УДК 546:824-732-541.145

СИНТЕЗ ОКСИДНЫХ КОМПОЗИТОВ ТИТАНА И МАРГАНЦА, ИССЛЕДОВАНИЕ ИХ ФИЗИКО-ХИМИЧЕСКИХ И ФОТОКАТАЛИТИЧЕСКИХ СВОЙСТВ

© 2023 г. М. Л. Беликов^{1, *}, С. А. Сафарян¹, П. А. Корнейкова¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра "Кольский научный центр Российской академии наук", Академгородок, 26a, Апатиты, Мурманская обл., 184209 Россия *e-mail: masim-bek@mail.ru

Поступила в редакцию 15.06.2022 г. После доработки 06.12.2022 г. Принята к публикации 08.12.2022 г.

Синтезированы фотокаталитически активные материалы на основе титана и марганца. Изучены особенности формирования полученных материалов, их физико-химические и фотокаталитические свойства. Показано, что модифицирование TiO₂ марганцем приводит к получению нанодисперсных порошков (4.8–2550 нм) со свободной удельной поверхностью от 0.56 до 479 м²/г. Синтезированные порошки обладают высокой фотокаталитической активностью (ФКА) при облучении видимым светом, превышающей ФКА немодифицированного TiO₂ схожего генезиса и промышленного диоксида титана P-25 фирмы Degussa. Повышенный уровень ФКА наблюдается для образцов, модифицированных марганцем, одновременно содержащих анатаз и рутил, без обособления отдельных фаз марганца.

Ключевые слова: синтез, диоксид титана, марганец, фотокаталитическая активность, видимый свет **DOI:** 10.31857/S0002337X23020021, **EDN:** YCJMPL

ВВЕДЕНИЕ

Диоксид титана как фотокаталитически активный материал, особое внимание привлек в начале семидесятых годов двадцатого столетия, после публикации Fujishima и Honda [1], в которой была показана возможность фотокаталитического расщепления воды в его присутствии. TiO₂, обладая высокой фотокаталитической активностью (**ФКА**), оказался высокоэффективным при деградации многих органических загрязнителей [2–5], в т.ч. различной микробиоты [6–8].

Помимо TiO₂, в качестве фотокатализаторов (ΦK) рассматриваются и находят применение различные полупроводниковые материалы: ZnO, WO₃, Fe₂O₃, CdSe, SrTiO₃, SiC, CdS, GaP, GaAs и др. [9–21]. Тем не менее, из множества ΦK -материалов лишь диоксид титана одновременно обладает рядом необходимых характеристик: высокой ΦKA , физической, химической и биологической устойчивостью, доступностью, нетоксичностью [2, 22].

Обладая многими преимуществами, чистый диоксид титана вследствие достаточно высокой энергии запрещенной зоны ($E_g = 3.2$ эВ для анатаза и 3.0 эВ для рутила) проявляет ФК-свойства

лишь при облучении ультрафиолетовым светом, что приводит к дополнительным энергетическим тратам, т.к. доля УФ-света в солнечном спектре составляет всего около 3–7% [23–26]. Применение TiO₂ как ФК при облучении светом с $\lambda > 400$ нм ограничено. Расширения спектра фотовосприимчивости диоксида титана в длинноволновую область можно достичь путем введения различных модифицирующих добавок, уменьшающих его E_g [27]. Так, например, E_g оксида марганца составляет 1.25 эВ против 3.2 эВ у диоксида титана.

Известна повышенная ФКА композитов на основе поликристаллического диоксида титана, модифицированного ионами Mn^{2+} , в разложении анилинового синего при облучении УФ-светом [28]. Показано, что модифицирование ионами Mn^{2+} промотирует превращение анатаза в рутил и приводит к сдвигу края фотопоглощения TiO_2 в видимую область. Присутствие ионов Mn^{2+} (0.06 ат. %) в TiO_2 вызывало повышение его ФКА, которое объяснено эффектом синергизма фаз анатаза и рутила [29].

В работах [30, 31] показано, что при росте содержания оксида марганца в диоксиде титана (от 0 до 5 мас. %) происходит уменьшение его E_g , что должно приводить к смещению его фотовосприимчивости в длинноволновую область.

Модифицирование TiO_2 вольфрамом [32] приводило к повышению его электропроводности на два порядка. Увеличение электропроводности оксидного материала вследствие внедрения модифицирующей добавки может говорить и об увеличении его ФКА. Так, в работе [33] показано, что увеличение степени модифицирования TiO_2 иновалентным металлом приводит к росту удельной проводимости материала, что коррелирует с данными по ФКА.

