УДК 669.265:621.762.242

ПОЛУЧЕНИЕ СМЕСИ ПОРОШКОВ ВОЛЬФРАМА С ХРОМОМ ВОССТАНОВЛЕНИЕМ ИХ ОКСИДНЫХ СОЕДИНЕНИЙ ПАРАМИ МАГНИЯ

© 2023 г. В. Н. Колосов^{1,} *, М. Н. Мирошниченко¹, Т. Ю. Прохорова¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра "Кольский научный центр Российской академии наук", Академгородок, 26a, Апатиты, Мурманская обл., 184209 Россия *e-mail: v.kolosov@ksc.ru

Поступила в редакцию 01.07.2022 г. После доработки 22.12.2022 г. Принята к публикации 23.12.2022 г.

Исследован процесс получения смесей высокодисперсных порошков вольфрама с хромом восстановлением сложных оксидных соединений этих металлов парами магния в интервале температур 700–800°С при остаточном давлении в реакторе 5–20 кПа. Получены смеси порошков W + Cr с удельной поверхностью в интервале 34–49 м²/г. Порошки характеризуются мезопористой структурой и могут быть использованы в качестве прекурсоров для получения самопассивирующихся сплавов.

Ключевые слова: порошок, восстановление, удельная поверхность, пористость **DOI:** 10.31857/S0002337X23010104, **EDN:** OTIYCU

ВВЕДЕНИЕ

Использование вольфрама в виде чистого металла на воздухе при умеренных температурах ограничено его окислением [1]. В этих условиях на поверхности металла образуются два оксидных слоя. Внешний слой является порошкообразным желтым оксидом WO₃, а внутренний, более тонкий. представляет собой темно-синий плотно прилегающий оксид переменного состава. Внутренний оксид трансформируется во внешний с постоянной скоростью. Одним из способов подавления окисления вольфрама является сплавление его с хромом, который образует непрерывные слои оксида Cr_2O_3 и защищает от дальнейшего окисления [2]. Использование хрома в качестве антикоррозионного элемента обусловлено тем, что система вольфрам-хром является изоморфной с разрывом смешиваемости ниже 1677°С [3], а свободная энергия Гиббса образования Cr₂O₃ более отрицательна, чем энергия образования оксидов вольфрама [4]. Поэтому с термодинамической точки зрения в системе W-Cr протекание реакции образования оксида хрома более выгодно. Эти сплавы в разрыве смешиваемости имеют тенденцию распадаться на объемно-центрированную кубическую (ОЦК) фазу α-W, обогащенную хромом, и ОЦК-фазу α-Cr, обогащенную вольфрамом. Этот распад сопровождается дисперсионным упрочнением сплавов W-Cr продуктами

распада и может реализовываться как по бинодальному, так и по спинодальному (без образования зародышей) механизмам [5].

Консолидация порошков W и Cr в сплав затруднена из-за низкой взаимной диффузии металлов даже при высоких температурах [6]. Для снижения температуры спекания обычно используют элементы-активаторы. Наиболее эффективным их них является Pd [7, 8]. Он активирует диффузию путем образования жидкой фазы в процессе спекания. Однако наличие палладия в сплаве ограничивает его высокотемпературные возможности из-за снижения температуры солидуса и, кроме того, Pd является редким и дорогостоящим металлом. В качестве активаторов используют и другие элементы, в частности, для создания на основе W-Cr самопассивирующихся сплавов, способных подавлять окисление поверхности первой стенки термоядерных реакторов в случае аварии с потерей теплоносителя и одновременным попаданием воздуха на ее поверхность [9]. Использование в качестве активаторов Si, Ti или Y vскоряет рост зашитного слоя оксида при температуре до 1000°С, приводя к снижению скорости окисления сплава на несколько порядков по сравнению с чистым вольфрамом [10-13]. Однако образующиеся при добавке кремния хрупкие интерметаллиды снижают прочностные характеристики материала и, тем самым, усложняют режимы его обработки. Наличие титана в сплаве

Рис. 1. Фрагменты дифрактограмм синтезированных прекурсоров: смесь 35% CaWO₄ + 65% CaCrO₄ (*I*), Cr₂WO₆ (*2*).

