРИРОВАНИЯ НАПРЯЖЕННЫХ ПОЛИЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ 5-ВИНИЛ-2-НОРБОРНЕНА

© 2023 г. В. В. Замалютин^{1,*}, Е. А. Кацман¹, В. Р. Флид^{1,**}

¹ МИРЭА – Российский технологический университет, Институт тонких химических технологий им. М.В. Ломоносова, Москва, 119571 Россия *E-mail: zamalyutin@mail.ru **E-mail: vitaly-flid@yandex.ru

> Поступила в редакцию 17 ноября 2022 г. После доработки 12 января 2023 г. Принята к публикации 25 января 2023 г.

Исследованы основные маршруты протекания жидкофазного гидрирования 5-этенилбицикло[2.2.1]гепт-2-ена (5-винил-2-норборен, VNE) в присутствии палладиевого катализатора ПК-25 (Pd/γ-Al₂O₃, 0.25% Pd). Идентифицированы все продукты реакции, изучен материальный баланс. Подтвержден эффект доминирующей адсорбции норборненовой двойной связи на активном центре (AU) Pd. На основании совокупности экспериментальных и теоретических данных предложена параллельно-последовательная схема механизма процесса. Она учитывает последовательное гидрирование субстрата, а также существенную роль изомеризации винильной группы в этилиденовую в промежуточных продуктах на AU в атмосфере водорода. Установлен нулевой кинетический порядок в широком интервале начальных концентраций VNE. На основе подхода Ленгмюра–Хиншелвуда и в представлении множественной адсорбции субстратов на одном AU разработана адекватная кинетическая модель процесса. Показано, что существенный вклад в скорость реакции вносят 5 стадий, в том числе – две параллельные. Оценены их константы скорости, а также адсорбционные константы комплексов AU с непредельными соединениями.

Ключевые слова: (эндо/экзо)-5-винил-2-норборен, (эндо/экзо)-2-винилнорборан, (*E*/*Z*)-2-этилиденнорборнан, (эндо/экзо)-2-этилнорборан, кинетика, миграция двойной связи, параллельно-последовательный механизм, палладиевый катализатор, активный центр, множественная адсорбция, модель Ленгмюра– Хиншелвуда

DOI: 10.31857/S0028242123010045, EDN: TXBPYV

Норборнен (NE) и его производные обладают уникальной напряженной карбоциклической структурой, определяющей широкие синтетические возможности. Эти соединения находят применение при производстве синтетических каучуков СКЭПТ [1–3], газоразделительных мембран [4–6], эпоксидных смол [7–10], в качестве альтернативных источников энергии [11, 12], фармацевтических препаратов [13–16] и ароматизаторов [17].

Производные NE, в частности 5-винил-2-норборнен (VNE), являются чрезвычайно удобными объектами при анализе механизмов реакций, связанных с изучением электронных и конформационных эффектов в молекулах с напряженной каркасной структурой. Промежуточный продукт гидрирования VNE – 2-винилнорборнан – привлекательный субстрат для последующих синтезов. Наличие винильной группы открывает широкие возможности для различных химических процессов, таких как полимеризация, метатезис, различные направления циклоприсоединения и фотохимические превращения [18].

Схема 1. Ключевые стадии гидрирования VNE в присутствии родиевого катализатора, нанесенного на силикагель [27].

VNE и другие каркасные NE-соединения являются перспективными компонентами топлив с высокими удельными характеристиками [19]. Высокая энергетическая емкость NE-каркаса сопоставима с сильно напряженными циклопропановыми и циклобутановыми структурами. Наличие двух двойных связей с различной реакционной способностью позволяет легко модифицировать такие соединения в зависимости от конкретных задач.

Селективное получение насыщенных карбоциклических структур, сохраняющих напряженный углеродный каркас и ненасыщенные функциональные группы, является важнейшей фундаментальной и прикладной задачей. Проведение процесса гидрирования при повышенных температурах и давлениях может привести к деструкции норборнанового каркаса и, как следствие, потере дополнительного энергосодержания за счет снятия напряжения в циклической структуре. Для решения этой проблемы требуется разработка селективных катализаторов мягкого жидкофазного гидрирования NE-соединений на основе детальных кинетических исследований. Их анализ дает информацию о строении и функционировании активных центров гетерогенного катализатора [20-24], состоянии водорода и субстратов на его поверхности, а также создает предпосылки для разработки технологий производства напряженных карбоциклических соединений.

НЕФТЕХИМИЯ том 63 № 1 2023

Исходный VNE представляет собой смесь эндои экзо-изомеров в соотношении близком к 70/30, которое определяется температурой диенового синтеза между 1,3-циклопентадиеном и 1,3-бутадиеном. Жидкофазное гидрирование VNE водородом ранее изучалось в ряде работ [18, 25-27]. В присутствии систем на основе Ru, Rh и Ir или их смесей, нанесенных на силикагель, смесь эндо- и экзо-изомеров VNE гидрируется одновременно по норборненовой и винильной связям [25]. Низкая селективность процесса в данных условиях приводит к одновременному образованию смесей эндо/ экзо-изомеров 5-этил-2-норборнена и 2-винилнорборнана. Присутствие этих соединений в качестве основных промежуточных продуктов в реакционной смеси указывает на то, что наблюдается смешанная адсорбция π-комплексов на поверхности катализатора, причем обе двойные связи вовлекаются в процесс раздельно и независимо друг от друга [25, 26]. Наличие в реакционной смеси 2-этил- и 2-этилиденнорборнанов связывают с высокой каталитической активностью родия [27] (схема 1). Отсутствие 5-этилиденнорборнена в реакционной смеси свидетельствует, что 2-этилиденнорборнан образуется исключительно при изомеризации 2-винилнорборнана [25].