Было показано [34], что модифицирование марганцем промышленного диоксида титана P-25 (фирмы Degussa) приводит к увеличению его ФКА.

Авторы полагают, что с помощью простого и эффективного метода совместного щелочного гидролиза водорастворимых солей титана и марганца могут быть получены ΦK с широким интервалом модифицирования марганцем (от 1 до 30 мас. %).

Цель работы — синтез фотокаталитически активных материалов на основе Мп-модифицированного диоксида титана, изучение их физикохимических и ФК-свойств при облучении видимым светом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ФК-материалы получали в процессе совместного щелочного гидролиза солей титана (TiCl₄ или TiOSO₄·xH₂O) и MnCl₂ в растворе NH₄OH (120 г/л) по методике [35, 36]. Разогрев раствора в процессе гидролиза не превышал 40°C. Все используемые реактивы были квалификации "х.ч.".

После отстаивания суспензии отделенный осадок промывали большим количеством дистиллированной воды. Варьируемыми параметрами являлись степень модифицирования диоксида титана марганцем (1–30 мас. %) и температура термообработки (от 80 до 800°С) полученных осадков на воздухе в течение 1 ч. Скорость нагрева/охлаждения – 15°С/мин, и выдержка при заданной температуре – 60 мин.

Продукты синтеза были охарактеризованы методами низкотемпературной адсорбции азота (метод БЭТ (FlowSorb II 2300; TriStar 3020 V1. 03)), термогравиметрии (**TГ**) в атмосфере аргона при скорости нагревания 10°С/мин в сосуде Степанова с изолированной Pt–PtRh-термопарой (NETZSCH STA 409 PC/PG), химического анализа, рентгенофазового анализа (РФА; дифрактометр ДРОН-2, Си K_{α} -излучение).

ФКА (*E*, %) оценивали фотоколориметрически с помощью спектрофотометра СФ-56 по степени обесцвечивания растворов анилина ($C_{\rm исх} =$ = 100 мг/л), ферроина ($C_{\rm исx} = 100$ мг/л) или метиленового синего (**MC**) ($C_{\rm исx} = 50$ мг/л) при облучении видимым светом. Значение освещенности, определенное комбинированным прибором (люксометр + УФ-радиометр) ТКА-ПКМ (06), составило 2300 лк. Эффективность разрушения красителей как меру ФКА (*E*, %) рассчитывали по уравнению

$$E = \left[(C_0 - C_{\kappa}) / C_0 \right] \times 100\%, \tag{1}$$

где C_0 – исходная концентрация красителя в растворе (мг/л), C_{κ} – конечная концентрация красителя в растворе (мг/л).

Образцами сравнения служили: TiO₂ аналогичного с модифицированным марганцем TiO₂ генезиса и промышленный TiO₂ фирмы Degussa — P-25 (Degussa AG, Франкфурт, Германия), предложенный ранее в качестве стандарта сравнения [37]. Маркировка образцов, например 800-Mn-5, содержит данные о температуре термообработки — 800°С, модифицирующем металле — Mn и его содержании в продукте — 5 мас. %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1–4 и на рис. 1–7 суммированы экспериментальные данные об изменении химического и фазового состава (РФА), удельной поверхности (S, м²/г), средней крупности частиц (d, нм), объема (V, см³/г), глубины (h, нм) и диаметра (D, нм) пор в зависимости от условий термообработки (t, °С) и содержания Mn (мас. %) в конечном продукте, а также о степени ФКА (E, %) в реакции деструкции красителя(ей) при облучении видимым светом.

Гидролиз хлорида марганца с образованием осадка в аммиачной воде при одновременно протекающем формировании осадка гидроксида титана протекает достаточно эффективно. Степень извлечения марганца в совместный рентгеноаморфный осадок при степени модифицирования Mn 1–5 мас. % составляет 99.9%, а при 30 мас. % снижается до 96% (рис. 1).

По данным РФА и термического анализа (табл. 1, рис. 2–4), в процессе гидролиза в системе $TiCl_4-MnCl_2-NH_4OH-H_2O$ формируются рентгеноаморфные продукты, сохраняющие свою аморфность до 400°С. Модифицирование TiO_2 1–30 мас. % Мп обеспечивает получение нанодисперсных порошков с размерами частиц от 2.6 до 7.6 нм со свободной удельной поверхностью от 876 до 303 м²/г соответственно.

БЕЛИКОВ и др.

