УДК 544.478.1

ВЫСОКОЭФФЕКТИВНЫЕ V₂O₅/Al₂O₃-КАТАЛИЗАТОРЫ СЕЛЕКТИВНОГО ВОССТАНОВЛЕНИЯ NO_x С ПОНИЖЕННЫМ СОДЕРЖАНИЕМ ВАНАДИЯ: І. КАТАЛИТИЧЕСКИЕ СВОЙСТВА

© 2023 г. Д. А. Бокарев¹, Г. Н. Баева¹, А. В. Казаков¹, А. И. Мытарева¹, А. Ю. Стахеев^{1,*}

¹ Институт органической химии им. Н.Д. Зелинского РАН, Москва, 119991 Россия *E-mail: st@ioc.ac.ru

> Поступила в редакцию 14 декабря 2022 г. После доработки 28 декабря 2022 г. Принята к публикации 25 января 2023 г.

Изучена возможность промотирования катализаторов V_2O_5/Al_2O_3 процесса селективного каталитического восстановления оксидов азота аммиаком (NH₃-селективное каталитические восстановление, NH₃-CKB). Установлено, что активность катализаторов с низким содержанием V_2O_5 (2–4 мас. %) может быть значительно (в 3–4 раза) повышена путем их промотирования оксидом вольфрама. Показано, что промотированный V–W/Al₂O₃-катализатор, содержащий 4 мас. % V₂O₅ обеспечивает эффективность удаления NO_x более 90% в температурном диапазоне 360–500°С при объемной скорости более 100000 ч⁻¹.

Ключевые слова: защита окружающей среды, ванадийнанесенные катализаторы, оксиды азота, СКВ.

DOI: 10.31857/S0028242123010070, EDN: UKIEWE

Сокращения и обозначения:

СКВ – селективное каталитическое восстановление;

РФА – рентгенофазовый анализ;

ОКР - область когерентного рассеяния.

На сегодняшний день, техногенные выбросы оксидов азота (NO_x), представляют одну из наиболее серьезных экологических угроз, вызванную их негативным влиянием как на окружающую среду, так и на организм человека. Основные источники NO_x – автомобильный транспорт, тепловые электростанции, установки химической и нефтеперерабатывающей промышленности. Так, например, значительное количество NO_x образуется на установках каталитического крекинга при регенерации дезактивированных катализаторов. Этот факт обуславливает большой интерес к разработке новых и совершенствованию использующихся катализаторов нейтрализации NO_x.

Основной технологией удаления промышленных выбросов NO_x является селективное каталитическое восстановление (СКВ) аммиаком, при котором оксиды азота восстанавливаются NH₃ до молекулярного азота и H₂O (уравнения (1)–(3)):

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O_2$$
, (1)

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O, \qquad (2)$$

$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O.$$
 (3)

Наибольшее распространение для удаления оксидов азота в области температур 290–450°С получили ванадиевые катализаторы на основе оксидных носителей [1], благодаря их высокой активности, стабильности [2] и устойчивости к действию SO₂ [3].

В настоящее время в промышленности широко используются высокоактивные каталитические системы V_2O_5 -WO₃(MoO₃)/TiO₂ [4, 5] с содержанием ванадия 3–5 мас. % (США, Япония, страны ЕС, Россия, Китай) или менее активные, но более дешевые катализаторы V_2O_5/Al_2O_3 с высоким (10– 15 мас. %) содержанием ванадия (Россия, страны СНГ, Китай).

Один из главных недостатков катализаторов V₂O₅/Al₂O₃ – летучесть оксидов ванадия и их токсичность [6–7]. В случае использования ката-

лизаторов V_2O_5 – $WO_3(MoO_3)/TiO_2$ с небольшим содержанием V_2O_5 (2–5 мас. %) выбросы ванадия в атмосферу не превышают установленных норм [8–10]. Однако для непромотированных V_2O_5/Al_2O_3 -каталитических систем эмиссия ванадия значительно выше вследствие его более высокого содержания. К сожалению, на территории СНГ в данный момент полный переход на катализаторы V_2O_5 – $WO_3(MoO_3)/TiO_2$ невозможен, в связи с их более высокой себестоимостью, отсутствием производства TiO_2 с достаточно высокой удельной поверхностью (70–120 м²/г) и значительными торгово-экономическими ограничениями с рядом стран-производителей TiO₂.