При проведении процесса на никеле Ренея, отравленном пиридином, в среде метанола было обнаружено, что эндо- и экзо-изомеры VNE подвергаются гидрированию с близкими скоростями [25]. Соотношение в реакционной смеси 70/30 эндо-/экзо-изомеров 2-винилнорборнана, образующихся в качестве промежуточных продуктов, сохраняется таким же, как и в исходном VNE. При гидрировании VNE в циклогексане в присутствии Pd, нанесенного на сульфат бария в течение 6 ч при 80°С и давлении водорода 0.2 МПа, обеспечивается высокий выход 2-винилнорборнана при полной конверсии субстрата. В среде метанола несмотря на полную конверсию VNE, селективность по 2-винилнорборнану не превышает 40% [26].

Кинетику гидрирования VNE в присутствии тонкодисперсного Pd/C, суспендированного в среде ароматических растворителей, изучали волюмометрически по объему поглощенного водорода [26, 27]. Выбор аренов связан с их способностью дифференцировать скорости гидрирования кратных связей диенов при их последовательном насыщении [26, 28] (схема 2).

ЗАМАЛЮТИН и др.

Z- и Е-Изомеры 5-этилиден-2-норборнена

Z- и E-Изомеры 5-этилиден-2-норборнана

Схема 2. Ключевые стадии гидрирования VNE на суспендированном в жидкой фазе тонкодисперсном катализаторе Pd/C [26].

Несмотря на наличие информации об основных стадиях гидрирования VNE, в литературе практически отсутствуют работы, посвященные кинетическим исследованиям этого процесса. Необходим полный хроматографический контроль реакционной смеси в ходе экспериментов с широким интервалом начальных концентраций VNE и сведением полного материального баланса. Без таких данных крайне затруднителен подбор катализаторов и условий реакции, позволяющих в мягких условиях проводить селективное гидрирование с сохранением норборнанового каркаса. В наших предыдущих работах использован мезопористый корочковый катализатор ПК-25 с низким содержанием активного компонента (0.25% Pd/γ-Al₂O₃) [20–24, 29].

Цель настоящей работы – установление кинетических закономерностей жидкофазного гидрирования VNE в реакторе периодического типа и создание модели, адекватно отражающей всю последовательность его превращений в присутствии катализатора ПК-25, а также определение ключевых стадий механизма этой реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованный в работе VNE перед опытом сушили над натриевой проволокой и перегоняли при пониженном давлении. В качестве растворителя и внутреннего стандарта использовали *н*-гептан (эталонный, Химмед) и *н*-нонан (для хроматографии «х.ч.», Реахим) – без дополнительной очистки. Газообразный водород (марка А чистотой 99.99% ГОСТ 3022-80) также применяли без дополнительной очистки.

Исходный VNE существует в виде пространственных экзо- и эндо-изомеров в соотношении 30/70. Количественное соотношение изомеров VNE достаточно сложно установить хроматографически, однако его можно определить с помощью ¹Н ЯМР-спектроскопии по соотношению двух соседних расщепленных сигналов от протонов (экзо/эндо)-винильной группы и мостикового протона в метиленовом фрагменте [20].

Все остальные компоненты системы (промежуточные и конечные продукты, включая их пространственные изомеры) определяли методом ГЖХ на хроматографе Кристалл 5000М (колонка VS-101 50 м × 0.2 мм, фаза – диметилполисилоксан). Время анализа 27 мин; температура детектора и испарителя 180°С; начальная температура колонки 70°С; температурный режим колонки 70°С (10 мин) – 15°С/мин (12 мин) – 250°С (5 мин); газ-носитель гелий; поток 0.8 мл/мин; деление потока 1 : 125. Идентификацию исходного VNE и его продуктов гидрирования осуществляли методом ГХ-МС на хромато-масс-спектрометре Agilent 5973N с приставкой Agilent 6890 (тип ионизации – электронный удар, колонка Agilent 122-5536 DB-5ms).

Реакцию проводили в термостатируемом статическом реакторе периодического действия объемом 100 мл с обратным холодильником и пробоотбор-

Рис. 1. Кинетические кривые расходования VNE при его различных начальных концентрациях (76°С, н-гептан).

ником в среде *н*-гептана при 76°С и атмосферном давлении водорода. Реактор закрепляли на вибростенд, интенсивность перемешивания составила 380 об/мин.