Таолица 1, ч	<i>t</i> , °C					ванных образцов	$S m^2/r$	d um
Образец		C, MaC. 70				РФА	З , М /Г	и, пм
		TiO ₂	Cl-	NH_4^+	Mn ³⁺		БЭТ	
80-TiO ₂	80	79.8	1.06	2.84	0	ам	270.0	8.54
300-TiO ₂	300	_	_	_	_	ам	258.8	8.9
400-TiO ₂	400	98.5	0.06	0.42	0	ам	155.4	9.90
500-TiO ₂	500	_	_	_	_	а	52.4	29.4
600-TiO ₂	600	99.8	н/о	0.02	0	а	34.2	45.0
700-TiO ₂	700	_	н/о	н/о	0	80% a, 20% p	22.1	72.6
800-TiO ₂	800	_	_	_	_	34% a, 66% p	3.17	450.6
P-25	1200	_	н/о	0	0	р	48.4	29.5
80-Mn-1	80	78.8	_	5.21	0.83	ам	386	6.0
400-Mn-1	400	_	_	_	_	ам	247	9.3
500-Mn-1	500	_	_	_	_	69.3% a, 30.7% p	125	12
600-Mn-1	600	98.7	н/о	н/о	1.02	66% a, 34% p	16	94
800-Mn-1	800	—	—	—	—	р	0.90	1590
80-Mn-5	80	—	—	—	—	ам	430	5.4
400-Mn-5	400	—	—	—	—	ам	272	8.5
500-Mn-5	500	—	—	—	—	р	160	8.9
600-Mn-5	600	93.2	н/о	н/о	5.24	р, следы MnTiO ₃	3.29	430
800-Mn-5	800	—	—	_	-	p, Mn ₂ O ₃	0.56	2550
80-Mn-30	80	_	_	_	_	ам	479	4.8
400-Mn-30	400	_	_	_	_	ам	276	8.4
500-Mn-30	500	_	_	_	_	ам	202	11.4
550-Mn-30	550	_	_	_	_	p	120	11.9
600-Mn-30	600	615	н/о	н/о	29.83	p, Mn ₂ O ₃	40	36
800-Mn-30	800	—	—	—	-	p, Mn_2O_3	5.37	266

Таблица 1. Физико-химические свойства TiO₂ и его Мп-модифицированных образцов

Примечание. ам – рентгеноаморфная фаза, а – анатаз, р – рутил; н/о – не обнаружено.

Фазообразование. Повышение температуры термообработки продуктов гидролиза ведет к сокращению удельной поверхности порошков (рис. 5), особенно ускоренному процессами кристаллизации анатаза и затем рутила, оксида марганца и метатитаната марганца, а также агрегацией и агломерацией кристаллитов.

Термический анализ воздушно-сухих (~20°С) продуктов гидролиза (рис. 3, табл. 2) демонстрирует схожие с чистым оксогидроксидом титана кривые ДСК с одним эндотермическим и одним значимым экзотермическим эффектами. Дегидратация продуктов гидролиза, сопровождаемая самой большой потерей массы, во всех случаях отмечена эндотермическими эффектами с минимумами в небольшом диапазоне температур 134.9–139.9°С.

По данным химического анализа порошков после термообработки при 80° С их основу составляет оксогидроксид титана TiO(OH)₂, теряющий от 19 до 22% воды и захваченных с маточным раствором летучих компонентов (NH₄OH, HCl) по мере дальнейшего повышения температуры термообработки вплоть до образования и кристаллизации TiO₂ анатазной и/или рутильной модификаций. С увеличением степени модифицирования от 1 до 5 и 30 мас. % Мп температура первого фазового перехода, отмеченная соответственно максимумами экзотермических эффектов, повышается от 459.7 до 508.1 и 559.1°C (рис. 3, табл. 2).

При этом единственный и значимый экзоэффект, по данным РФА (рис. 2, табл. 1), соответствует у образца Mn-1 образованию смеси анатаза и рутила, а при модифицировании ≥5 мас. % Mn –

Рис. 1. Зависимости содержания Mn (C) (I) в образцах и его извлечения в осадок (Q) (2) при аммиачном гидролизе.