Решением проблемы эмиссии соединений ванадия может стать промотирование V_2O_5/Al_2O_3 -катализаторов для снижения содержания ванадия с сохранением активности в области рабочих температур или увеличения активности в низкотемпературной области. Так в работах [11–13] в качестве промоторов V_2O_5/Al_2O_3 предлагалось использовать лантаноиды (La, Ce, Sm) в количестве 10 мас. %; показано, что добавление Се значительно увеличивает активность ванадиевых образцов, содержащих 1–5 мас. % V_2O_5 , за счет увеличения количества кислотных центров на поверхности катализатора.

Использование в качестве промотирующей добавки MoO_3 также приводит к росту активности V_2O_5/Al_2O_3 -катализаторов в температурном интервале 300–400°С [14]. Так, введение 6 мас. % MoO_3 в катализатор 9% V_2O_5/Al_2O_3 приводит к повышению конверсии NO_x с 75 до 95%, а в случае образцов 12% V_2O_5/Al_2O_3 активность возрастает с 85 до 100%.

Ванг и др. [15] предложили также использовать биметаллический катализатор (22%Cu–2.2%V) для увеличения активности СКВ NO_x в области низких температур. Этот катализатор позволил в конверсии оксидов азота добиться значений 85–90% при 150–200°С. Однако, такие высокие значения конверсии авторами получены только при низкой объемной скорости (3600 ч⁻¹), что не позволяет рассматривать данную каталитическую систему как перспективную для использования в промышленной очистке газов от NO_x.

Перспективными промоторами могут также служить соединения вольфрама, так как известно [4], что WO₃ в количестве 6–10 мас. % позволяет

НЕФТЕХИМИЯ том 63 № 1 2023

стабилизировать частицы V_2O_5 и повысить количество кислотных центров при использовании TiO_2 в качестве носителя. К сожалению, результаты детального исследования влияния добавки вольфрама к ванадиевым катализаторам на основе Al_2O_3 на настоящий момент в открытых литературных источниках отсутствуют.

Цель работы — изучение возможности промотирования катализаторов V_2O_5/Al_2O_3 оксидом вольфрама WO_3 в реакции СКВ- NO_x с целью снижения содержания ванадия без потери каталитической активности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов

Катализаторы готовили методом пропитки по влагоемкости. В качестве носителя использовали оксид алюминия («Нижегородские сорбенты», Россия, $S_{\text{БЭТ}} = 190 \text{ м}^2/\Gamma$), предварительно прокаленный в токе воздуха при 550°С. Для пропитки носителя брали раствор оксалата ванадила, полученный при взаимодействии метаванадата аммония (NH₄VO₃, >99%, Aldrich) с щавелевой кислотой (C₂H₂O₄, безводная, Fluka). В качестве прекурсора вольфрама использовали метавольфрамат аммония $((NH_4)_6W_{12}O_{39} \cdot xH_2O, Aldrich)$. При приготовлении VW-катализаторов рассчитанное количество исходных солей растворяли в необходимом объеме воды и использовали этот раствор для совместной пропитки. После нанесения активного компонента образцы сушили при комнатной температуре в течение суток, а затем прокаливали в токе воздуха (300 мл/мин) в течение 3 ч при 500°С. После прокаливания катализаторы растирали, прессовали, дробили и отбирали фракцию 0.2-0.4 мм. Содержание V₂O₅ в приготовленных образцах составляло 2, 4, 8 и 15 мас. %, WO₃ – 2, 4, 8, 12 и 18 мас. %.

