УДК 669-669.2:537.312.62

МАГНИТНЫЕ СВОЙСТВА И КРИТИЧЕСКИЕ ТОКИ СВЕРХПРОВОДНИКОВ Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄

© 2023 г. С. А. Лаченков^{1, *}, В. А. Власенко², А. Ю. Цветков², В. А. Дементьев¹

¹Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия ²Физический институт им. П.Н. Лебедева Российской академии наук, Ленинский пр., 53, Москва, 119991 Россия *e-mail: slachenkov@imet.ac.ru Поступила в редакцию 09.06.2022 г.

После доработки 19.08.2022 г. Принята к публикации 22.08.2022 г.

На базе соединения DyRh_{3.8}Ru_{0.2}B₄, посредством частичного замещения Dy на Er, получены магнитные сверхпроводники: Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ ($T_c \sim 5.1$ K) и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ ($T_c \sim 5.8$ K), для которых подробно исследованы зависимости $\chi(T)$, M(B) и $B_{c_2}(T)$. Для этих соединений установлен антиферромагнитный переход (при $T \sim 3$ K), аналогичный наблюдаемому в магнитном сверхпроводнике DyRh_{3.8}Ru_{0.2}B₄. На основе измерений магнитного момента от поля (M(B)) образцов Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ с использованием модели Бина получены зависимости критической плотности тока от поля $J_c(B)$ и приведенной силы пиннинга $F_p(h)$ от величины приведенного поля (h). Установлено, что отклонение от закона подобия у сверхпроводников с антиферромагнитным упорядочением магнитной подсистемы (Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄) наиболее заметно проявляется при h > 0.4.

Ключевые слова: сверхпроводимость, магнитные сверхпроводники, магнитные свойства, антиферромагнетизм, ферримагнетизм, критические токи, модель Бина (Bean), сила пиннинга, центры пиннинга, закон "подобия"

DOI: 10.31857/S0002337X2301013X, EDN: OTKSTX

введение

Проблема сосуществования сверхпроводимости и магнетизма в своем развитии прошла сложный путь: от изначальной точки зрения о сугубо отрицательном влиянии магнетизма на сверхпроводимость [1] до утверждения о том, что сверхпроводимость может возникать на фоне магнетизма и благодаря ему [2]. В настоящее время магнитные сверхпроводники активно изучаются.

В этой связи большой интерес представляют тройные бориды с общей химической формулой RRh_4B_4 (R – редкоземельный элемент), у которых в ряде случаев возможно сосуществование сверхпроводимости и магнетизма (типа ферромагнитного либо антиферромагнитного упорядочения) [3, 4]. Сверхпроводящие характеристики таких материалов могут существенно отличаться от "классического случая" и не описываются в рамках теории БКШ [5]. Особенности магнитных сверхпроводников проявляются через ряд аномалий, которые подробно описаны в [6].

При синтезе тройных боридов RRh₄B₄ некоторое количество Rh обычно замещается на Ru, что при-

водит к формированию кристаллической структуры типа LuRu₄B₄, при которой сверхпроводимость и магнетизм могут сосуществовать.

На рис. 1 представлена модель LuRu₄B₄ в виде объемноцентрированной тетрагональной (**OUT**) структуры. Согласно [5], основные составные блоки OUT-структуры — слегка искаженные ГЦК-решетки, по узлам которой распределены атомы лютеция (Lu). Атомы редкоземельного металла отделены один от другого неэквивалентными тетраэдрами Ru₄B₄ двух типов. Эти тетраэдры развернуты относительно друг друга на 90°. В нашем случае на "позициях" атомов Lu и Ru расположены соответственно R и Rh.

Для тройных боридов со структурой типа $LuRu_4B_4$ характерно следующее: R-элемент в соединении существенно влияет на его сверхпроводящие свойства; между магнитным моментом R-ионов и спинами электронов проводимости взаимодействие весьма слабое; R-ионы в соединении образуют упорядоченную подрешетку (рис. 1) [5].