Для гидрирования VNE использовали палладиевый катализатор корочкового типа ПК-25 (ТУ 38.102178-96) (0.25% Pd/γ-Al₂O₃, удельная поверхность 220 м²/г, размер частиц 0.1–0.2 мм) [29]. Методики активации катализатора и проведения кинетических экспериментов описаны в наших работах [20–24]. Кинетические эксперименты дублировались, для каждой отобранной из реактора пробы сводился материальный баланс.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведенные ранее исследования по гидрированию соединений норборненового ряда, в частности, норборнадиена (ND) и норборнена (NE), свидетельствуют, что во всех случаях в продуктах реакции полностью сохраняется карбоциклическая структура норборнанового каркаса, при этом побочные соединения не образуются [20–24]. Анализ состава реакционной смеси в течение всего эксперимента свидетельствует о присутствии в системе промежуточных продуктов (эндо/экзо)-2-винил-

НЕФТЕХИМИЯ том 63 № 1 2023

норборнанов и (*E*/*Z*)-2-этилиденнорборнанов, а также конечных продуктов гидрирования диолефина – (эндо/экзо)-2-этилнорборнанов. Показано, что скорость расходования VNE мало зависит от его начальной концентрации в широком интервале значений (0.16–5.36 моль/л, рис. 1).

Этот результат согласуется с данными по гидрированию ND и NE [24]. Скорости расходования VNE, ND и NE практически совпадают в интервале начальных концентраций до 0.7 моль/л (рис. 2–5). При увеличении этого параметра процесс насыщения VNE водородом несколько замедляется в сравнении с ND и NE (рис. 2, 3).

Можно предположить, что при значительном увеличении концентрации VNE возникают торможения, связанные с усиливающимся пространственным влиянием винильной группы. Поэтому в дальнейшем кинетику процесса изучали в интервале начальных концентраций VNE от 0.16 до 0.7 моль/л. Типичные кривые расходования VNE и продуктов его гидрирования представлены на рис. 4. Для наглядности на графике показано число молей поглощенного водорода в расчете на единицу объема реакционной смеси.

46

Рис. 2. Кинетические кривые расходования ND при его различных начальных концентрациях (76°С, *н*-гептан) [24].

Рис. 3. Кинетические кривые расходования норборнена (NE) при его различных начальных концентрациях (76°С, *н*-гептан) [24].

Линейный характер убывания концентрации VNE свидетельствует о наблюдаемом нулевом кинетическом порядке по диолефину. Аналогичные закономерности характерны и для гидрирования ND и NE. Вид кинетической кривой поглощения водорода (верхняя кривая на рис. 4) свидетельствует о более сложном механизме гидрирования VNE, чем в случае с NpD. Формально ее можно разделить на три участка (I–III). Участок I прямолинеен и отражает максимальную скорость процесса, связанную с гидрированием NE-связи. Суммарный расход изомеров VNE и поглощение водорода совпадают, ход кинетических кривых симбатный. Соотношение концентраций изомеров VNE (по данным ЯМР) остается постоянным и равным соотношению изомеров VNA (по данным ГЖХ). Очевидно и степени превращения экзо/эндо изомеров VNE в соответствующие изомеры VNA совпадают

Рис. 4. Кинетические кривые VNE и продуктов его гидрирования при начальной концентрации субстрата 0.7 моль/л (76°С, *н*-гептан).

Схема 3. Координация VNE, продуктов его гидрирования и изомеризации на палладиевом катализаторе.

в пределах ошибки измерений. Это характерно для наблюдаемой кинетики реакции нулевого порядка, при которой соотношение скоростей распада адсорбционных комплексов субстратов с АЦ определяется соотношением их концентраций при практически полном отсутствии свободных АЦ.

На участке II поглощение водорода замедляется. На этом этапе наблюдается разветвление процесса. Преимущественно происходит изомеризация винильной группы в этилиденовую в промежуточных продуктах – (экзо/эндо)-2-винилнорборнанах, и, в меньшей степени, ее гидрирование. Скорость процесса на участке III заметно снижается, происходит очень медленное гидрирование (E/Z)-2-этилиденнорборнанов.

Таким образом механизм гидрирования VNE имеет последовательно-параллельный характер, осложненный стадией изомеризации интермедиата. Продуктами первой стадии гидрирования VNE являются (*экзо/эндо*)-изомеры 2-винилнорборнана. Закономерности убывания концентрации VNE (рис. 4) свидетельствуют об одинаковых скоростях гидрирования *экзо-* и *эндо-*изомеров.

НЕФТЕХИМИЯ том 63 № 1 2023

Исходя из этого можно сделать вывод, что пространственное положение винильной группы не оказывает заметного влияния на закономерности гидрирования NE-кольца. VNE прочно связан с АЦ палладиевого катализатора, в его присутствии последующие реакции практически не протекают. Таким образом, при использовании ПК-25 в мягких условиях удается достичь селективного гидрирования NE-связи с сохранением норборнанового каркаса при почти 100%-ной онверсии субстрата.

Для реализации стадии изомеризации винильной группы в этилиденовую в (эндо/экзо)-2-винилнорборнанах необходима атмосфера водорода и присутствие катализатора гидрировании. Этот процесс представляет самостоятельный интерес. Согласно данным квантово-химических расчетов он протекает через интермедиат, имеющий аллильную природу [22]. В соответствии с кинетическими данными миграция двойной связи (эндо/экзо)-2винилнорборнанов приводит к образованию соответственно *E*- и *Z*-изомеров 2-этилиденнорборнана. Соотношение (эндо/экзо)-изомеров VNE, промежуточных продуктов – (эндо/экзо)-2-винилнорборнанов и (*E*/*Z*)-2-этилиденнорборнана, а также (эндо/экзо)-2-этилнорборнанов составляет 70/30 и практически не изменяется в ходе опыта. Стереохимическую природу процесса, в частности, стадии изомеризации еще предстоит выяснить.