Методики проведения каталитических и физико-химических исследований

Рентгенофазовый анализ. Фазовый состав синтезированных катализаторов исследовали методом РФА. Дифрактограммы катализаторов и исходных носителей получены на дифрактометре ДРОН-4 (НПП «Буревестник»,

Puc. 1. POA-cnekrpu: $I = Al_2O_3$; $2 = 15\%V_2O_5/Al_2O_3$; $3 = 15\%V_2O_5-8\%WO_3/Al_2O_3$.

Россия) с использованием излучения CuK_{α} (Ni-фильтр, длина волны $\lambda = 1.54059$ нм). Съемку вели в диапазоне углов $15^{\circ}-75^{\circ}$ (2 θ) с шагом 0.02° (2 θ) и выдержкой в точке 3 с.

Средний размер кристаллитов V₂O₅ рассчитывали по формуле Шеррера:

где 0.9 – коэффициент формы (константа Шеррера),

$$D = \frac{0.9\lambda}{\beta \cos\theta},$$

 λ – длина волны рентгеновского излучения, β – ширина дифракционного рефлекса на полувысоте, θ – угол диффракции.

Температурно-программируемая десорбция аммиака. Температурно-программируемую десорбцию (ТПД-NH₃) проводили на установке проточного типа. Навеску катализатора (100 мг) предварительно нагревали в в токе азота при 500°С в течение 1 ч, далее охлаждали до 100°С и насыщали аммиаком 1 ч. После насыщения образец продували азотом (200 мл/мин) в течение часа для удаления физически адсорбированного NH₃. ТПД проводили при температуре от 100 до 600°С со скоростью нагрева 5°С/мин в токе азота с расходом 200 мл/мин. Количество десорбированного NH₃ в ходе опыта регистрировали с помощью Фурье-ИК-спектрометра Gasmet DX4000 («Temet Instruments Oy», Финляндия).

Оценка каталитической активности. Каталитическую активность носителя (Al_2O_3) и катализаторов $V_2O_5(WO_3)/Al_2O_3$ исследовали на установке проточного типа, оснащенной трубчатым кварцевым реактором (внутренний диаметр – 3 мм) с неподвижным слоем катализатора (0.04 г; фракция 0.2–0.4 мм).

Состав газовой смеси 500 ppm NO, 600 ppm NH₃, 5%O₂, 5%H₂O, баланс N₂; общий поток газовой смеси составлял 300 мл/мин. Объемная скорость GHSV – 270000 ч⁻¹; для отдельных экспериментов по изучению влияния объемной скорости на конверсию оксидов азота GHSV варьировали от 108000 до 270000 ч⁻¹. В качестве источника монооксида азота (NO) использовали смесь 0.507% NO/N₂ («Линде Газ Рус», Россия), источник аммиака - смесь 0.500% NH₃/N₂ («Линде Газ Рус», Россия). Тесты осуществляли при атмосферном давлении в режиме снижения температуры от 500 до 100°С, со скоростью 2°С/мин. Для определения концентрации NO, NO₂, N₂O и NH₃ использовали Фурье-ИК-спектрометр Gasmet DX4000 («Temet Instruments Oy», Финляндия).

Активность катализаторов оценивали по значениям конверсии *X*(NO_x), рассчитанным по формуле:

$$X(\mathrm{NO}_{x}) = \frac{[\mathrm{NO}_{x}]_{\mathrm{BX}} - [\mathrm{NO}_{x}]_{\mathrm{BHX}}}{[\mathrm{NO}_{x}]_{\mathrm{BX}}},$$

где $[NO_x]_{BX}$ и $[NO_x]_{BHX}$ — концентрации оксидов азота на входе и выходе из реактора соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Физико-химическое исследование образцов

Рентгенофазовый анализ. Для определения фазового состава образцы исследованы методом РФА. На дифрактограммах (рис. 1) наблюдаются широкие пики около 37, 46 и 67°, характерные для высокодисперсной фазы γ -Al₂O₃ (PDF-ICDD 10-0425). Для V-содержащих образцов, за исключением 15%V₂O₅-8%WO₃/Al₂O₃, отсутствуют характеристические пики V₂O₅ (PDF-ICDD 60767), что может указывать на хорошую дисперсность