Рис. 1. ОЦТ-структура соединения LuRu₄B₄ (тетраэдры Ru₄B₄-1 и Ru₄B₄-2 развернуты относительно друг друга на 90°) [5].

Обменное взаимодействие между R-ионами и электронами проводимости в такой структуре может быть описано гамильтонианом (*H*) вида

$$H = -2F(g_i - 1)\mathbf{JS},\tag{1}$$

где F — параметр обменного взаимодействия, g_j — фактор Ланде, **J** — оператор полного углового момента R-иона, **S** — плотность спинов электронов проводимости на узле R-иона.

Небольшая величина H позволяет соединениям RRh₄B₄ сохранять сверхпроводимость, несмотря на значительное количество (более 10 ат. %) R-ионов. Из (1) следует, что величина гамильтониана H существенно зависит от оператора полного углового момента R-иона.

В табл. 1 приведены данные по трем боридам родия со структурой LuRu₄B₄, которые в дальнейшем будут для нас существенны.

Из табл. 1 следует, что величина магнитного момента (μ) коррелирует с T_c сверхпроводника. С другой стороны, μ R-ионов могут существенно повлиять и на магнитные свойства соединения. Поэтому магнитные и сверхпроводящие свойства соединений RRh₄B₄ со структурой LuRu₄B₄ можно существенно изменить посредством частично-

го замещения одного R на атомы другого редкоземельного элемента.

Еще одна важная проблема магнитных сверхпроводников — это влияние магнитной подсистемы на величину критических токов. Известно, что критические токи существенно зависят от дефектов структуры, которые позволяют сформировать систему центров пиннинга, необходимую для закрепления вихревых нитей Абрикосова [7, 8]. Согласно [9], материалы, в которых сверхпроводимость сосуществует с магнетизмом, могут иметь дополнительные центры пиннинга, связанные с наличием магнитных областей.

Выполненное ранее исследование [10] критического тока (j_c) соединения HoRh_{3.8}Ru_{0.2}B₄, сверхпроводимость которого существует на фоне ферримагнетизма, позволило установить существенное отклонение от закона подобия при h > 0.2, где $h = B/B_{c_2}$ – величина приведенного поля, B_{c_2} – верхнее критическое поле сверхпроводящего материала. Для создания более полной картины представлялось важным исслеловать критические токи сверхпроводников RRh₄B₄ в случае антиферромагнитного упорядочения магнитной подсистемы. В работе [11] было установлено сосуществование сверхпроводимости и антиферромагнетизма при температуре ниже 2.8 К для DyRh_{3.8}Ru_{0.2}B₄. С учетом этого обстоятельства, а также данных в табл. 1 можно было ожидать, что частичное замещение Dy на Er в DyRh_{3.8}Ru_{0.2}B₄ приведет к повышению Т_с и некоторой трансформации его магнитных свойств при сохранении антиферромагнитного упорядочения (ниже 3 К). С этой точки зрения было интересно исследовать критические токи и проанализировать выполнение закона подобия в случае твердых растворов замещения $Dy_{1-x}Er_{x}Rh_{38}Ru_{02}B_{4}$.

Целью настоящей работы было установление зависимостей сверхпроводящих и магнитных свойств соединений DyRh_{3.8}Ru_{0.2}B₄, Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ от температуры и магнитного поля, определение величины критических плотностей тока и приведенных сил пиннинга, а также сравнительный анализ с данными [10].