Заключительный этап реакции связан с медленным насыщением водородом этилиденовых групп в (E/Z)-2-этилиденнорборнанах. Длительность этого процесса в условиях опыта может составлять нескольких часов. Очевидно, пространственная «закрытость» этилиденового фрагмента не позволяет осуществлять его гидрирование с соизмеримыми первой и второй стадиям процесса скоростями.

Согласно результатам кинетических опытов, на первой стадии процесса происходит монодентатная адсорбция VNE исключительно через напряженную двойную NE-связь. Очевидно, это связано с ее повышенной реакционной способностью по сравнению с двойными связями винильной и этилиденовой групп (схема 3).

ПОСТРОЕНИЕ КИНЕТИЧЕСКОЙ МОДЕЛИ

Многочисленные исследования кинетики гидрирования ацетиленовых и сопряженных диеновых углеводородов на палладиевых катализаторах однозначно свидетельствуют о практически полном разделении первой и второй стадий гидрирования субстрата во времени [30-34]. Если в системе даже в следовых количествах остается непрореагировавший ацетилен или диен, гидрирование накапливающегося олефина не протекает, поскольку степень связывания активных Pd-центров диолефином или ацетиленом очень велика. После их полного исчерпывания гидрирование олефина резко ускоряется, поскольку он получает возможность взаимодействия с освободившимися активными центрами (АЦ). Термодинамическое объяснение этому факту основано на соотношении энергий адсорбции при связывании активным Pd-центром ацетилена (или диена) и олефина. Его учет часто позволяет значительно улучшить кинетическое описание. Однако, в некоторых случаях, не удается адекватно отобразить кинетику реакции в широком диапазоне концентраций и степеней превращения. Это приводит к неудовлетворительному описанию селективности реакции и препятствует применению кинетических моделей для проектирования промышленных реакторов очистки олефинов от диеновых примесей. Для улучшения описания кинетики процесса гидрирования в работах [20–24, 34] было предложено отказаться от постулата Ленгмюра и внести допущение, что АЦ связывает более одной молекулы ненасыщенных соединений.

В рассматриваемой системе фигурируют три непредельных соединения, каждое из которых представлено двумя пространственными изомерами (экзо и эндо, либо Е и Z), итого шесть – потенциально способных адсорбироваться на АЦ катализатора. При координационном числе АЦ катализатора 1 и 2 возможно образование трех адсорбционных комплексов с соотношением АЦ (схема 4): адсорбат 1 : 1 (**1–3**), трех однородных по адсорбату – с соотношением 1 : 2 (11–13), и трех смешанных - с тем же соотношением (21-23) - итого 9 комплексов различного состава. При образовании этих комплексов в схеме не учтены различные способы координации норборненовой, винильной и этилиденовой двойных связей на АЦ. Такие сведения предполагается получить в дальнейшем.

Крайне важными для понимания стереоселективности процессов с участием норборненовых производных представляются вопросы, связанные с природой координации двойных связей на АЦ. Проведенные нами ранее квантово-химические исследования показали, что *экзо*-координация норборненовой двойной связи на активном центре термодинамически несколько более выгодна, чем *эндо*-координация [4].

Координация VNE на АЦ двумя двойными связями представляется маловероятной исходя из следующих экспериментальных наблюдений. Во-первых, среди продуктов гидрирования VNE методами ГЖХ и хроматомасс-спектрометрии не обнаружены даже следовые количества этилнорборненов, которые могли бы образовываться по параллельному механизму в случае координации VNE также и по винильной группе. Во-вторых, кинетические закономерности последующих стадий для экзо- (где стерически возможна только монодентатная координация) и эндо-изомеров полностью совпадают.

Исходя из этого, для данного объекта (и исследуемой реакции) нет ни теоретических, ни экспериментальных оснований полагать, что эндоизомер VNE координируется одновременно двумя связями.

Схема 4. Адсорбционные комплексы (эндо/экзо)-VNE, продуктов его гидрирования и изомеризации на активных центрах палладиевого катализатора (VNA – (экзо/эндо)-2-винилнорборнан; EDNA – (E/Z)-2-этилиденнорборнан).

С учетом пространственных изомеров общее число возможных комплексов достигает 27, а стадий их превращения – 64. На первом этапе учитывались все возможные в рассматриваемой системе превращения. Построение модели осуществляли согласно подходу Ленгмюра–Хиншелвуда [34]. Общую концентрацию активных центров катализатора (свободных и связанных) для определенности принимали равной 1×10⁻⁶ М.

При последовательном решении обратной кинетической задачи было показано, что понижение координационного числа АЦ до 1 (шесть возможных адсорбционных комплексов) приводит к невозможности адекватного описания данных, полученных в кинетическом эксперименте. Поэтому от постулата Ленгмюра приходится отказаться. Из общих соображений следует, что константы скорости стадий гидрирования и изомеризации могут различаться для всех 27 комплексов. Это обстоятельство способно существенно осложнить анализ решения и, что весьма вероятно, привести к его неоднозначности – локальной (бесконечное множество) или глобальной (два или более решения). Поэтому далее рассматривали гипотезу, в которой координационное число АЦ катализатора равно 2, а константы скорости стадий не зависят от пространственной изомерии адсорбатов. В результате получаем всего 20 различающихся констант скорости.