образованию рутила и оксида марганца Mn₂O₃. В этой области фазообразования на кривых TГ можно различить небольшую область увеличения мас-

сы образцов, указывающую на окислительные процессы, а затем ее уменьшение, что можно связать с окислением марганца и последующей потерей кислорода его оксидами [38–40]. На кривых ДСК для образцов Mn-5 и Mn-30 (рис. 3, табл. 2) можно различить вторые относительно небольшие эндотермические эффекты с минимумами при 923.0 и 932.7°С. Для чистого диоксида марганца наблюдаемые эндотермические эффекты при 575 и 900°С [41] связаны с потерей именно кислорода и окислением самого марганца от Mn^{2+} до Mn³⁺ и Mn⁴⁺ в результате цепочки превращений

$$MnO_2 \rightarrow Mn_2O_3 \rightarrow Mn_3O_4.$$

Для изучаемых композитов эндотермические эффекты могут указывать на потерю кислорода при образовании метатитаната марганца $MnTiO_3$, что подтверждается данными РФА (рис. 2, табл. 2), а также заметной потерей массы образцов в этой области температур на кривой $T\Gamma$.

Последовательность превращений фазовых состояний марганца в составе композита может выглядеть следующим образом [30]:

$$Mn(OH)_2 + O_2 \rightarrow MnO_2 + H_2O \rightarrow \rightarrow Mn_2O_3 + O_2 \uparrow \rightarrow MnTiO_3 + O_2 \uparrow .$$

Следует отметить, что в высокомодифицированном образце Mn-30 первоначально формируется более сжатая кристаллическая решетка рутила (3.22 Å) с параметрами a = 4.548, c = 2.946 Å про-

Рис. 2. Дифрактограммы Мп-модифицированного диоксида титана в зависимости от температуры обработки (цифры у кривых, °C) и содержания Мп (предел допускаемой аппаратурной погрешности измерения скорости счета импульсов рентгеновского излучения не более ±0.5%).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 2 2023

Рис. 3. Результаты термического анализа TiO_2 и Mn-модифицированных образцов TiO_2 в зависимости от содержания марганца (предел допускаемой относительной погрешности измерения температуры в интервале от 30 до 770 К ±1.5%, предел допускаемой относительной погрешности измерения массы ±1%).

тив a = 4.559, c = 2.959 Å у рутила (3.24 Å), до которой она и восстанавливается после обособления фаз марганца: Mn₂O₃ и MnTiO₃.

Полученные данные подтверждают промотирующее действие катионов марганца [29] на трансформацию анатаза в рутил (табл. 2). Так, в образцах Mn-1 рутил наряду с анатазом обнаруживается при термообработке рентгеноаморфной массы уже при 500°С, в то время как в чистом продукте гидролиза TiCl₄ аналогичного генезиса фаза рутила обнаруживается только при температурах выше 700°С. Полное превращение анатаза в рутил происходит при температуре 800°С. В продуктах, содержащих \geq 5 мас. % Mn, рутил формируется из рентгеноаморфной массы, минуя метастабильное состояние анатаза. Одновременно начинают выкристаллизовываться и фазы оксидов марганца (Mn₂O₃ при 600°С, MnTiO₃ при 800°С).

Таким образом, особенностью продуктов синтеза в системе Ti–O–Mn является формирование нескольких полифазных зон в зависимости от модифицирования и температуры термообработки (рис. 4) с возможными фазовыми переходами: рентгеноаморфная масса \rightarrow анатаз \rightarrow рутил + + Mn₂O₃ \rightarrow рутил + MnTiO₃. В высокомодифицированных продуктах замечены следующие фазовые переходы: рентгеноаморфная масса \rightarrow рутил + следы MnTiO₃ \rightarrow рутил + Mn₂O₃ \rightarrow рутил + MnTiO₃.

Текстура. Удельная поверхность Мп-модифицированных продуктов, как и чистого диоксида титана, с увеличением температуры термообработки закономерно снижается (рис. 5, табл. 1). Развитой поверхностью 202—479 м²/г и наноразмерным 11.4—4.8 нм характером частиц обладают рентгеноаморфные порошки. С началом образования фаз анатаза и рутила при температурах 500—550°С поверхность порошков сокращается до 120—160 м²/г при размерах кристаллитов 8.9— 11.9 нм. По окончании формирования рутила и с обособлением Mn-содержащих фаз Mn₂O₃ или