приводит к накоплению и удерживанию в нем дейтерия, что также неприемлемо. Процесс консолидации сплава активируется при спекании высокодисперсных порошков. Из-за наличия избыточной поверхностной энергии они обеспечивают большую движущую силу при спекании и способствуют образованию плотных компактов при более низких температурах [14]. Для получения смеси высокодисперсных порошков W и Cr обычно используют высокоэнергетический размол в мельницах [10–13, 15]. Его недостатком является долговременное потребление энергии и риск загрязнения полученного продукта материалами измельчающей среды.

Значительное снижение размера частиц и увеличение удельной поверхности порошков тугоплавких металлов VI группы может быть достигнуто магниетермическим восстановлением их сложных оксидов [16, 17]. В частности, восстановлением CaMoO₄, CaWO₄ [16] и MgCr₂O₄ [17] парами магния получены порошки Mo, W и Cr с поверхностью на уровне 20–30 м²/г. Цель настоящей работы — исследование возможности получения смеси высокодисперсных порошков W + Cr восстановлением парами магния сложных оксидных соединений, содержащих вольфрам и хром.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве возможного прекурсора был выбран $CaW_xCr_{1-x}O_4$. Для его синтеза использовали Cr₂O₃, полученный прокаливанием на воздухе (NH₄)₂Cr₂O₇ ("ч."), WO₃ ("ч.") и CaCO₃ ("ч."). К смеси реагентов добавляли воду (соотношение T: K = 1:6) и перемешивали мешалкой в течение 3 ч. Смесь сушили при 100°С и спекали при 620°С в течение 6 ч, затем измельчали и повторно спекали при 1000°С. Однако синтез в этих условиях не привел к образованию сложного оксида $CaW_{x}Cr_{1-x}O_{4}$. Полученный продукт состоял из смеси CaCrO₄ и CaWO₄ (рис. 1, дифрактограмма 1). Для проведения исследований была выбрана смесь 35% CaWO₄ + 65% CaCrO₄ (здесь и далее в тексте использованы мас. %). Для сравнения в тех же условиях восстанавливали смесь порошков 46% WO₃ + 54% Cr₂O₃. Данные составы прекурсоров соответствуют примерно равному массовому содержанию W и Cr в смеси.

В качестве прекурсора также был выбран вольфрамат хрома Cr_2WO_6 . Он является востребованным материалом, который проявляет большой магнитодиэлектрический и линейный магнитоэлектрический эффекты [18, 19], имеет хорошие полупроводниковые характеристики [20] и адсорбционные свойства [21]. Cr_2WO_6 синтезировали твердофазной реакцией между Cr_2O_3 и WO_3 по методике [22]. По данным рентгенофазового анализа (**РФА**) был получен чистый продукт, не содержащий посторонних фаз (рис. 1, дифрактограмма 2). Для сравнения в качестве прекурсора использовали смесь порошков 60% WO_3 + 40% Cr_2O_3 , содержание в которой W и Cr соответствовало их содержанию в Cr_2WO_6 .

Аппаратура, методики получения и исследования порошков аналогичны использованным ранее [17]. Процесс вели в атмосфере паров магния и аргона (ВЧ). Емкость с магнием (М95) устанавливали на дно реакционного стакана. Навеску прекурсоров массой 5 г загружали в металлические тигли, которые устанавливали над емкостью с магнием. Реакционный стакан закрывали крышкой, в центре которой имелось отверстие для чехла термопары. Сборку помещали в реторту из нержавеющей стали, которую герметизировали, вакуумировали, заполняли аргоном и нагревали до требуемой температуры при закрытой крышке реакционного стакана. Процесс восстановления вели в температурном интервале 700-800°C и при остаточном давлении аргона в реакторе 5-20 кПа в течение

Рис. 2. Зависимости энергии Гиббса ΔG от температуры реакций восстановления оксидных соединений вольфрама и хрома парами магния.