НЕФТЕХИМИЯ том 63 № 1 2023

		Пик 1		Пик 2		Пик 3	
Образец	Сумма адсорбированного NH ₃ , мкмоль NH ₃ /г _{кат}	Т _{макс} , °С	<i>C</i> ₁	$T_{\text{макс}}, ^{\circ}\text{C}$	<i>C</i> ₂	Т _{макс} , °С	<i>C</i> ₃
Al ₂ O ₃	198.3	164	44.4	217	86.2	279	67.6
2%V2O5/Al2O3	164.1	159	23.3	205	37.6	285	103.2
$4\%V_2O_5/Al_2O_3$	188.3	167	33.1	219	53.9	307	101.3
8%V2O5/Al2O3	214.4	171	36.2	216	71.0	294	107.2
15%V ₂ O ₅ /Al ₂ O ₃	262.6	165	50.4	198	67.0	248	145.2
8%WO ₃ /Al ₂ O ₃	191.1	165	32.3	215	53.1	298	105.7
2%V ₂ O ₅ -8%WO ₃ /Al ₂ O ₃	201.1	169	38.6	220	63.2	307	99.4
4%V ₂ O ₅ -8%WO ₃ /Al ₂ O ₃	213.5	169	40.8	216	70.0	296	102.7
8%V ₂ O ₅ -8%WO ₃ /Al ₂ O ₃	233.2	168	45.9	208	74.8	266	112.4
$15\%V_2O_5 - 8\%WO_3/Al_2O_3$	257.6	165	51.5	193	65.2	236	140.9

Таблица 1. Кислотные свойства катализаторов по данным ТПД-NH₃

Примечание: C1, C2 и C3 - концентрация слабых, средних и сильных кислотных центров, соответственно, в мкмоль NH3/Гкат-

оксида ванадия или на то, что он имеет аморфную структуру.

Для образца $15\%V_2O_5-8\%WO_3/Al_2O_3$ наблюдается слабый сигнал в области 26° , обусловленный фазой V_2O_5 с размерами частиц, оцененными по формуле Шеррера, менее 5 нм. Это хорошо согласуется с результатами ряда исследований [14, 16], в которых показано, что носители, в том числе и оксид алюминия, могут препятствовать образованию кристаллического V_2O_5 .

Рис. 2. Зависимость количества десорбированного NH_3 от содержания V_2O_5 : $1 - для V_2O_5/Al_2O_3$; $2 - для V_2O_5-8\%WO_3/Al_2O_3$.

НЕФТЕХИМИЯ том 63 № 1 2023

Температурно-программируемая десорбция аммиака ($T\Pi \square - NH_3$). Наличие кислотных центров на поверхности катализаторов (кислотность) играет ключевую роль в селективном каталитическом восстановлении оксидов азота аммиаком. Полученные десорбционные кривые для исследуемых каталитических систем на основе Al₂O₃ являются результатом наложения трех пиков, характеризующих десорбцию аммиака в интервале температур 100–500°С и соответствующих слабым, средним и сильным кислотным центрам [17] (табл. 1).

Анализ полученных данных (рис. 2) показывает, что увеличение содержания ванадия в образцах V_2O_5/Al_2O_3 приводит к увеличению кислотности, выраженному в увеличении количества десорбированного аммиака – от 164.1 до 262.6 мкмоль NH_3/r_{kar} для образцов, содержащих 2 и 15 мас. % V_2O_5 , соответственно.

Для образцов, содержащих 8 мас. % WO₃ эта зависимость сохраняется, однако кислотность у них выше, чем для непромотированных образцов V₂O₅/Al₂O₃ практически во всем исследуемом диапазоне концентраций. Стоит отметить, что увеличение кислотности наиболее выражено для катализаторов с низким (2–4 мас. %) содержанием V₂O₅. С увеличением содержания ванадия, положительный эффект от введения WO₃ снижается. Так, введение 8 мас. % WO₃ повышает кислотность на 22%

Рис. 3. Температурная зависимость конверсии NO_x от содержания ванадия в процессе СКВ оксидов азота: а – для V_2O_5/Al_2O_3 ; б – для $V_2O_5-8\%WO_3/Al_2O_3$. Содержание V: $1 - 2\%V_2O_5$; $2 - 4\%V_2O_5$; $3 - 8\%V_2O_5$; $4 - 15\%V_2O_5$.