Полученная модель обеспечивает адекватное описание всех имеющихся данных кинетического эксперимента, выполненного в широком интервале величин начальной концентрации VNE (рис. 5, 6).

ЗАМАЛЮТИН и др.

Рис. 5. Результаты моделирования кинетики гидрирования VNE при его начальной концентрации 0.16 моль/л.

Рис. 6. Результаты моделирования кинетики гидрирования VNE при его начальной концентрации 5.36 моль/л.

Решение обратной кинетической задачи для полученной модели показывает, что из 20 возможных в ней превращений существенный вклад в скорость реакции вносят только 5 стадий (схема 5, табл. 1). Соответствующие кинетические уравнения представлены ниже.

Рассмотрим теперь оценки значений констант равновесия образования адсорбционных комплек-

сов непредельных соединений с АЦ катализатора (табл. 2).

Можно отметить, что все 4 комплекса, включающие EDNA, являются непрочными, причем только для одного из них значение константы равновесия адсорбции значимо, да и то только потому, что этот комплекс является участником значимой стадии 5 гидрирования EDNA. Это может объясняться

Номер стадии	1	2	3	4	5
Величина, мин ⁻¹	4.71×10^{4}	2.53×10 ⁴	1.69×10 ⁹	4.31×10 ⁹	1.48×10 ⁷
Погрешность, %	5	15	а	а	a

Таблица 1. Значения констант скорости стадий реакции

Примечание: нумерация согласно математической модели кинетики реакции;

^а идентифицируемость значений параметров модели рассмотрена ниже.

(a)

$1 \ \mathrm{AU}\text{-}\mathrm{VNE} + \mathrm{H}_2 \rightarrow \mathrm{AU} + \mathrm{VNA}$	$W_1 = k_1 [A \amalg V N E]$
2 VNE·AU·VNE+ $H_2 \rightarrow AU$ ·VNE + VNA	$W_2 = k_2$ [VNE·AU·VNE]
3 АЦ·VNA + $H_2 \rightarrow A$ Ц + ENA	$W_3 = k_3 [A \amalg V N A]$
4 $AII \cdot VNA \rightarrow AII + EDNA$	$W_4 = k_4 [A \amalg V N A]$
5 AU·EDNA + $H_2 \rightarrow AU$ + ENA	$W_5 = k_5 [A \amalg E D N A]$

Схема 5. Кинетическая (а) и графическая (б) схемы гидрирования VNE. *Примечание:* в скоростях стадий гидрирования (все кроме 4) водород не фигурирует, поскольку его давление не варьировали.

Таблица 2. Значения констант устойчивости адсорбционных комплексов непредельных соединений с активными центрами катализатора

Номер	1	2	3	
Комплекс	AЦ·VNE	AЦ·VNA	AЦ·EDNA	
Величина, л / моль	2.10×10^4	3.92×10 ⁻²	6.8×10 ⁻⁴	
Номер	11	12	13	
Комплекс	VNE·AU·VNE	VNA·AЦ·VNA	EDNA ALI EDNA	
Величина, л ² /моль ²	6.26×10^4	1.45×10^4	a	
Номер	21	22	23	
Комплекс	VNE·AЦ·VNA	VNE·AЦ·EDNA	VNA·AЦ·EDNA	
Величина, л ² /моль ²	8.26×10 ⁴	a	a	

Примечание: ^а константа равновесия адсорбции пренебрежимо мала.

ΗΠΦ	k ₃ /k ₄	$K_{(2)}/K_{(1)} \times k_4,$ мин ⁻¹	<i>K</i> ₍₃₎ × <i>k</i> ₅ , л/(моль∙мин)	<i>К</i> ₍₁₁₎ / <i>К</i> ₍₁₎ , л/моль	К ₍₁₂₎ /К ₍₁₎ , л/моль	К ₍₂₁₎ /К ₍₁₎ , л/моль
Величина	0.393	8093	10150	2.97	0.688	3.93
Погрешность, %	5	25	3	15	30	50

Таблица 3. Нелинейные параметрические функции (НПФ) и погрешности их определения

влиянием стерического фактора – сближение АЦ с двойной связью EDNA затруднено из-за ее экранирования.

Как видно из табл. 2, величины констант устойчивости адсорбционных комплексов сильно различаются. Несмотря на значительный экспериментальный материал, это приводит к важным последствиям для идентифицируемости оценок параметров модели. Только две константы скорости определяются однозначно. Остальные параметры входят в состав нелинейных параметрических функций (НПФ), представленных в табл. 3.

Форма выявленных численным анализом НПФ объясняется типичными для исследования кинетики причинами, а именно:

 конкуренцией гидрирования и изомеризации (стадии 3 и 4)

 низкими значениями констант адсорбции (адсорбционные комплексы 2 и 3)

– высокими значениями констант адсорбции для комплексов 1, 11, 12 и 21, определяющими практически полное заполнение имеющихся АЦ катализатора.

Первая из этих причин в дальнейшем может быть устранена варьированием давления водорода. Две остальные требуют дополнительной информации, предпочтительно экспериментальной, которая в настоящее время в литературе отсутствует. Для ее получения требуются дополнительные кинетические, а также квантово-химические исследования.