Таблица 1. Характеристики соединений $R(Rh_{0.85}Ru_{0.15})_4B_4$ со структурой $LuRu_4B_4$ [5, 7]

Ион R	Число электронов на 4f-оболочке	Магнитный момент R-иона μ, μ _Б	<i>T_c</i> , K
Dy ³⁺	$4f^9$	10.65	4.0
Ho ³⁺	$4f^{10}$	10.61	6.3
Er ³⁺	$4f^{11}$	9.60	7.9

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сложные бориды родия были синтезированы из смеси порошков эрбия, диспрозия, родия, рутения и бора с чистотой не хуже 99.93%. Размер частиц порошка не превышал 40 мкм. Исходные компоненты, взятые в требуемых количествах, тщательно перемешивались в агатовой ступке с добавлением ацетона и затем прессовались в таблетки (цилиндры). Синтез осуществлялся посредством плавки в аргонно-дуговой печи. Рутений, который в неболыших количествах вводился в соединения, необходим для кристаллизации соединений в требуемой структуре (типа LuRu₄B₄). Рентгенографические исследования образцов были выполнены на дифрактометре ДРОН 3М на отфильтрованном Cu K_{α} -излучении.

Для исследования электрофизических свойств образцов из выплавленных слитков вырезались цилиндры диаметром 3 и длиной 4 мм. Температурные зависимости магнитной восприимчивости, намагниченности и магнитного момента были измерены на универсальном приборе PPMS-9 фирмы Quantum Design. Оценка критической плотности тока образцов выполнена в приближении модели Бина (Bean) [12, 13] для жестких сверхпроводников 2-го рода. Расчеты проводились по методике, ранее описанной в работе [10].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Во введении отмечалось, что соединение $Dy(Rh_{0.85}Ru_{0.15})_4B_4$ является сверхпроводником с $T_c \sim 4.0$ K, с другой стороны Er(Rh_{0.85}Ru_{0.15})₄B₄ того же структурного типа ($LuRu_4B_4$) показывает критическую температуру сверхпроводящего перехода ~7.9 К (табл. 1). Исходя из рис. 1 и формулы (1) можно было предположить, что частичное замещение Dy на Er в DyRh_{3.8}Ru_{0.2}B₄ приведет к повышению Т_с при некоторой трансформации его магнитной подсистемы. С учетом этого были синтезированы твердые растворы замещения $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ ($T_c \sim 5.1$ K) и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ ($T_c \sim 5.8$ K), для которых наряду с ранее синтезированным соединением $DyRh_{3.8}Ru_{0.2}B_4$ ($T_c \sim 4.5$ K) [11] были подробно исследованы зависимости $\chi(T)$ в магнитных полях от 0 до 1 Тл (рис. 2).

Сопоставляя экспериментальные данные, приведенные на рис. 2, приходим к заключению, что ход кривых магнитной восприимчивости DyRh_{3.8}Ru_{0.2}B₄, Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ одинаков. В работе [11] для соединения DyRh_{3.8}Ru_{0.2}B₄ при $T \sim 45$ К был установлен переход в ферримагнитное состояние, тогда как при T > 45 К зависимость $\chi^{-1}(T)$ была линейной, т.е. выполнялся закон Кюри.

Рис. 2. Зависимости $\chi(T)$ для тройных боридов, измеренные в различных магнитных полях: DyRh_{3.8}Ru_{0.2}B₄ (1-0, 2-0.05, 3-0.1, 4-0.2, 5-0.3, 6-0.4, 7-0.5, 8-0.7, 9-1 Tл) (a); Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ (1-0, 2-0.1, 3-0.2, 4-0.4, 5-0.5, 6-0.6, 7-0.7, 8-0.8, 9-1 Тл) (б); Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ (1-0, 2-0.1, 3-0.2, 4-0.4, 5-0.5, 6-0.6, 7-0.7, 8-0.8, 9-1 Тл) (в).

Из анализа зависимостей $\chi^{-1}(T)$ (рис. 3) следует, что в случае образцов $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ отклонение от закона Кюри имеет место при температурах ниже 39 и 27 К соответственно, т.е. магнитный переход сдвигается в сторону более низких температур.

Отклонение от параболического хода кривой $B_{c_2}(T)$ в случае DyRh_{3.8}Ru_{0.2}B₄ (рис. 4) и ее перегиб при температуре ~3 К связаны с антиферромагнитным упорядочением [11]. Отметим, что ход

Рис. 3. Зависимости обратной восприимчивости от температуры для $DyRh_{3.8}Ru_{0.2}B_4$ (a), $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ (б) и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ (в).