3-5 ч. Продукты реакции обрабатывали 15%-ным раствором азотной кислоты ("х.ч."), а затем отмывали дистиллированной водой до нейтральной реакции и сушили на воздухе при температуре 80°С. РФА проводили на дифрактометрах ДРОН-2 и SHIMADZU XRD-6000 (Си K_{α} -излучение). Идентификацию фаз осуществляли на базе дифрактометрических данных 89-4248 PDF-4 ICPDS-ICCD 2021. Удельную поверхность и пористость порошков измеряли методами БЭТ и ВЈН на приборе TriStarII 3020 V1.03. Средний размер кристаллитов металлов оценивали рентгеновским методом по формуле Шерера [23]. Морфологию поверхности порошков W—Сг после предварительного напыления золотом изучали с помощью сканирующего электронного микроскопа (СЭМ) SEM LEO-420.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Расчетная энергия Гиббса ΔG реакций восстановления магнием выбранных соединений приведена на рис. 2. Расчеты показывают высокую термодинамическую вероятность восстановления. Исходные реагенты, за исключением магния, и продукты реакций в интервале температур 700–800°С характеризуются низким давлением паров, не превышающим 10^{-17} – 10^{-14} Па [16, 17]. Отсюда должно следовать, что полученная реакционная масса будет однородной и располагаться в месте загрузки прекурсора. Однако на практике в

Рис. 3. Тигли с реакционной массой после восстановления смеси $46\% \text{ WO}_3 + 54\% \text{ Cr}_2\text{O}_3$ (правые тигли a–в), смеси $35\% \text{ CaWO}_4 + 65\% \text{ CaCrO}_4$ (левые тигли a–в), Cr_2WO_6 (тигли г) и смеси $60\% \text{ WO}_3 + 40\% \text{ Cr}_2\text{O}_3$ (тигли д, е): температура 750° С; остаточное давление в реакторе 5 (a), 10 (б), 15 (в), 20 кПа (г–е); время восстановления: 3 (а–в), 4 ч (г–е).

Рис. 4. Фрагменты дифрактограмм продуктов реакций: белого вещества с поверхности реакционной массы после восстановления смеси 60% WO₃ + 40% Cr₂O₃ (*I*), реакционной массы под белым веществом после восстановления смеси 46% WO₃ + 54% Cr₂O₃ (*2*), после восстановления смеси 46% WO₃ + 54% Cr₂O₃ (*2*), после восстановления смеси 35% CaWO₄ + 65% CaCrO₄ (*3*), после восстановления Cr₂WO₆ (*4*) и от-мытого порошка (*5*).

ряде экспериментов это было не так. Вид тиглей после восстановления смесей 46% WO₃ + 54% Cr₂O₃ и 35% CaWO₄ + 65% CaCrO₄ представлен на рис. 3а-3в. После восстановления смеси оксидов $Cr_2O_3 +$ + WO₃ на внутренней боковой поверхности тиглей выше уровня их загрузки и на поверхности реакционной массы наблюдаются отложения белого вещества (рис. 3а-3в, правые тигли). По данным РФА, белое вещество представляет собой чистый MgO (рис. 4, дифрактограмма 1). Под белой коркой находится смесь порошков Cr и W с примесью MgO (рис. 4, дифрактограмма 2). Количество MgO в смеси уменьшается, а толщина корки на поверхности увеличивается с увеличением остаточного давления аргона в реакторе. Ранее было показано, что пространственное разделение металлической и оксидной фаз при восстановлении парами Мд ряда оксидных соединений тугоплавких металлов VI группы обусловлено протеканием электронно-опосредованной реакции (ЭОР) без непосредственного физического контакта реагентов [24]. С увеличением остаточного давления аргона в реакторе доля металла, восстановленного в режиме ЭОР, увеличивается (рис. 3а-3в). Для смеси 35% CaWO₄ + 65% CaCrO₄ в исслелуемых условиях разделения пролуктов реакции не наблюдалось. Они представляли собой гомогенную смесь темного цвета с составом, соответствующим стехиометрическому соотношению реакции (рис. 4, дифрактограмма 2).