Таким образом, на основании проведенных экспериментальных и теоретических исследований предложена параллельно-последовательная схема механизма гидрирования VNE. Подтвержден эффект доминирующей адсорбции напряженной норборненовой двойной связи на АЦ палладиевого катализатора вследствие ее повышенной реакционной способности. Установлен нулевой кинетический порядок по субстрату в широком интервале начальных концентраций VNE. Применение подхода Ленгмюра-Хиншелвуда с учетом множественной адсорбции субстратов на одном АЦ катализатора позволило разработать модель, адекватно описывающую кинетику жидкофазного гидрирования VNE. Показано, что существенный вклад в скорость реакции вносят пять стадий. В рамках модели оценены их константы скорости, а также адсорбционные константы комплексов АЦ с непредельными соединениями. Кинетическая модель учитывает особенности последовательного гидрирования VNE и существенную роль изомеризации винильной группы в этилиденовую на АЦ катализатора в атмосфере водорода. Для различных NE-соединений скорости гидрирования на первой стадии имеют близкие значения. Согласно полученной кинетической модели, константы скорости стадий не зависят от пространственной изомерии адсорбатов, что объясняет полученное в кинетике равенство скорости гидрирования экзо- и эндо-, а также (E/Z)-изомеров.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Центра коллективного пользования Российского технологического университета МИРЭА, получившего поддержку Министерства науки и высшего образования Российской Федерации в рамках Соглашения от 01.09.2021 № 075-15-2021-689.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Замалютин Вячеслав Вадимович, старший преподаватель, ORCID: http://orcid.org/0000-0002-9457-3912

Кацман Евгений Александрович, д.х.н., проф., OR CID: http://orcid.org/0000-0002-3730-058X

Флид Виталий Рафаилович, д.х.н., проф., ORCID: https://orcid.org/0000-0001-6559-5648

СПИСОК ЛИТЕРАТУРЫ

- Cai Y, Zheng J., Hu Y, Wei J., Fan H. The preparation of polyolefin elastomer functionalized with polysiloxane and its effect in ethylene-propylene-diene monomer/ silicon rubber blends // Eur. Polym. J. 2022. V. 177. P. 111468. https://doi.org/10.1016/j.eurpolymj.2022.111468
- Fein K., Bousfield D.W., Gramlich W.M. Thiolnorbornene reactions to improve natural rubber dispersion in cellulose nanofiber coatings // Carbohyd. Polym. 2020. V. 250. P. 117001. https://doi.org/10.1016/j. carbpol.2020.117001
- Ravishankar P.S. Treatise on EPDM // Rubber Chem. Technol. 2012. V. 85. P. 327–349. https://doi. org/10.5254/rct.12.87993
- Флид В.Р., Грингольц М.Л., Шамсиев Р.С., Финкельштейн Е.Ш. Норборнен, норборнадиен и их производные – перспективные полупродукты для органического синтеза и получения полимерных материалов // Усп. хим. 2018. Т. 87. С. 1169–1205 https://doi.org/10.1070/RCR4834 [Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials // Russ. Chem. Rev. 2018. V. 87. P. 1169–1205. https://doi.org/10.1070/ RCR4834].
- Kong P., Drechsler S., Balog S., Schrettl S., Weder C., Kilbinger A.F.M. Synthesis and properties of poly(norbornene)s with lateral aramid groups // Polym. Chem. 2019. V. 10. P. 2057–2063. https://doi. org/10.1039/C9PY00187E
- Roenko A.V., Nikiforov R.Y., Gringolts M.L., Belov N.A., Denisova Y.I., Shandryuk G.A., Bondarenko G.N., Kudryavtsev Y.V., Finkelshtein E.S. Olefin-metathesisderived norbornene-ethylene-vinyl acetate/vinyl alcohol multiblock copolymers: impact of the copolymer structure on the gas permeation properties // Polymers. 2022. V. 14. P. 444. https://doi.org/10.3390/ polym14030444
- Thomas J., Bouscher R.F., Nwosu J., Soucek M.D. Sustainable thermosets and composites based on the epoxides of norbornylized seed oils and biomass fillers // ACS Sustainable Chem. Eng. 2022. V. 10. P. 12342– 12354. https://doi.org/10.1021/acssuschemeng.2c03434
- 8. Belov N.A., Gringolts, M.L., Morontsev A.A. Starannikova L.E., Yampolskii Yu.P., Finkelstein E.Sh. Gas-transport properties of epoxidated metathesis

НЕФТЕХИМИЯ том 63 № 1 2023

polynorbornenes // Polym. Sci. Ser. B. 2017. V. 59. P. 560–569. https://doi.org/10.1134/S1560090417050025