		· • · · · ·				
Образец	t _{min} , °C	t _{max} , °C	Δ <i>М</i> , % по ТГ при t _{max}	<i>d</i> , Å при <i>t</i> _{max}	Фазовый состав	
	ДС	CK		РФА		
TiO ₂	145.8	412.2	-23.3	3.52, 2.36	Анатаз	
		700	—	3.24, 2.49	Рутил	
		_	_	_	a = 4.559,	
					c = 2.959	
MnO ₂ [22, 23]	575	—	-14.1	-	Mn ₂ O ₃	
	900	_	-4.2	_	Mn ₃ O ₄	
Mn-1	139.9	469.7	-23.8	3.52, 2.36	Анатаз	
		_	_	3.24, 2.49	Рутил	
		787.1	—	3.24, 2.49	Рутил	
		—	_	_	a = 4.559,	
					c = 2.959	
Mn-5	137.2	508.1	-23.63	3.24, 2.49	Рутил	
		-	—	-	a = 4.59, c = 2.959	
		550.0	+0.50	3.24, 2.49	Рутил	
		600		3.76, 2.76, 2.56	MnTiO ₃ следы	
		800		3.24, 2.49	Рутил	
		_		3.85, 2.73, 2.49	Mn ₂ O ₃	
		923	-0.69	3.24, 2.49	Рутил	
		—	_	3.76, 2.76, 2.56	MnTiO ₃	
Mn-30	134.9	559.1	-19.96	3.22, 2.47	Рутил	
		-	—	-	a = 4.548,	
		600	+1.18	-	c = 2.946	
		_	_	3.85, 2.73, 2.49	Рутил	
		—	_	-	a = 4.59,	
		932.7	-2.91	-	c = 2.959	
		—	—	3.76, 2.78, 2.56	Mn ₂ O ₃	
					Рутил Матіо	
					will IO ₃	

Таблица 2. Термические эффекты и данные РФА в системе Ti-O-Mn

МпТіО₃ при температурах 600–800°С удельная поверхность сокращается до $0.56-40 \text{ м}^2/\text{г}.$

Из рис. 5 видно, что все образцы композитов TiO₂/Mn обладают более развитой поверхностью, чем чистый TiO₂ подобного генезиса.

Изотермы сорбции как рентгеноаморфных, так и кристаллических образцов, полученных в температурном интервале термообработки 20–500°С, представляют собой абсорбционно-десорбционные кривые *S*-образной формы с хорошо выраженными гистерезисными петлями (рис. 6), что указывает по классификации ИЮПАК [41] на мезопористый характер полученных продуктов.

Температурные зависимости объема (V), глубины (h) и диаметра (D) пор имеют довольно экстремальный характер (табл. 3). Максимальные значения h наблюдаются в области 600°С, а D – при 800°С. Глубина и диаметр пор у образцов с термической обработкой до 500°С имеют сопоставимые размеры. С повышением температуры более 600°С происходит опережающее увеличение диаметра пор относительно их глубины, что указывает на сглаживание поверхности.

Рис. 4. Фазовый состав Мп-модифицированных порошков диоксида титана, обработанных при температурах до 1000°С (предел допускаемой аппаратурной погрешности измерения скорости счета импульсов рентгеновского излучения не более $\pm 0.5\%$).

Зависимость изменения Имикропор от температуры аналогична изменению удельной поверхности, что, вероятно, является следствием интенсивного удаления воды из оксогидроксидных продуктов гидролиза. В рентгеноаморфных продуктах (до 500°С) V составляет 0.25–0.93 см³/г. при этом он возрастает с увеличением содержания марганца и дисперсности порошка. С дальнейшим повышением температуры Ирезко сокращается, что связано с процессами кристаллизации, агрегации и, наконец, агломерации при температурах выше 800°С. Так, у образца 500-Мп-1 объем микропор составляет 0.2690 см³/г, а у 800-Мп-1 – всего $0.0015 \text{ см}^3/\Gamma$. В то же время можно заметить, что повышение содержания Mn стабилизирует размеры микропор при повышенных температурах.

Таким образом, в системе Ti–O–Mn мезопористой структурой обладают как рентгеноаморф-

Рис. 5. Зависимости удельной поверхности TiO_2 и его Мп-модифицированных образцов от содержания марганца и от температуры термообработки (предел допускаемой относительной погрешности измерения удельной площади поверхности $\pm 5\%$).

ные, так и кристаллические полифазные композиты с удельной поверхностью от 49 до 876 м²/г. Мезопористые материалы рассматриваются как многообещающие катализаторы для превращений объемных органических молекул, так как наличие мезоразмерных пор поможет преодолеть ограничения по диффузии, характерные для микроразмерных пор.

ФКА изучена для образцов, термообработанных при 400—800°С, когда в большинстве случаев кристаллические фазы уже сформированы, *S* остается относительно высокой.

Введенный в диоксид титана марганец определяет его спектральную сенсибилизацию в видимую область света. Так, установлено, что все полученные материалы показывают более высокую ФКА, чем промышленный ФК (P-25).

