УДК 536.63

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГЕРМАНАТА CaSm₂Ge₃O₁₀ В ОБЛАСТИ 320–1000 К

© 2023 г. Л. Т. Денисова^{1,} *, Н. А. Галиахметова¹, Ю. Ф. Каргин², Е. О. Голубева¹, В. В. Белецкий¹, В. М. Денисов¹

¹Сибирский федеральный университет, пр. Свободный, 79, Красноярск, 660041 Россия ²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия *e-mail: Idenisova@sfu-kras.ru Поступила в редакцию 31.05.2022 г. После доработки 12.08.2022 г. Принята к публикации 14.08.2022 г.

Обжигом на воздухе стехиометрических смесей CaCO₃, Sm₂O₃ и GeO₂ в интервале температур 1423–1473 К получен германат CaSm₂Ge₃O₁₀. С использованием рентгеновской дифракции порошка методом минимизации производной разности установлено, что кристаллическая структура CaSm₂Ge₃O₁₀ (пр. гр. $P2_1/c$, 293 К) является моноклинной с параметрами элементарной ячейки a = 6.9779(8) Å, b = 6.92859(7) Å, c = 18.8907(2) Å, $\beta = 108.3280(8)^\circ$. Высокотемпературная теплоемкость образцов германата кальция-самария измерена в интервале температур 320–1000 К методом дифференциальной сканирующей калориметрии. Рассчитаны термодинамические свойства CaSm₂Ge₃O₁₀ на основании полученной экспериментальной зависимости $C_n = f(T)$.

Ключевые слова: твердофазный синтез, германаты редкоземельных элементов, теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X23010062, EDN: OPLLTW

введение

Сложные оксидные соединения с общей формулой $M^{I}R_{2}M_{3}^{II}O_{10}$ ($M^{I} = Ca, Sr, Ba; R = P3\Theta; M^{II} = Ge$, Si) привлекают внимание исследователей возможностями их практического применения в качестве оптических преобразователей, кристаллофосфоров, материалов для твердотельных лазеров и бесконтактного измерения температуры [1-8]. При этом основные исследования направлены на изучение их кристаллической структуры и оптических свойств. Тем не менее, многие физикохимические свойства таких материалов не изучены. Практически отсутствуют сведения о теплофизических свойствах. К настоящему времени имеется единственная работа [1], в которой приведены данные о термической стабильности CaY₂Ge₃O₁₀ и CaY₂Ge₄O₁₂ (первое имеет конгрузнтный, а второе инконгруэнтный характер плавления). Диаграммы состояния систем CaO-R₂O₃-GeO₂ полностью не построены. Для их компьютерного моделирования требуются надежные сведения о термодинамических свойствах образующихся соединений, которых в литературе нет. К таким материалам относится и CaSm₂Ge₃O₁₀, для которого какие-либо сведения о структуре и свойствах отсутствуют.

Принимая это во внимание, представлялось необходимым провести синтез германата $CaSm_2Ge_3O_{10}$ и исследовать его структуру и термодинамические свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германат CaSm₂Ge₃O₁₀ синтезировали твердофазным методом с использованием в качестве исходных компонентов СаСО₃ (99.9%), Sm₂O₃ (99.99%) и GeO₂ (99.99%). Исходные смеси компонентов, соответствующие стехиометрии CaSm₂Ge₃O₁₀, перетирали в агатовой ступке (60 мин), а затем помешали в полиэтиленовые контейнеры, вакуумировали и запаивали. После этого заготовки прессовали на изостатическом прессе YLJ-CIP-20B (P = 200 МПа, $\tau = 5$ мин). Полученные образцы обжигали на воздухе в тиглях с крышкой при температурах: 1423 К (10 ч), 1443 К (10 ч) и 1473 К (10 + 10 + 5 ч). Скорость повышения температуры до заданной составляла 250 К/ч. После этого образцы перетирали и снова прессовали.