- Vintila I.S., Iovu H., Alcea A., Cucuruz A., Mandoc A.C., Vasile B.S. The synthetization and analysis of dicyclopentadiene and ethylidene-norbornene microcapsule systems // Polymers. 2020. V. 12. P. 1052. https://doi.org/10.3390/polym12051052
- Morontsev A.A., Denisova Yu.I., Gringolts M.L., Filatova M.P., Shandryuk G.A., Finkelshtein E.Sh., Kudryavtsev Ya.V. Epoxidation of multiblock copolymers of norbornene and cyclooctene // Polym. Sci. Ser. B. 2018. V. 60. P. 688–698. https://doi.org/10.1134/ S1560090418050111
- Li G., Shen R., Hu Sh., Wang B., Algadi H., Wang Ch. Norbornene-based acid-base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell // Adv. Compos Hybrid Mater. 2022. V. 5. P. 2131–2137. https://doi.org/10.1007/ s42114-022-00559-3
- Le D., Samart Ch., Lee J.-T., Nomura K., Kongparakul S., Kiatkamjornwong S. Norbornene-functionalized plant oils for biobased thermoset films and binders of silicon-graphite composite electrodes // ACS Omega. 2020. V. 5. P. 29678–29687. https://doi.org/10.1021/ acsomega.0c02645
- Sparaco R., Kędzierska E., Kaczor A.A., Bielenica A., Magli E., Severino B., Corvino A., Gibula-Tarlowska E., Kotlińska J.H., Andreozzi G., Luciano P., Perissutti E., Frecentese F., Casertano M., Leśniak A., Bujalska-Zadrożny M., Oziębło M., Capasso R, Santagada V., Caliendo G. Fiorino F. Synthesis, docking studies and pharmacological evaluation of serotoninergic ligands containing a 5-norbornene-2-carboxamide nucleus // Molecules. 2022. V. 27. P. 6492. https://doi.org/10.3390/ molecules27196492
- Çapan İ., Servi S., Dalkiliç S., Dalkiliç L.K. Synthesis and anticancer evaluation of benzimidazole derivatives having norbornene/dibenzobarrelene skeletons and different functional groups // ChemistrySelect. 2020. V. 5. P. 14393–14398. https://doi.org/10.1002/ slct.202004034
- Fiorino F., Perissutti E., Severino B., Santagada V., Cirillo D., Terracciano S., Massarelli P., Bruni G., Collavoli E., Renner C., Caliendo G. New 5-hydroxytr yptamine(1A) receptor ligands containing a norbornene nucleus: synthesis and in vitro pharmacological evaluation // J. Med. Chem. 2005. V. 48. № 17. P. 5495– 5503. https://doi.org/10.1021/jm050246k
- Rao V.N., Mane S.R., Abhinoy K., Sarma J.D., Shunmugam R. Norbornene derived doxorubicin copolymers as drug carriers with pH responsive hydrazone linker // Biomacromolecules. 2012. V. 13. № 1. P. 221–230. https://doi.org/10.1021/bm201478k

- Ulla B. S., Binderup M.-L., Bolognesi C., Brimer L., Castle L., Di Domenico A., Engel K.-H., Franz R., Gontard N., Gürtler R., Husøy T., Jany K.-D., Kolf-Clauw M., Leclercq C., Lhuguenot J.-C., Mennes W., Milana M. R., Poças M. de F., Pratt I., Svensson K., Toldrá F., Wölfle D. Scientific opinion on the safety assessment of the substance, 5-norbornene-2,3dicarboxylic anhydride, CAS No 826-62-0, for use in food contact materials // EFSA J. 2014. V. 12. № 6. P. 3714. https://doi.org/10.2903/j.efsa.2014.3714
- Shorunov S.V., Piskunova E.S., Petrov V.A., Bykov V.I., Bermeshev M.V. Selective hydrogenation of 5-vinyl-2norbornene to 2-vinylnorbornane // Petrol. Chemistry. 2018. V. 58. P. 1056–1063. https://doi.org/10.1134/ S0965544118120125 [Шорунов С.В., Пискунова Е.С., Петров В.А., Быков В.И., Бермешев М.В. Селективное гидрирование 5-винил-2-норборнена до 2-винилнорборнана // Нефтехимия. 2018. Т. 58. С. 712–719. https://doi.org/10.1134/S0028242118060126].
- Shorunov S.V., Zarezin D.P., Samoilov V.O., Rudakova M.A., Borisov R.S., Maximov A.L., Bermeshev M.V. Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene // Fuel. 2021. V. 283. P. 118935. https://doi.org/10.1016/j. fuel.2020.118935.
- Zamalyutin V.V., Ryabov A.V., Nichugovskii A.I., Skryabina A.Yu., Tkachenko O.Yu., Flid V.R. Regularities of the heterogeneous catalytic hydrogenation of 5-vinyl-2-norbornene // Russ. Chem. Bull. 2022. V. 71. P. 70–75 [Замалютин В.В., Рябов А.В., Ничуговский А.И., Скрябина А.Ю., Ткаченко О.Ю., Флид В.Р. Особенности гетерогенно-каталитического гидрирования 5-винил-2-норборнена // Изв. АН. Сер. хим. 2022. С. 70–75. https://doi.org/10.1007/s11172-022-3378-5].
- Zamalyutin V.V., Ryabov A.V., Solomakha E.A., Katsman E.A., Flid V.R., Tkachenko O.Yu., Shpinyova M.A. Liquid-phase heterogeneous hydrogenation of dicyclopentadiene // Russ. Chem. Bull. 2022. V. 71. P. 1204–1208 [Замалютин В.В., Рябов А.В., Соломаха Е.А., Кацман Е.А., Флид В.Р., Ткаченко О.Ю., Шпынева М.А. Жидкофазное гетерогенное гидрирование дициклопентадиена // Изв. АН. Сер. хим. 2022. T. 71. C. 1204–1208. https://doi.org/10.1007/s11172-022-3521-3].
- Zamalyutin V.V., Shamsiev R.S., Flid V.R. Mechanism of catalytic migration of the double bond in 2-vinylnorbonanes // Russ. Chem. Bull. 2022. Р. 2142– 2148 [Замалютин В.В., Шамсиев Р.С., Флид В.Р. Механизм каталитической миграции двойной связи в 2-винилнорборнанах // Изв. АН. Сер. хим. 2022. № 10. С. 2142–2148].
- 22. Zamalyutin V.V., Katsman E.A., Danyushevsky V.Y., Flid V.R., Podol'skii V.V., Ryabov A.V. Specific features of