Вид тиглей после восстановления Cr_2WO_6 и смеси 60% $WO_3 + 40\%$ Cr_2O_3 показан на рис. 3г–3е.

Рис. 5. Зависимости удельной поверхности смеси порошков W + Cr от остаточного давления в реакторе ($t = 750^{\circ}$ C) (a) и температуры ($p = 5 \text{ к}\Pi a$) (6); прекурсоры: $1 - 46\% \text{ WO}_3 + 54\% \text{ Cr}_2\text{O}_3$, $2 - 60\% \text{ WO}_3 + 40\% \text{ Cr}_2\text{O}_3$, $3 - 35\% \text{ CaWO}_4 + 65\% \text{ CaCrO}_4$, $4 - \text{Cr}_2\text{WO}_6$.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 1 2023

Рис. 6. Зависимости суммарной поверхности пор от их среднего диаметра; прекурсоры: 1 - 46% WO₃ + 54% Cr₂O₃, 2 - 60% WO₃ + 40% Cr₂O₃, 3 - 35% CaWO₄ + 65% CaCrO₄, $4 - Cr_2$ WO₆; удельная поверхность порошков: 1 - 6, 2 - 9, 3 - 34, 4 - 49 м²/г.

Рис. 7. СЭМ-изображения высокодисперсных порошков смеси W + Cr с удельной поверхностью 34 (a) и 49 ${\rm m}^2/{\rm r}$ (б); прекурсоры: a – смесь 35% CaWO₄ + 65% CaCrO₄, 6 – Cr₂WO₆.

После восстановления Cr_2WO_6 продукт в тиглях представлял собой гомогенную смесь, соответствующую стехиометрическому соотношению реакции (рис. 4, дифрактограмма 3). Восстановление вольфрамата хрома протекает при непосредственном физическом контакте с магнием, о чем свидетельствует лишь очень тонкий (доли микрона) налет MgO на поверхности реакционной массы (рис. 3г). При всех исследованных условиях восстановления смеси 60% $WO_3 + 40\% Cr_2O_3$, так же как и для состава 46% $WO_3 + 54\% Cr_2O_3$, наблюдалось пространственное разделение металлической и оксидной фаз (рис. 3д, 3е).

Удельная поверхность смеси отмытых порошков W + Cr (рис. 4, дифрактограмма 4), полученных восстановлением смеси соединений CaCrO₄ + + CaWO₄ и Cr₂WO₆, составляет соответственно 31–33 и 44–49 м²/г. В то же время, для порошков, полученных восстановлением смеси оксидов Cr₂O₃ + WO₃, она не превышает 10 м²/г (рис. 5). Большая удельная поверхность порошков при восстановлении сложных оксидов обусловлена тем, что образующийся в процессе восстановления оксид магния, создавая прослойки между частицами образующихся металлов, затрудняет их коагуляцию. После выщелачивания MgO остается большое количество нанопор, которые вносят значительный вклад в удельную поверхность порошка (рис. 6).

Рис. 8. Кривые адсорбции–десорбции азота смеси порошков W + Cr с удельной поверхностью 9 (a), 49 M^2/Γ (б); прекурсоры: a – смесь 60% WO₃ + 40% Cr₂O₃, 6 – Cr₂WO₆.

2023

Согласно расчетам, выполненным по формуле Шерера, для порошков, полученных восстановлением сложных оксидов, средний размер кристаллитов W и Cr составлял 14-20 нм, в то время как при восстановлении смесей WO₃ с Cr₂O₃ – 60-90 нм. Как следует из представленных на рис. 7 СЭМ-изображений порошков, они представляют собой конгломераты различных размеров и форм. При этом первичные частицы, составляющие конгломераты, имеют схожий внешний облик и размеры около 200 нм.