Представленные в табл. 4 и на рис. 7 изменения ФКА отражают совокупное влияние содержания модификатора, сочетания структурных компонентов и текстуры порошков, нелинейно зависящих от условий термообработки и объекта

Рис. 6. Изотермы сорбции для Мп-модифицированных образцов диоксида титана, содержащих 1 (а), 5 (б), 30 мас. % Мп (в), прокаленных при различных температурах (цифры на кривых, °С) (предел допускаемой относительной по-грешности $\pm 5\%$).

деградации. Например, не всегда высокие значения ФКА определяются более развитой поверхностью образцов, термообработанных при температуре 500 по сравнению с 600 и даже 800°С, что особенно наглядно проявляется на примере деградации анилина (рис. 7).

ФКА синтезированных продуктов сильно различается в зависимости от природы объектов разрушения. Так, степень деградации ферроина и МС при температуре термообработки >500°С не превышает 3.6%, тогда как в аналогичных условиях анилин разрушается практически полностью до 61%.

При этом отмечены следующие закономерности.

При температуре термообработки 400 °С ФКА в процессе деградации ферроина и МС (табл. 4, рис. 7) имеет довольно высокие значения, которые резко снижаются при увеличении температуры термообработки, исключением является образец, содержащий 30 мас. % Мп, ФКА которого сохраняется при 500–600°С. Напротив, при ФК-деструкции

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 2 2023

анилина все образцы проявляют низкую ФКА при температуре термообработки 400°С, увеличивающуюся с повышением температуры, с максимальными значениями при 800°С.

ФКА исследованных материалов носит селективный характер по отношению к различным красителям, что согласуется с данными [42–44]. Это с большой долей вероятности связано с различными значениями редокс-потенциалов разлагаемых объектов [45–47]. Заряд применяемых в качестве ФК материалов также различен. Влияние этих параметров на селективность и эффективность ФКА нуждается в дополнительных исследованиях.

Стоит также отметить, что синтезированные ФК-материалы на основе диоксида титана, модифицированного марганцем, согласно работе [32], могут быть перспективны в качестве анодного материала литий-ионных аккумуляторов, обладающих высокой обратимой и удельной емкостью.

Образец	Фазовый состав (РФА)	<i>S</i> , м²/г	<i>V</i> , см ³ /г	<i>h</i> , нм	<i>D</i> , нм
20-Mn-1	ам	303	0.2577	3.40	3.79
80-Mn-1	ам	395	0.2875	2.91	3.75
400-Mn-1	ам	250	0.272	4.41	4.14
500-Mn-1	69% a, 31% p	125	0.269	8.59	7.22
600-Mn-1	66% a, 34% p	16	0.041	10.44	11.44
800-Mn-1	р	0.9	0.0015	6.55	27.16
20-Mn-5	ам	458	0.3777	3.30	3.65
80-Mn-5	ам	430	0.3294	3.06	3.51
400-Mn-5	ам	272	0.317	4.67	4.27
500-Mn-5	р	160	0.3256	8.15	6.87
600-Mn-5	р, MnTiO ₃ следы	3.29	0.0078	9.47	16.55
800-Mn-5	p, Mn ₂ O ₃	0.56	0.00082	5.84	28.38
20-Mn-30	ам	876	0.9302	4.25	4.82
80-Mn-30	ам	479	0.5668	4.73	5.03
400-Mn-30	ам	276	0.507	7.35	6.61
500-Mn-30	ам	202	0.5179	10.28	8.84
600-Mn-30	p, Mn ₂ O ₃	40	0.151	15.26	16.93
800-Mn-30	p, Mn_2O_3	5.37	0.0787	5.86	18.13

Таблица 3. Зависимость текстурных характеристик композитов на основе TiO₂ и Mn от содержания марганца и температуры термообработки

Таблица 4. Φ KA (*E*) композитов на основе TiO₂ и Mn

Образац	Deservi coorer	S - 2 /-	<i>E</i> , % при λ > 400 нм по			
Образец	Фазовый состав	З, М ² /Г	ферроину	MC	анилину	
P25	85% a, 15% p	48.4	0	1.2	1.2	
400-Mn-1	ам	246.9	25.9	58.6	8.3	
500-Mn-1	69.3% a, 30.7% p	—	3.5	3.2	—	
600-Mn-1	66% a, 34% p	16.0	2.5	3.6	34.1	
800-Mn-1	р	0.90	6.9	0.8	45.9	
400-Mn-5	ам	271.9	18.5	62.2	19.8	
500-Mn-5	р	_	3.8	2.6	—	
600-Mn-5	р, MnTiO ₃ следы	3.29	1.5	1.0	30.4	
800-Mn-5	p, Mn ₂ O ₃	0.56	7.1	0.4	61.23	
400-Mn-30	ам	276	16.5	41.6	10.1	
500-Mn-30	ам	_	14.8	49.6	—	
550-Mn-30	р	—	10.3		—	
600-Mn-30	p, Mn ₂ O ₃	39.7	3.6	2.2	14.21	
800-Mn-30	p, Mn ₂ O ₃ , MnTiO ₃	5.37	6.1	2.2	32.56	