для образца содержащего 2 мас. % V_2O_5 , на 13% – для образца 4 мас. % V_2O_5 и на 9% – для образца с 8 мас. % V_2O_5 . Для образца 15 мас. % V_2O_5 введение WO₃ приводит к незначительному снижению общей кислотности – с 262.6 до 257.6 мкмоль NH_3/Γ_{karp} соответственно.

Влияние WO₃-промотирования на активность V₂O₅/Al₂O₃ в процессе СКВ оксидов азота

Температурные зависимости конверсии NO_x от содержания ванадия в процессе СКВ оксидов азота приведены на рис. 3а, б.

Следует отметить, что во всем исследуемом интервале температур активность Al_2O_3 в процессе СКВ оксидов азота не превышала 5%. Введение V_2O_5 в количестве 2 и 4 мас. % приводит к незначительному увеличению конверсии NO_x до 10 и 25% соответственно при 500°С. Дальнейшее повышение концентрации V_2O_5 до 8 мас. % сопровождается резким ростом конверсии оксидов азота, которая достигает максимального значения 66% при 500°С (рис. 3а).

Для образца 15%V₂O₅/Al₂O₃ максимальное значение конверсии возрастает до 82% в области более низких температур (350–450°С) по сравнению с катализаторами, содержащими меньшее количество активного компонента. Однако при дальнейшем увеличении температуры до 450–500°С наблюдается снижение конверсии NO_x с 82 до 64% (рис. 3а), что свидетельствует об увеличивающимся вкладе реакции окисления аммиака с образованием оксидов азота (реакции (4), (5)) [1]:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O, \qquad (4)$$

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O.$$
 (5)

Для изучения влияния вольфрама на активность V_2O_5/Al_2O_3 была выбрана концентрация 8 мас. % WO_3 , так как ранее было отмечено, что его добавка в качестве промотирующего агента для катализаторов на основе TiO₂ составляет 6–10% [5].

Образец 8%WO₃/Al₂O₃ так же, как и сам носитель не активен в процессе СКВ оксидов азота. Увеличение содержания ванадия в образцах V_2O_5 -8%WO₃/Al₂O₃ приводит к росту максимального значения конверсии, как и в случае не промотированных вольфрамом образцов (рис. 36). Стоит отметить, что снижение конверсии в области высоких температур (450–500°C) за счет протекания реакции окисления аммиака (уравнения (4), (5)) наблюдается уже для образца, содержащего 8 мас. % V₂O₅.

В связи с тем, что рабочая температура катализаторов процесса СКВ- NO_x на промышленных предприятиях, в зависимости от состава отходящих газов, достигает 320–455°С [18, 19], то в качестве сравнительной характеристики была выбрана кон-

НЕФТЕХИМИЯ том 63 № 1 2023

Рис. 4. Зависимость конверсии NO_x в процессе СКВ оксидов азота при 400°С от содержания V_2O_5 : $l - для V_2O_5/Al_2O_3$ (красная кривая); $2 - для V_2O_5$ -8%WO₃/Al₂O₃.

версия NO_x при температуре 400°С. Сопоставление значений конверсии оксидов азота для V-содержащих образцов без WO₃ и с добавлением 8 мас. % при 400°С (рис. 4) показывает, что введение вольфрама значительно увеличивает активность V_2O_5/Al_2O_3 практически во всем диапазоне концентраций. Это объясняется увеличением количества кислотных центров на поверхности катализатора [5].