Кривые адсорбции смеси порошков, полученных при восстановлении исследованных соединений, соответствуют IV типу по IUPAC. Они отличаются наличием петли гистерезиса и характерны для материалов с мезопористой структурой. Количество вещества, адсорбируемого порошками W + Cr, полученными при одинаковых условиях, в 6–7 раз больше в случае восстановления сложных оксидов по сравнению с порошками, полученными восстановлением смесей WO₃ + Cr₂O₃ (рис. 8).

ЗАКЛЮЧЕНИЕ

Изучены закономерности восстановления смеси 35% CaWO₄ + 65% CaCrO₄, Cr₂WO₆ и смесей оксидов WO₃ + Cr₂O₃ парами магния в интервале температур 700–850°С при остаточном давлении аргона в реакторе 5–20 кПа. Исследованы характеристики полученных смесей порошков W + Cr.

При восстановлении смеси 35% CaWO₄ + 65% CaCrO₄ и Cr₂WO₆ получены смеси высокодисперсных порошков W + Cr с удельной поверхностью 34–49 м²/г и средним размером кристаллитов 14–20 нм. Форма кривых адсорбции порошков соответствует IV типу по IUPAC, что подтверждает их мезопористую структуру. Смеси порошков могут быть использованы в качестве прокуроров для получения самопассивирующихся сплавов.

СПИСОК ЛИТЕРАТУРЫ

- Webb W.W., Norton J.T., Wagner C. Oxidation of Tungsten // J. Electrochem. Soc. 1956. V. 103. № 2. P. 107–111. https://doi.org/10.1149/1.2430238
- Telu S., Patra A., Sankaranarayana M., Mitra R., Pabi S.K. Microstructure and Cyclic Oxidation Behavior of W–Cr Alloys Prepared by Sintering of Mechanically Alloyed Nanocrystalline Powders // Int. J. Refract. Met. Hard Mater. 2013. V. 36. № 1. P. 191–203. https://doi.org/10.1016/j.ijrmhm.2012.08.015
- Naidu S.V.N., Sriramamurthy A.M., Rao P.R. The Cr–W (Chromium–Tungsten) System // Bull. Alloy Phase Diagrams. 1984. V. 5. № 3. P. 289–292. https://doi.org/10.1007/BF02868555
- Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: Химия, 2000. 480 с.
- 5. Бодрова Л.Е., Мельчаков С.Ю., Гойда Э.Ю. и др. Дисперсные структуры распада твердых растворов (Cr,W) в сплавах Cr–W–Cu // Металлы. 2022. № 1. С. 21–32.
- 6. Park M., Alexander K.C., Schuh C.A. Diffusion of Tungsten in Chromium: Experiments and Atomistic Modeling // J. Alloys Compd. 2014. V. 611. № 1–2. P. 433–439. https://doi.org/10.1016/j.jallcom.2014.05.085
- Dzykovich I.Ya., Panichkina V.V., Skorokhod V.V., Shaiderman L.I. Effect of Palladium on Diffusion Processes in the System Tungsten-Chromium // Soviet Powder Metall. Met. Ceram. 1976. V. 15. № 2. P. 151–153. https://doi.org/10.1007/bf00793571
- 8. Kafri A., Makonovitsky A., Shneck R. Z. On the Mechanism of Oxidation Resistance of W-Cr-Pd Alloys //

Defect Diffusion Forum. 2018. V. 383. P. 133–141. doi: 10.4028/www.scientific.net/ddf.383.133

- Litnovsky A., Klein F., Tan X. et al. Advanced Self-Passivating Alloys for an Application under Extreme Conditions // Metals. 2021. V. 11. № 8. P. 1255–1273. https://doi.org/10.3390/met11081255
- Lopez-Ruiz P., Koch F., Ordas N. et al. Manufacturing of Self-Passivating W–Cr–Si Alloys by Mechanical Alloying and HIP // Fusion Eng. Des. 2011. V. 86. № 9– 11. P. 1719–1723. https://doi.org/10.1016/j.fusengdes.2011.03.107
- 11. García-Rosales C., López-Ruiz P., Alvarez-Martín S. Oxidation Behaviour of Bulk W-Cr-Ti Alloys Prepared by Mechanical Alloying and HIPing // Fusion Eng. Des. 2014. V. 89. № 7-8. P. 1611-1616. https://doi.org/10.1016/j.fusengdes.2014.04.057
- 12. Sal E., García-Rosales C., Iturriza I. et al. High Temperature Microstructural Stability of Self-Passivating W-Cr-Y Alloys for Blanket First Wall Application // Fusion Eng. Des. 2019. V. 146. № P. 1596–1599. https://doi.org/10.1016/j.fusengdes.2019.02.136
- Calvo A., García-Rosales., Koch F. et al. Manufacturing and Testing of Self-Passivating Tungsten Alloys of Different Composition // Nucl. Mater. Energy. 2016. V. 9. P. 422–429.