Примечание. ам – рентгеноаморфная, а – анатаз, р – рутил.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 2 2023

Рис. 7. Зависимости ΦКА (*E*) Мп-модифицированных порошков диоксида титана от содержания Мп при различных температурах: а – ферроин, 6 – МС, в – анилин (пределы допускаемой абсолютной погрешности спектрофотометра при измерении коэффициентов направленного пропускания ±1%).

ЗАКЛЮЧЕНИЕ

Синтезированы Φ К-материалы на основе диоксида титана, модифицированного марганцем. Исследованы их физико-химические и фотокаталитические свойства, меняющиеся при изменении содержания марганца от 1 до 30 мас. % и температуры термообработки от 400 до 800°С.

Полученные ФК обладают более высокой ФКА в сравнении с промышленным фотокатализатором P-25 фирмы Degussa при облучении видимым светом.

ФКА исследованных материалов носит избирательный характер в отношении различных красителей, что определяется, по-видимому, поверхностным зарядом материалов, а также редокс-потенциалами красителей.

Отмечена довольно высокая ФКА полученных материалов по отношению к анилину, увеличивающаяся по мере роста температуры термообработки синтезированных материалов.

СПИСОК ЛИТЕРАТУРЫ

- Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode // Nature. 1972. V. 238. № 5358. P. 37–38. https://doi.org/10.1038/238037a0
- Dong H., Zeng G., Tang L., Fan C., Zhang C., He X. An Overview on Limitations of TiO₂-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures // Water. Res. 2015. V. 79. P. 128–146. https://doi.org/10.1016/j.watres.2015.04.038
- Jiang L., Wang Y., Feng C. Application of Photocatalytic Technology in Environmental Safety // Procedia Eng. 2012. V. 45. P. 993–997. https://doi.org/10.1016/j.proeng.2012.08.271
- Tasbihi M., Călin I., Šuligoj A., Fanetti M., Lavrenčič Štangar U. Photocatalytic Degradation of Gaseous Toluene by using TiO₂ Nanoparticles Immobilized on Fiberglass Cloth // J. Photochem. Photobiol., A. 2017. V. 336. P. 89–97.
 - https://doi.org/10.1016/j.jphotochem.2016.12.025
- Bhattacharyya A., Kawi S., Ray M.B. Photocatalytic Degradation of Orange II by TiO₂ Catalysts Supported

on Adsorbents // Catal. Today. 2004. V. 98. № 3. P. 431–439.

https://doi.org/10.1016/j.cattod.2004.08.010

- Jacoby W.A., Maness P.C., Wolfrum E.J., Blake D.M., Fennell J.A. Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air // Environ. Sci. Technol. 1998. V. 32. № 17. P. 2650–2653. https://doi.org/10.1021/es980036f
- Caballero L., Whitehead K.A., Allen N.S., Verran J. Inactivation of Escherichia coli on Immobilized TiO₂ Using Fluorescent Light // J. Photochem. Photobiol., A. 2009. V. 202. № 2. P. 92–98. https://doi.org/10.1016/j.jphotochem.2008.11.005
- Liu H.-L., Yang Thomas C.-K. Photocatalytic Inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO₂ Activated with Ultraviolet Light // Process Biochem. 2003. V. 39. № 4. P. 475–481. https://doi.org/10.1016/S0032-9592(03)00084-0
- Burton P., Peterson E., Boyle T. et al. Synthesis of High Surface Area ZnO(0001) Plates as Novel Oxide Supports for Heterogeneous Catalysts // Catal. Lett. 2010. V. 139. № 1. P. 26–32. https://doi.org/10.1007/s10562-010-0405-1
- Bignozzi C.A., Caramori S., Cristino V. et al. Nanostructured Photoelectrodes Based on WO₃: Applications to Photooxidation of Aqueous Electrolytes // Chem. Soc. Rev. 2013. V. 42. № 6. P. 2228–2246. https://doi.org/10.1039/c2cs35373c
- Tian L., Ye L., Liu J. et al. Solvothermal Synthesis of CNTs–WO₃ Hybrid Nanostructures with High Photocatalytic Activity under Visible Light // Catal. Commun. 2012. V. 17. P. 99–103. https://doi.org/10.1016/j.catcom.2011.10.023
- 12. Franking R., Li L., Lukowski M.A. et al. Facile Post-Growth Doping of Nanostructured Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation // Energy Environ. Sci. 2013. V. 6. № 2. P. 500–512. https://doi.org/10.1039/C2EE23837C
- Bang J. U., Lee S.J., Jang J.S. et al. Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H₂ Generation // J. Phys. Chem. Lett. 2012. V. 3. № 24. P. 3781–3785. https://doi.org/10.1021/jz301732n
- Wang J., Yin S., Zhang Q. et al. Mechanochemical Synthesis of Fluorine-Doped SrTiO₃ and Its Photo-Oxidation Properties // Chem. Lett. 2003. V. 32. № 6. P. 540–541. https://doi.org/10.1246/cl.2003.540
- 15. *Kirovskaya I.A., Timoshenko O.T., Karpova E.O.* The Catalytic and Photocatalytic Properties of InP-CdS and ZnTe-CdS System Components // Russ. J. Phys. Chem. A. 2011. V. 85. № 4. P. 557–560. https://doi.org/10.1134/S0036024411030186
- Phuruangrat A., Sakhon T., Kuntalue B. et al. Characterization of Visible-Light-Induced BiVO₄ Photocatalyst Synthesized by Chemical Combustion Method Fueled by Tartaric Acid // Russ. J. Inorg. Chem. 2021. V. 66. P. 1829–1836.