кривых $B_{c_2}(T)$, представленных на рис. 4, характерен для магнитных сверхпроводников с антиферромагнитным переходом при температуре ~3 K.

Анализ зависимостей $\chi(T)$ и $B_{c_2}(T)$ Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄, Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ и DyRh_{3.8}Ru_{0.2}B₄ (рис. 2, 4) позволяет считать, что в случае соединений с добавками Ег вблизи 3 К имел место антиферромагнитный переход, аналогичный установленному для DyRh_{3.8}Ru_{0.2}B₄. Такая же ситуация – антиферромагнитный переход (при 0.87 K) и сопутствующее ему аномальное изменение $B_{c_2}(T)$ – наблюдалась с случае SmRh₄B₄ [5].

Для соединений $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ были исследованы зависимости магнитного момента от поля M(B) (рис. 5).

Рис. 4. Зависимости верхнего критического поля от температуры $B_{c_2}(T)$ для магнитных сверхпроводников: DyRh_{3.8}Ru_{0.2}B₄ (*1*), Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ (*2*) и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ (*3*).

При температуре ~40 К зависимость M(B) для образца $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ (рис. 5а) типична для парамагнетика, тогда как при 8 К магнитный момент показывает гистерезис, характерный для ферримагнитного состояния. Что касается образца $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$, то для него переход в магнитоупорядоченное состояние имеет место при 27 К, и это также согласуется с "характером" кривых M(B) при 40 и 8 К (рис. 5б).

При анализе магнитной подсистемы соединений Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ можно исходить из теоретических положений, изложенных в [14]: магнитные моменты ионов, локализованных в узлах решетки, могут взаимодействовать между собой и приводить к магнитоупорядоченному состоянию. В соответствии с рис. 1 ионы R в анализируемых боридах образуют магнитоупорядоченную решетку, а особенности их взаимодействия определяют состояние магнитной подсистемы. В случае антиферромагнетика обменное взаимодействие приводит к антипараллельному выстраиванию соседних магнитных моментов и их полной взаимной компенсации. При замещении одного R-иона на другой может меняться как температура перехода в магнитоупорядоченное состояние, так и его характер.

Из сопоставления результатов, приведенных на рис. 5, следует, что у образцов с большим содержанием Ег магнитные свойства выражены слабее, а магнитное упорядочение возникает при более низкой температуре. Важно, что при температурах ниже критической (T_c) момент M(B) формируется за счет как магнитной, так и сверхпроводящих составляющих образца (рис. 5), причем вклад, связанный с последней, существенно выше. Поэтому критический ток сверхпрооводников Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ можно оценить по петлям M(B), а при расчетах воспользоваться моделью Бина. На рис. 6 представ-

Рис. 5. Зависимости магнитного момента от приложенного внешнего магнитного поля для $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ (a) и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ (б).

Рис. 6. Плотность критического тока $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ (a) и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ (б) при различных температурах.

лены расчетные кривые $J_c(B)$, полученные на основании методики [10].

Из сопоставления данных, представленных на рис. 6, для $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$, а также результатов [10] следует, что J_c этих соединений невысоки — ~400— 500 А/см² (при $T \sim 2$ К). Это связано с довольно низкими T_c (менее 6 К) и типом пиннинга в исследуемых соединениях. Эти факторы в конечном счете определяют предельную величину критических токов (ранее этот вопрос довольно подробно обсуждался в [10]).

Поскольку исследованные материалы — это сверхпроводники 2-го рода, то для реализации их высоких J_c существенно наличие силы пиннинга,

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 1 2023

которая является структурно чувствительным параметром. С этой точки зрения J_c сверхпроводников 2-го рода зависит как от величины критической температуры, так от особенностей их микроструктуры. Величина силы пиннинга может быть рассчитана из соотношения: $F_p = J_c B$, где J_c плотность критического тока, B – величина приложенного внешнего магнитного поля [7, 8].