При этом наибольший рост активности наблюдается для образцов с содержанием 2–4 мас. % V_2O_5 , что хорошо коррелирует с данными ТПД-NH₃ (рис. 2). Так, для образца, содержащего 2% V_2O_5 , значение конверсии при 400°С возрастает в 4 раза (с 4.5 до 18.5%), для образца 4% V_2O_5 – в 3.8 раза (с 14 до 54%), для образца 8% V_2O_5 – в 1.2 раза (с 61 до 76%) (рис. 4). Эффект промотирования для образца, содержащего 15% V_2O_5 , выражен слабо, увеличение значения конверсии составило менее 4%.

Зависимость активности катализатора 4%V₂O₅(WO₃)/Al₂O₃ от содержания вольфрама в процессе СКВ оксидов азота

Поскольку наиболее выраженный эффект от промотирования наблюдается для 4%V₂O₅--8%WO₃/Al₂O₃, нами было рассмотрено влияние количества добавляемого WO₃ на ак-

НЕФТЕХИМИЯ том 63 № 1 2023

Рис. 5. Зависимость конверсии NO_x при 400°С от содержания WO_3 для 4% V_2O_5 –(WO_3)/ Al_2O_3 в процессе СКВ оксидов азота.

тивность этого катализатора. Зависимость конверсии NO_x в процессе СКВ оксидов азота при 400° C от содержания WO₃ для катализаторов $4\%V_2O_5$ -WO₃/Al₂O₃ представлена на рис. 5.

Без добавления вольфрама образец $4\%V_2O_5/Al_2O_3$ обладает низкой активностью в исследуемом процессе, конверсия NO_x при 400°C составляет 14%. Введение 2 мас. % WO₃ приводит к повышению активности образца; при этом значение конверсии возрастает до 22%. Дальнейшее поэтапное увеличение содержания вольфрама до 18% приводит к росту конверсии NO_x до 67%.

Следует отметить, что скорость роста значений конверсии при увеличении концентрации WO_3 более 8 мас. % заметно снижается, что, по-видимому, связано с образованием большего числа изолированных от ванадия частиц WO_3 , которые сами по себе обладают низкой активностью в процессе СКВ оксидов азота.

Влияние объемной скорости на активность 4%V₂O₅-8%WO₃/Al₂O₃ в процессе СКВ оксидов азота

Промотирование вольфрамом позволяет снизить концентрацию ванадия в катализаторе V₂O₅/Al₂O₃ примерно в 3 раза с 10–15 до 4 мас. %;

Рис. 6. Температурная зависимость конверсии NO_x при различных объемных скоростях подачи сырья для катализатора $4\% V_2 O_5$ -18%WO₃/Al₂O₃ в процессе СКВ оксидов азота: $1 - 108000 \text{ y}^{-1}$; $2 - 135000 \text{ y}^{-1}$; $3 - 180000 \text{ y}^{-1}$; $4 - 270000 \text{ y}^{-1}$.

однако степень очистки (67%) в исследуемых условиях для промышленного процесса недостаточна. Стоит учитывать, что при проведении исследований, объемная скорость подачи сырья (270000 ч⁻¹) была значительно выше, чем на производстве. Так, в промышленности при очистке отходящих газов от NO_x объемная скорость составляет 2000–5000 ч⁻¹ для катализаторов, нанесенных на монолитные блоки [19–22], что с учетом объемной плотности самого катализатора 150–250 г/л (в пересчете на порошкообразный) колеблется от 10000 до 30000 ч⁻¹. Вследствие этого были проведены исследования активности катализатора 4% V_2O_5 –18% WO_3/Al_2O_3 при различных объемных скоростях (рис. 6).

Показано, что постепенное снижение объемной скорости с 270000 до 108000 ч⁻¹ приводит к росту значений конверсии NO_x во всем исследованном температурном интервале. Так, при 180000 ч⁻¹ максимальная конверсия составляет 80–82%, а при снижении объемной скорости до 135000 ч⁻¹ наблюдается увеличение значений конверсии до 85–89%. При 108000 ч⁻¹ конверсия NO_x превышает 90% в температурном интервале 360–500°С.