Порошковые рентгенограммы при комнатной температуре сняты в Си K_{α} -излучении в области углов 2 θ = 9°–110° с шагом 0.013° на дифрактомет-

Симметрия, пр. гр.	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i>
Температура, К	298
<i>a</i> , <i>b</i> , <i>c</i> , Å	6.9779(8), 6.92859(7), 18.8907(2)
β, град	108.3280(8)
<i>V</i> , Å ³	866.98(2)
Ζ	4
<i>d</i> , г/см ³	5.506
<i>R</i> -факторы	$R_{DDM} = 0.067, R_{exp} = 0.048, R_{Bragg} = 0.027$

Таблица 1. Кристаллографические данные CaSm₂Ge₃O₁₀

ре PANalytical X'Pert PRO с детектором PIXcel с графитовым монохроматором. Параметры решетки определены с помощью программы ITO [9]. Кристаллическая структура определена методом минимизации производной разности (МПР) [10]. При этом учтены эффекты преимущественной ориентации, анизотропного уширения пиков, шероховатости и смещения поверхности образца.

Теплоемкость полученного германата $CaSm_2Ge_3O_{10}$ измеряли с использованием термоанализатора STA 449 Jupiter (NETZSCH, Германия). Методика экспериментов описана нами ранее [11, 12]. Погрешность измерения теплоемкости не превышала 2%. Экспериментальные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кристаллографические данные, структурные параметры и основные межатомные расстояния $CaSm_2Ge_3O_{10}$ представлены в табл. 1–3. Экспери-

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограммы CaSm₂Ge₃O₁₀ после уточнения методом минимизации производной разности.

ментальные и расчетные рентгенограммы после уточнения МПР приведены на рис. 1. Все наблюдаемые пики на рентгенограмме порошка германата кальция-самария индицируются с высокой точностью на основе моноклинной элементарной ячейки с a = 6.9779(8) Å, b = 6.92859(7) Å, c = 18.8907(2) Å, $\beta = 108.3280(8)^{\circ}$ (в хорошем согласии с результатами наших рентгеноструктурных исследований), что указывает на его однофазную природу.

Влияние температуры на молярную теплоемкость $CaSm_2Ge_3O_{10}$ показано на рис. 2. Видно, что при увеличении температуры от 320 до 1000 К значения C_p закономерно возрастают, а на зависимости $C_p = f(T)$ отсутствуют различного рода экстремумы. Это может свидетельствовать о том, что у $CaSm_2Ge_3O_{10}$ в этом интервале температур полиморфные превращения отсутствуют. Полученные экспериментальные результаты с достаточно хорошей точностью описываются уравнением Майера–Келли [13]

$$C_{p} = a + bT - cT^{-2}.$$
 (1)

Для исследованного германата оно имеет следующий вид (Дж/(К моль)):

$$C_{p} = (383.3 \pm 0.4) + (31.33 \pm 1.50) \times 10^{-3}T - (68.48 \pm 1.42) \times 10^{5}T^{-2}.$$
 (2)

Коэффициент корреляции для уравнения (2) равен 0.9975, а максимальное отклонение экспериментальных точек от сглаживающей кривой – 1.4%.

Для сравнения на рис. 2 приведены также результаты по теплоемкости $Sm_2Ge_2O_7$ [14]. Из этих данных следует, что более сложное оксидное соединение $CaSm_2Ge_3O_{10}$ имеет бо́льшие значения молярной теплоемкости по сравнению с $Sm_2Ge_2O_7$.

Из-за отсутствия опубликованных данных по теплоемкости $CaSm_2Ge_3O_{10}$ сравнение полученных результатов проводили с величинами, рассчитанными по различным модельным представлениям: аддитивным методом Неймана-Коппа (**HK**) [15, 16] использовали данные для оксидов CaO, Sm_2O_3 и GeO₂ [15] (HK₁) и проводили расчет на основании сведений о теплоемкости CaO, GeO₂