Известно, что центры пиннинга могут формироваться на различных дефектах структуры — линейных и точечных, а также на мелкодисперсных примесных фазах, входящих в состав образцов [7, 8]. Согласно [9], в случае магнитных сверхпроводников в качестве таких центров могут выступать "магнитные области". Магнитные центры

Рис. 7. Зависимости нормированной силы пиннинга от нормированного магнитного поля при различных температурах для сверхпроводников $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ (a), $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ (b), $HoRh_{3.8}Ru_{0.2}B_4$ [10] (b).

пиннинга могут формироваться как вблизи нескомпенсированных отдельных магнитных ионов, так и на базе их скоплений (рис. 1). Для того чтобы детально разобраться в этом вопросе, необходим более подробный анализ магнитной подсистемы (методами нейтронографии), а также визуализация центров пиннинга, например, посредством декорирования магнитного потока [15, 16].

На основе экспериментальных зависимостей $J_c(B)$ (рис. 6) была рассчитана зависимость приведенной силы пиннинга ($f_p = F_{p/}F_{pmax}$) от величины приведенного поля (*h*). Согласно теории [17, 18], для приведенной силы пиннинга выполняется "закон подобия", т.е. все зависимости f_p нормируются в единую кривую. Значения f_p могут быть рассчитаны по формуле

$$f_p \sim (h)^p (1-h)^q.$$
 (2)

Более подробно вопроса, связанного с расчетом f_p , мы касались в работе [10].

Проведем сравнительный анализ зависимостей $F_p(h)$ для соединений $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ с данными [10] для HoRh_{3.8}Ru_{0.2}B₄. Из рис. 7 следует, что в случае HoRh_{3.8}Ru_{0.2}B₄ закон подобия имеет место только при h < 0.2, тогда как у $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$ он выполняется, по крайней мере, до h = 0.4, причем более точно для образца $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$.

Таким образом, можно прийти к выводу, что в случае магнитных сверхпроводников наблюдается отклонение от закона подобия. Это в большей степени связано с дополнительным вкладом магнитных центров пиннинга. Необходимо учесть, что при h > 0.5 вклад магнитной подсистемы в общий магнитный момент может стать существенным. Отметим, что отклонение от закона подобия сильнее проявляется в том случае, когда система центров пиннинга, связанная с магнитной подсистемой, находится в ферримагнитном состоянии (соединение $HoRh_{3.8}Ru_{0.2}B_4$) в отличие от случая, когда она сформирована на основе антиферромагнитного упорядочения (соединения $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$).

ЗАКЛЮЧЕНИЕ

Посредством частичного замещения Dy на Er в DyRh_{3.8}Ru_{0.2}B₄ ($T_c \sim 4.5$ K) получены два новых магнитных сверхпроводника Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B₄ с $T_c \sim 5.1$ K и Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B₄ с $T_c \sim 5.8$ K.

Исследованы и проанализированы зависимости $\chi(T)$ и $B_{c_2}(T)$ для соединений, $Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4$ и $Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4$. У данных магнитных сверх-проводников при температуре вблизи 3 К зафиксирован антиферромагнитный переход, аналогичный переходу в $DyRh_{3.8}Ru_{0.2}B_4$.

На основе измерений магнитного момента от поля (M(B)), с использованием модели Бина получены зависимости критической плотности тока от поля $J_c(B)$ и приведенной силы пиннинга от нормированного поля $F_p(h)$ для исследованных сверхпроводников.

Установлено, что отклонение от закона подобия в случае сверхпроводников с антиферромагнитным упорядочением магнитной подсистемы $(Dy_{0.8}Er_{0.2}Rh_{3.8}Ru_{0.2}B_4 \mu Dy_{0.6}Er_{0.4}Rh_{3.8}Ru_{0.2}B_4)$ наиболее заметно проявляется при h > 0.4.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнялась по государственному заданию № 007-00715-22-00 и № 0023-2019-0005.