Таким образом, полученные данные показывают, что предложенный катализатор позволяет удалять оксиды азота с достаточной эффективностью даже при высоких объемных скоростях, а сниже-

ние концентрации ванадия, за счет его промотирования вольфрамом, позволяет снизить выбросы V_2O_5 в атмосферу.

ЗАКЛЮЧЕНИЕ

Полученные в работе данные убедительно свидетельствуют о том, что активность катализаторов V₂O₅/Al₂O₃ в реакции СКВ-NH₃ может быть существенно увеличена путем их промотирования WO₃. Наиболее выраженный эффект наблюдается для образцов с низким содержанием V₂O₅ (2-4 мас. %), активность которых может быть увеличена в 3-4 раза. Для катализаторов с более высоким содержанием V2O5 эффект промотирования выражен в меньшей степени. Полученные данные указывают на возможность создания высокоэффективного ванадиевого катализатора, нанесенного на Al₂O₃, с низким содержанием ванадия. Установлено, что катализатор 4%V2O5-18%WO3/Al2O3 обеспечивает эффективность удаления NO_x более 90% в температурном диапазоне 360-500°С при объемной скорости 108000 ч⁻¹.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Бокарев Дмитрий Алексеевич, науч. сотр., ORCID: https://orcid.org/0000-0001-9453-3323

Баева Галина Николаевна, науч. сотр., ORCID: https://orcid.org/0000-0001-7841-835X

Казаков Александр Вениаминович, науч. сотр., ORCID: https://orcid.org/0000-0003-2405-5404

Мытарева Алина Игоревна, науч. сотр., ORCID: https://orcid.org/0000-0002-9012-4546

Стахеев Александр Юрьевич, гл. науч. сотр., проф., ORCID: https://orcid.org/0000-0001-7405-9601

СПИСОК ЛИТЕРАТУРЫ

- Lietti L., Nova I., Forzatti P. Selective catalytic reduction (SCR) of NO by NH₃ over TiO₂-supported V₂O₅–WO₃ and V₂O₅–MoO₃ catalysts // Top. Catal. 2000. V. 11. P. 111–122. https://doi.org/10.1023/A:1027217612947
- Sobalik Z., Markvart M., Lapina O.B. Long-term stability of the V₂O₅/Al₂O₃ catalyst for the selective reduction

НЕФТЕХИМИЯ том 63 № 1 2023

of nitrogen oxides // Catal. Lett. 1994. V. 28. P. 25–31. https://doi.org/10.1007/bf00812466

- Soh B.-W., Nam I.-S., Lee J.-B. Morphological impact of V₂O₅/Al₂O₃ catalyst on the deactivation by SO₂ for the reduction of NO with NH₃ // Stud. Surf. Sci. Catal. 1999. V. 126. P. 389–396. https://doi.org/10.1016/S0167-2991(99)80490-X
- Lai J-K., Wachs I.E. A perspective on the selective catalytic reduction (SCR) of NO with NH₃ by supported V₂O₅-WO₃/TiO₂ catalysts // ASC Catal. 2018. V. 8. P. 6537–6551. https://doi.org/10.1021/acscatal.8b01357
- 5. Forzatti P. Present status and perspectives in de-NO_x SCR catalysis // Appl. Catal. A: Gen. 2001.
 V. 222. P. 221–236. https://doi.org/10.1016/S0926-860X(01)00832-8
- 6. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. Lyon. France, 2006. V. 86.
- Chapman D.M. Behavior of titania-supported vanadia and tungsta SCR catalysts at high temperatures in reactant streams: tungsten and vanadium oxide and hydroxide vapor pressure reduction by surficial stabilization // Appl. Catal. A: Gen. 2011. V. 392. P. 143–150. https:// doi.org/10.1016/j.apcata.2010.11.005
- Schildhauer T.J., Elsener M., Moser J., Begsteiger I., Chatterjee D., Rusch K., Krocher O. Measurement of vanadium emissions from SCR catalysts by ICP-OES: method development and first results // Emiss. Control Sci. Technol. 2015. V. 1. P. 292–297. https://doi. org/10.1007/s40825-015-0023-x
- 9. Санитарные Правила и Нормы РФ. 1.2.3685-21.
- 10. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control).
- Centeno M.A., Carrizosa I., Odriozola J.A. In situ DRIFTS study of the SCR reaction of NO with NH₃ in the presence of O₂ over lanthanide doped V₂O₅/Al₂O₃ catalysts // Appl. Catal. B: Environ. 1998. V. 19. P. 67–73. https://doi.org/10.1016/S0926-3373(98)00059-9
- Centeno M.A., Malet P., Carrizosa I., Odriozola J.A. Lanthanide doped V₂O₅/Al₂O₃ catalysts: Structureactivity relationship in the SCR of NO_x // J. Phys. Chem. B. 2000. V. 104. P. 3310–3319. https://doi.org/10.1021/ jp993084a
- Centero M.A., Carrizosa I., Odriozola J.A. NH₃ adsorption over lanthanide doped V₂O₅/Al₂O₃ catalysts //