https://doi.org/10.1016/j.nme.2016.06.002

- Staab T.E., Krause-Rehberg R., Vetter B. et al. The Influence of Microstructure on the Sintering Process in Crystalline Metal Powders Investigated by Positron Lifetime Spectroscopy: II. Tungsten Powders with Different Powder-Particle Sizes // J. Phys.: Condens. Matter. 1999. V. 11. P. 1787–1806. https://doi.org/10.1088/0953-8984/11/7/010
- Hou Q.-Q., Huang K., Luo L.-M. et al. Microstructure and Its High Temperature Oxidation Behavior of W–Cr Alloys Prepared by Spark Plasma Sintering // Materialia. 2019. V. 6. P. 100332(1/7). https://doi.org/10.1016/j.mtla.2019.100332
- 16. Орлов В.М., Колосов В.Н. Магниетермическое восстановление оксидных соединений вольфрама и мо-

либдена // Докл. РАН. 2016. Т. 468. № 3. С. 288–292. https://doi.org/10.7868/S0869565216150147

- 17. Колосов В.Н., Мирошниченко М.Н., Орлов В.М. Магниетермическое получение порошков хрома // Неорган. материалы. 2021. Т. 57. № 2. С. 137–143. https://doi.org/10.31857/S0002337X2101
- Gaultois M.W., Kemei M.C., Harada J.K., Seshadri R. Rapid Preparation and Magnetodielectric Properties of Trirutile Cr₂WO₆// J. Appl. Phys. 2015. V. 117. P. 014105. https://doi.org/10.1063/1.4905486
- Fang Y., Wang L.Y., Song Y.Q. et al. Manipulation of Magnetic Field on Dielectric Constant and Electric Polarization in Cr₂WO₆ // Appl. Phys. Lett. 2014. V. 104. № 13. P. 014105. https://doi.org/10.1063/1.4870518
- 20. *Tian C., Zhou M., Hua Z. et al.* Investigation on Acetone Sensing Properties and Mechanism of *p*-Type Cr₂WO₆ Nanoparticles // J. Mater. Sci.: Mater. Electron. 2020. V. 31. № 13. P. 3899–3909. https://doi.org/10.1007/s10854-020-02935-5
- Zhou W, Huang J., Li J. et al. Cr₂WO₆ Nanoparticles Prepared by Hydrothermal Assisted Method with Selective Adsorption Properties for Methylene Blue in Water // Mater. Sci. Semicond. Process. 2015. V. 34. P. 170–174. https://doi.org/10.1016/j.mssp.2015.02.010
- 22. Орлов В.М., Мирошниченко М.Н., Колосов В.Н. Синтез оксидных соединений вольфрама с хромом методом спекания. Сб. Матер. VI Междунар. конф. "Химия и химическая технология" (Ереван, 20–27 сентября 2019 г.). Ереван: ИОНХ НАН РА, 2019. С. 120–122.
- 23. *Cullity B.D., Stock S.R.* Elements of X-Ray Diffraction, 3rd ed. Prentice-Hall, 2001.
- 24. Колосов В.Н., Орлов В.М. Электронно-опосредованные реакции при металлотермическом восстановлении оксидных соединений молибдена и вольфрама // Докл. РАН. 2019. Т. 484. № 4. С. 447–450. https://doi.org/10.31857/S0869-56524844447-450