the catalytic hydrogenation of the norbornadiene-based carbocyclic compounds // Russ. J. Coord. Chem. 2021. V. 47. № 10. Р. 695–701 [Замалютин В.В., Кацман Е А., Данюшевский В.Я., Флид В.Р., Подольский В.В., Рябов А.В. Особенности каталитического гидрирования карбоциклических соединений на основе нор-борнадиена // Коорд. химия. 2021. Т. 47. С. 628–634. https://doi.org/10.31857/S0132344X21100091].

- Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. Kinetic model and mechanism of hydrogenation of unsaturated carbocyclic compounds based on norbornadiene // Kinet. Catal. 2022. V. 63. № 2. P. 234–242 [Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. Кинетическая модель и механизм гидрирования ненасыщенных карбоциклических соединений на основе норборнадиена // Кинетика и катализ. 2022. Т. 63. №2. С. 267–276. https://doi.org/10.31857/ S0453881122020150].
- Осокин Ю.Г., Михайлов В.А., Зубович И.А., Фельдблюм В.Ш. // Доклады АН СССР. 1975. Т. 220. № 4. С. 851–853.
- Bermeshev M.V., Pozharskaya N.A., Antonova T.N., Shangareev D.R., Danilova A.S. Selective catalytic hydrogenation of alicyclic dienes with hydrogen in a liquid phase // Petrol. Chemistry. 2018. V. 58. № 10. P. 869–875. https://doi.org/10.1134/S0028242118050039 [Бермешев М.В., Антонова Т.Н., Шангареев Д.Р., Данилова А.С., Пожарская Н.А. // Нефтехимия. 2018. T. 58. C. 580–587].
- 26. Ushakov N.V. Selective hydrogenation of 5-vinylnorborn-2-ene and other methods for the synthesis of 2-vinylnorbornane // Russ. J. Appl. Chem. 2018. V. 91. P. 728–745. https://doi.org/10.1134/S1070427218050026 [Ушаков Н.В. Селективное гидрирование 5-винилнорборн-2-ена и другие методы синтеза 2-винилнорборнана (обзор) // Журн. прикл. химии. 2018. Т. 91. №5. С. 631–650].
- Vereshchagina N.V., Antonova T.N., Il'In A.A., Chirkova Z.V. Feature of dicyclopentene formation during hydrogenation of dicyclopentadiene // Petrol. Chemistry. 2016. V. 56. № 1. Р. 38–43. https://doi.org/10.1134/S0965544115080198 [Верещагина Н.В., Антонова Т.Н., Ильин А.А., Чиркова Ж.В. Закономерности образования дициклопентена в процессе гидрирования дициклопентадиена // Нефтехимия. 2016. Т. 56. № 1. С. 46–51. https://doi.org/10.7868/S0028242115060192].
- 28. Куттубаев С.Н., Рахимов М.Н., Павлов М.Л., Басимова Р.А., Кутепов Б.И. Исследование эффективности очистки этан-этиленовой фракции пиролиза от ацетиленовых соединений на различных катализаторах // Нефтегазовое дело. 2012. № 4. С. 165–178.

- Urmès C., Schweitzer J.-M., Cabiac A., Schuurman Y. Kinetic study of the selective hydrogenation of acetylene over supported palladium under tail-end conditions // Catalysts. 2019. V. 9. P. 180. https://doi. org/10.3390/catal9020180.
- Molero H., Bartlett B.F., Tysoe W.T. The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence // J. Catal. 1999. V. 181. P. 49–56.
- Borodzinski A., Bond G.C. selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters // Catal. Rev. 2008. V. 50. P. 379–469. https://doi. org/10.1080/01614940802142102
- 32. Al-Wadhaf H.A., Karpov V.M., Katsman E.A. Activity and selectivity of carbon supported palladium catalysts prepared from $bis(\eta^3-allyl)$ palladium complexes in

phenylacetylene hydrogenation // Catal. Commun. 2018. V. 116. P. 67–71. https://doi.org/10.1016/j. catcom.2018.08.010.

 Berenblyum A.S., Katsman E.A., Al-Wadhaf H.A. Supported palladium nanomaterials as catalysts for petroleum chemistry: 2. Kinetics and specific features of the mechanism of selective hydrogenation of phenylacetylene in the presence of carbon-supported palladium nanocatalysts // Petrol. Chemistry. 2015. V. 55. № 2. P. 118–126. https://doi.org/10.1134/ S0965544115020048 [Беренблюм А.С., Аль-Badxab X.A., Кацман Е.А. Нанесенные палладиевые наноматериалы как катализаторы для нефтехимии: 2. Кинетика и особенности механизма селективного гидрирования фенилацетилена в присутствии палладиевого нанокатализатора на угле // Нефтехимия. 2015. Т. 55. № 2. С. 125–133].