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Атом	x	У	Z.	U_{iso} , Å ²	Заполнение
Sm1	0.03182(19)	0.90342(17)	0.41392(7)	0.0173(7)	0.633(3)
Ca1	0.03182(19)	0.90342(17)	0.41392(7)	0.0173(7)	0.367(3)
Sm2	0.58293(19)	0.23758(16)	0.41484(8)	0.0160(6)	0.542(3)
Ca2	0.58293(19)	0.23758(16)	0.41484(8)	0.0160(6)	0.458(3)
Sm3	0.13378(13)	0.13138(14)	0.25244(6)	0.0143(5)	0/825(3)
Ca3	0.13378(13)	0.13138(14)	0.25244(6)	0.0143(5)	0.175(3)
Gel	0.0986(3)	0.3715(2)	0.42659(9)	0.0185(7)	1
Ge2	0.4495(3)	0.2291(2)	0.07236(9)	0.0151(7)	1
Ge3	0.6572(2)	0.1227(2)	0.23935(10)	0.0157(7)	1
O1	0.0126(10)	0.0740(10)	0.1258(5)	0.0126(9)	1
O2	0.0610(11)	0.7163(10)	0.0435(4)	0.0126(9)	1
O3	0.1514(11)	0.4587(9)	0.2175(5)	0.0126(9)	1
O4	0.1897(10)	0.8127(9)	0.2746(4)	0.0126(9)	1
O5	0.2198(12)	0.2054(11)	0.3811(4)	0.0126(9)	1
O6	0.3037(10)	0.0587(10)	0.0058(4)	0.0126(9)	1
O 7	0.3028(11)	0.4195(10)	0.0864(4)	0.0126(9)	1
O 8	0.4832(12)	0.1779(9)	0.2849(5)	0.0126(9)	1
O9	0.5227(10)	0.0584(9)	0.1455(5)	0.0126(9)	1
O10	0.6322(11)	0.3184(10)	0.0394(5)	0.0126(9)	1

Таблица 2. Координаты атомов, тепловые параметры и заполняемость позиций CaSm₂Ge₃O₁₀

[15], Sm₂Ge₂O₇ [14] (HK₂)); инкрементным методом Кумока (**ИМК**) [17]; методом Келлога (**К**) [18]; групповых вкладов (**ГВ**) [19]. Полученные результаты приведены в табл. 4. Сравнение данных, представленных в табл. 4, показывает, что лучшее согласие с экспериментом дает метод HK.

Рис. 2. Температурные зависимости молярной теплоемкости $CaSm_2Ge_3O_{10}$ (экспериментальные данные (1), расчет методом Неймана-Коппа HK₂ (2)) и $Sm_2Ge_2O_7$ (3).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 1 2023

Рассчитать температурную зависимость теплоемкости CaSm₂Ge₃O₁₀ можно методами НК и ГВ. Кривые на рис. 2 показывают, что расчет $C_p = f(T)$ методом НК₂ дает хорошее совпадение с экспериментальными данными (практически такой же результат получен и для НК₁). Для метода ГВ (на рис. 2 не показано) совпадение наблюдается только для низких температур ($T \le 400$ K). Затем, по мере роста температуры, наблюдается превышение рассчитанных величин над экспериментальными (чем выше температура, тем больше различие). Подобное поведение изменения теплоемкости отмечено как самими авторами метода ГВ [19], так и в работе [20], в которой этот метод использован для прогнозирования зависимости $C_p = f(T)$ в случае сложных оксидных соединений. Необходимые данные для расчета методом НК температурной зависимости теплоемкости CaSm2Ge3O10 взяты из литературы: CaO [21], Sm₂O₃ [22], GeO₂ [23], Sm₂Ge₂O₇ [14].

С использованием уравнения (2) по известным термодинамическим соотношениям рассчитаны термодинамические функции (изменения энтальпии, энтропии и приведенной энергии Гиббса) германата CaSm₂Ge₃O₁₀. Полученные результаты приведены в табл. 5.

(2 3 10 ()		
Sm1–O1 ⁱ	3.392(7)	Sm3–O4 ^{viii}	2.258(6)
Sm1-O2 ⁱ	2.469(7)	Sm3–O4 ^{vii}	2.492(7)
Sm1–O2 ⁱⁱ	2.531(8)	Sm3–O5	2.370(8)
Sm1–O3 ⁱ	2.439(8)	Sm3–O8	2.342(8)
Sm1–O5 ⁱⁱⁱ	2.644(8)	Ge1–O1 ⁱ	1.751(7)
Sm1–O7 ⁱ	2.336(8)	Ge1-O2 ^{vii}	1.764(8)
Sm1-O10 ^{iv}	2.307(7)	Ge1–O5	1.798(9)
Sm2–O2 ^v	2.363(8)	Ge1-O6 ^{vi}	1.782(6)
Sm2–O5	2.421(8)	Ge2-O6	1.791(7)
Sm2–O6 ^{iv}	2.660(7)	Ge2-07	1.740(8)
Sm2–O7 ^v	2.346(7)	Ge2-O9	1.768(8)
Sm2–O8	2.367(8)	Ge2-O10	1.701(9)
Sm2–O9 ^{iv}	2.501(7)	Ge3–O3 ^v	1.748(7)
Sm2-O10vi	2.302(9)	Ge3–O4 ^v	1.767(7)
Sm3–O1	2.308(9)	Ge3–O8	1.738(9)
Sm3–O3	2.376(7)	Ge3-09	1.782(8)
Sm3–O3 ^{vii}	2.535(8)		