БЛАГОДАРНОСТЬ

Измерения проведены с использованием оборудования Центра коллективного пользования ФИАН.

СПИСОК ЛИТЕРАТУРЫ

- Matthias B.T., Suhl H., Corenzwit E. Spin Exchange in Superconductors // Phys. Rev. Lett. 1959. V. 1. P. 92–94.
- Takabayashi Y., Ganin A.Y., Jeglic P. et al. The Disorder-Free Non-BCS Superconductor Cs₃C₆₀ Emerges from an Antiferromagnetic Insulator Parent State // Science. 2009. V. 323. P. 1585–1590. https://doi.org/10.1126/science.1169163
- 3. Chevrel R., Sergent M., Prigent J. Sur de Nouvelles Phases Sulfurées Ternaires du Molybdène // Solid State Chem. 1971. V. 3. № 4. P. 515–519.
- 4. *Matthias B.T., Marezio M., Corenzwit E., Cooper A.S., Barz H.E.* High-Temperature Superconductors, the First Ternary System // Science. 1972. V. 175. № 4029. P. 1465–1466.
- Linder J., Sudbø A. Interplay Between Ferromagnetism and Superconductivity // Nanoscience and Engineering in Superconductivity. Berlin, Heidelberg: Springer, 2010. P. 349–388.
- 6. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Особенности фазовых переходов магнитного сверхпроводника Dy_{0.8}Y_{0.2}Rh₄B₄ // Металлы. 2010. № 3. С. 79–83.
- 7. *Matsushita T.* Flux Pinning in Superconductors. Berlin: Springer, 2007. P. 503.
- 8. Шмидт В.В. Введение в физику сверхпроводников. М.: МЦНМО, 2000. С. 402.
- Jung S.-G., Kang J.-H., Park E. et al. Enhanced Critical Current Density in the Pressure-Induced Magnetic State of the High-Temperature Superconductor FeSe // Sci.

Rep. 2015. V. 5. P. 16385. https://doi.org/10.1038/srep1638

- 10. Бурханов Г.С., Лаченков С.А., Власенко В.А., Хлыбов Е.П., Гаврилкин С.Ю. Особенности магнитных свойств и критических токов сверхпроводящих боридов родия YRh₄B₄ и HoRh_{3.8}Ru_{0.2}B₄ // Неорган. материалы. 2021. Т. 57. № 7. С. 720–726. https://doi.org/10.31857/S0002337X21070022
- 11. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Влияние магнитной подсистемы на усиление сверхпроводимости в тройных боридах родия // ДАН. 2011. Т. 438. № 5. С. 619–622.
- Bean C.P. Magnetization of Hard Superconductors // Phys. Rev. Lett. 1962. V. 8. P. 250–253.
- Bean C.P. Magnetization of High-Field Superconductors // Rev. Mod. Phys. 1964. V. 36. P. 31–39.
- Ашкрофт Н., Мермин Н. Физика твердого тела Т. 2. М.: Мир, 1979. С. 422.
- Shaw G. Quantitative Magneto-Optical Investigation of Superconductor/ Ferromagnet Hybrid Structures // Rev. Sci. Instrum. 2018. V. 89. № 2. P. 023705.
- Moncton D.E., McWhan D.B., Eckert J., Shirane G., Thomlinson W. Neutron Scattering Study of Magnetic Ordering in the Reentrant Superconductor ErRh₄B₄// Phys. Rev. Lett. 1977. V. 39. P. 1164–1166.
- Edward J.K. Scaling Laws for Flux Pinning in Hard Superconductors // J. Appl. Phys. 1973. V. 44. P. 1360–1370.
- Koblischka M.R., Muralidhar M. Pinning Force Scaling Analysis of Fe-Based High-Tc Superconductors // Int. J. Modern Phys. B. 2016. V. 30. № 32. P. 1630017.