J. Alloys Compd. 2001. V. 323–324. P. 597–600. https:// doi.org/10.1016/S0925-8388(01)01186-0

- Koh H.-L., Park H.-K. Characterization of MoO₃–V₂O₅/ Al₂O₃ catalysts for selective catalytic reduction of NO by NH₃ // J. Ind. Eng. Chem. 2013. V. 19. № 1. P. 73–79. https://doi.org/10.1016/j.jiec.2012.07.003
- Wang C., Zuo Y., Yang C.-I. Selective catalytic reduction of NO by NH₃ in flue gases over a Cu–V/Al₂O₃ catalyst at low temperature // Env. Eng. Sci. 2009. V. 26. № 9. P. 1429–1434. https://doi.org/10.1089/ees.2009.0056
- Guo F, Yu J., Chu M., Xu G. Interaction between support and V₂O₅ in the selective catalytic reduction of NO by NH₃ // Catal. Sci. Technol. 2014. V. 4. P. 2147–2155. https://doi.org/10.1039/c4cy00098f
- Popova N.M., Sokolova L.A., Marchenko E.A., Bobrova L.N. TPD study of NH₃ adsorption/desorption on the surface of V/Ti, V/AI based catalysts for selective catalytic reduction of NO_x by ammonia 1. TPD test of γ-Al₂O₃, TiO₂ (anatase) and alumina-supported vanadia catalysts // React. Kinet. Catal. Lett. 1998. V. 65. № 2. P. 363–370. https://doi.org/10.1007/BF02475277
- Muzio L.J., Quartucy G.K., Cichanowicz J.E. Overview and status of post-combustion NO_x control: SNCR, SCR and hybrid technologies // Int. J. Environ Pollut. 2002. V. 17. № 1–2. P. 4–30. https://doi.org/10.1504/ IJEP.2002.000655
- Xie X., Peng J., Zhao S., Wang L., Ge R., Wu S., May Y., Zeng K., Sun Z. DeNO_x characteristics of commercial SCR catalyst regenerated *online* by dry ice blasting in a coal-fired power plant // Ind. Eng. Chem. Res. 2022.
 V. 61. P. 14382–14392. https://doi.org/10.1021/acs. iecr.2c02422
- Guo L., Lu J., Zhao Y., Wang C., Zhang C., Tang C., Dong L., Kong W., Li Q., Cao P. Pilot test of environment-friendly catalysts for the DeNO_x of low-temperature flue gas from a coal-fired plant // Catal. Sci. Technol. 2021. V. 11. P. 3164–3175. https://doi.org/10.1039/ d0cy02142c
- Heck R.M., Farrauto R.J., Gulati S.T. Catalytic air pollution control: commercial technology. 3rd ed. Hoboken, New Jersey, USA: John Wiley & Sons, 2009. 544 p.
- Ertl G., Knözinger H., Schüth F., Weitkamp J. Handbook of heterogeneous cata ysis. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH& Co. KGaA, 2008. 4270 p.