Таблица 3. Межатомные расстояния в CaSm₂Ge₃O₁₀ (Å)

Примечание. Элементы симметрии: (i) -x, y + 1/2, -z + 1/2; (ii) x, -y + 3/2, z + 1/2; (iii) x, y + 1, z; (iv) -x + 1, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) x, -y + 1/2, -z + 1/2; (vii) x, y - 1, z.

Таблица 4. Сравнение экспериментальных значений теплоемкости для германата CaSm₂Ge₃O₁₀ при 298 K с рассчитанными разными методами

<i>С_р,</i> Дж/(К моль)										
Эксп.	HK ₁	$\Delta, \%$	HK ₂	$\Delta, \%$	ИМК	$\Delta, \%$	K	$\Delta, \%$	ΓВ	$\Delta, \%$
315.6	314.1	-0.5	318.5	+0.9	326.1	+3.3	318.9	+1.0	319.7	+1.3

<i>Т</i> , К	<i>С_р,</i> Дж/(К моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(320 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(320), Дж/(К моль)	<i>−∆G/Т</i> *, Дж/(К моль)
320	326.5	_	_	_
350	338.4	9.98	29.81	1.29
400	353.1	27.29	76.01	7.78
450	363.6	45.22	118.2	17.75
500	371.6	63.61	157.0	29.6
550	377.9	82.35	192.7	42.97
600	383.1	101.4	225.8	56.84
650	387.5	120.6	256.7	71.04
700	391.3	140.1	285.5	85.34
750	394.7	159.8	312.6	99.60
800	397.7	179.6	338.2	113.7
850	400.5	199.5	362.4	127.6
900	403.1	219.6	385.4	141.3
950	405.5	239.8	407.2	154.7
1000	407.8	260.2	428.1	167.9

Таблица 5. Термодинамические свойства CaSm₂Ge₃O₁₀

Примечание. $\Delta G/T^* = [H^{\circ}(T) - H^{\circ}(320 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(320 \text{ K})].$

ЗАКЛЮЧЕНИЕ

Впервые получен германат CaSm2Ge3O10 обжигом на воздухе в интервале 1423-1473 К стехиометрических смесей CaCO₃, Sm₂O₃ и GeO₂. Рентгенографически, методом МПР, для синтезированных однофазных поликристаллических порошков CaSm2Ge3O10 установлено, что его кристаллическая структура (пр. гр. P21/c, 293 K) является моноклинной с параметрами элементарной ячейки a = 6.9779(8) Å, b = 6.92859(7) Å, c == 18.8907(2) Å, β = 108.3280(8)°. В области температур 320-1000 К измерена теплоемкость образцов германата кальция-самария. На основе экспериментальной зависимости $C_p = f(T)$ рассчитаны термодинамические функции CaSm₂Ge₃O₁₀.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yamane H., Tanimura R., Yamada T. et al. Synthesis and Crystal Structure of CaY2Ge3O10 and CaY2Ge4O12 // J. Solid State Chem. 2006. V. 179. P. 289–295. https://doi.org/10.1016/j.jss.2005.10.023
- 2. Lipina O.A., Surat L.L., Melkozerova M.A. et al. Synthesis, Crystal Structure and Luminescence Properties of $CaY_{2-x}Eu_xGe_3O_{10}$ (x = 0–2) // J. Solid State Chem. 2013. V. 206. P. 117-121. https://doi.org/10.1016/j.jssc.2013.08.002
- 3. Липина О.А., Сурат Л.Л., Мелкозерова М.А. и др. Синтез, кристаллическая структура и люминесцентные свойства $CaY_2Ge_3O_{10}:Ln^{3+}$, Ln = Eu, Tb // Оптика и спектроскопия. 2014. Т. 116. № 5. С. 751-756. https://doi.org/10.7868/S0030403414050134
- 4. Lipina O.A., Surat L.L., Tyutyunnik A.P. et al. Synthesis and Structural Study of a New Group of Trigermanates, $CaRE_2Ge_3O_{10}$ (RE = La-Yb) // Cryst. Eng. Commun. 2015. P. 1-12. https://doi.org/10.1039/c5ce00063g
- 5. Липина О.А., Сурат Л.Л., Тютюник А.П. и др. Инфракрасная люминесценция CaLa2-xNdxGe3O10:Ho3+ Er³⁺ // Оптика и спектроскопия. 2016. Т. 121. № 4. C. 562-568.
 - https://doi.org/10.7868/S0030403416100147
- 6. Липина О.А., Сурат Л.Л., Бакланова Я.В. и др. Термическое расширение и люминесцентные свойства триортогерманатов CaLa_{2-x}Eu_xGe₃O₁₀ (x = 0.0-0.6) // ΦTT. 2018. T. 60. № 2. C. 363–368. https://doi.org/10.1134/S1063783418020154
- 7. Lipina O.A., Surat L.L., Chufarov A.Y. et al. Upconversion Luminescence and Ratiometric Temperature Sensing Behavior of ER^{3+}/Yb^{3+} -Codoped $CaY_2Ge_3O_{10}$ Germanate // Mendeleev Commun. 2021. T. 31. № 1. C. 113-115. https://doi.org/10.1016/j.mencom.2021.01.035
- 8. Липина О.А., Сурат Л.Л., Меленцова А.А. и др. $BaYb_{2-x}Er_xGe_3O_{10}$ и $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$: люминесцентные свойства, перспективы использования для бесконтактного определения температуры // ΦTT. 2021. T. 63. № 7. C. 944–949. https://doi.org/10.21883/FTT.2021.07.51046.050

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 Nº 1

- 9. Visser J.W. A Fully Automatic Prigram for Finding the Unit Cell from Powder Data // J. Appl. Crystallogr. 1969. V. 2. P. 89-95.
- 10. Solovyov L.A. Full-Profile Refinement by Derivative Difference Minimization // J. Appl. Crystallogr. 2004. V. 37. P. 743-749. https://doi.org/10.1107/S0021889804015638
- 11. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость и термодинамические свойства Tb₂Sn₂O₇ // Неорган. материалы. 2017. T. 53. № 1. C. 71–73. https://doi.org/10.7868/S0002337X17010043
- 12. Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. Теплоемкость станнатов редкоземельных элементов в области 350-1000 К // Неорган. материалы. 2017. T. 53. № 9. C. 975–981. https://doi.org/10.7868/S0002337X17090111
- 13. Maier C.G., Kelley K.K. An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243-3246. https://doi.org/10.1021/ja01347a029
- 14. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Синтез и исследование высокотемпературной теплоемкости Sm₂Ge₂O₇ и Eu₂Ge₂O₇ // Неорган. материалы. 2018. Т. 54. № 2. С. 181–184. https://doi.org/10.7868/S0002337X18020100
- 15. Leitner J., Chuchvalec P., Sedmidubský D. et al. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27-46. https://doi.org/10.1016/S0040-6031(02)00176-6
- 16. Leitner J., Voňka P., Sedmidubský D., Svoboda P. Application of Neumann-Kopp Rule for Estimation of Heat Capacity of Mixed Oxides // Thermochim. Acta. 2010. V. 497. P. 7–13. https://doi.org/10.1016/j.tca.2009.08.002
- 17. Кумок В.Н. Проблема согласования методов оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108-123.
- 18. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- 19. Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbra S.L. Prediction of Heat Capacities of Solid Inorganic Salts from Group Contributions // Ind. Eng. Chem. Tes. 1996. V. 35. P. 343–348.
- 20. Leitner J., Sedmidubský D., Chuchvalec P. Preduction of Heat Capacities of Solid Binary Oxides from Group Contribution Method // Ceram.-Silic. 2002. V. 46. № 1. P. 29-32.
- 21. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978. 360 с.
- 22. Zhang Y., Jung I.-H. Critical Evaluation of Thermodynamic Properties of Rare Earth Sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) // CALPHAD: Comp. Coupling Phase Diagr. Thermochem. 2017. V. 58. P. 169-203. https://doi.org/10.1016/j.calphad.2017.07.001
- 23. Тананаев И.В., Шпирт М.Я. Химия германия. М.: Химия, 1967. 451 с.

2023