https://doi.org/10.1134/S0036023621120135

 Chomkitichai W., Jansanthea P., Channei D. Photocatalytic Activity Enhancement in Methylene Blue Degradation by Loading Ag Nanoparticles onto α-Fe₂O₃ // Russ. J. Inorg. Chem. 2021. V. 66. P. 1995–2003. https://doi.org/10.1134/S0036023621130027

- Dongmei He, Du L., Wang K. et al. Efficient Process of ALD CuO and Its Application in Photocatalytic H₂ Evolution // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986–1994. https://doi.org/10.1134/S0036023621130040
- Dumrongrojthanath P., Phuruangrat A., Sakhon T. et al. Effect of Gd Dopant on Visible-Light-Driven Photocatalytic Properties of CeO₂ Nanowires Synthesized Microwave-Assisted Hydrothermal Method // Russ. J. Inorg. Chem. 2022. V. 67. P. 1880–1887. https://doi.org/10.1134/S0036023622600757
- Shtareva A.V., Shtarev D.S., Balanov M.I. et al. Bismuthyl Carbonate Heterostructures Are a Way to Enhance the Photocatalytic Activity of Alkaline-Earth Bismuthates // Russ. J. Inorg. Chem. 2022. V. 67. P. 1375–1385. https://doi.org/10.1134/S0036023622090157
- Shtarev D.S., Shtareva A.V., Petrova A.Y. Effects of the Dopant Type and Concentration on the Photocatalytic Activity of Strontium Bismuthate Sr₂Bi₂O₅ // Russ. J. Inorg. Chem. 2022. V. 67. P. 1368–1374. https://doi.org/10.1134/S0036023622090145
- Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic Degradation for Environmental Applications – a Review // J. Chem. Technol. Biotechnol. 2002. V. 77. № 1. P. 102–116. https://doi.org/10.1002/jctb.532
- Yu J.C., Ho W., Yu J., Yip H., Wong P.K., Jincai Z. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania // Environ. Sci. Technol. 2005. V. 39. № 4. P. 1175–1179. https://doi.org/10.1021/es035374h
- Wang W., Huang G., Yu J.C., Wong P.K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms // J. Environ. Sci. 2015. V. 34. P. 232–247. https://doi.org/10.1016/j.jes.2015.05.003
- 25. *Karvinen S.M.* The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide // Ind. Eng. Chem. Res. 2003. V. 42. № 5. P. 1035–1043. https://doi.org/10.1021/ie020358z
- Szczepanik B. Photocatalytic Degradation of Organic Contaminants over Clay-TiO₂ Nanocomposites: A Review // Appl. Clay Sci. 2017. V. 141. P. 227–239. https://doi.org/10.1016/j.clay.2017.02.029
- 27. *Khan H., Berk D.* Synthesis, Physicochemical Properties and Visible Light Photocatalytic Studies of Molybdenum, Iron and Vanadium Doped Titanium Dioxide // React. Kinet. Mech. Catal. 2014. V. 111. № 1. P. 393–414. https://doi.org/10.1007/s11144-013-0637-3
- Devi L.G., Nagaraju K., Murthy B.N., Girish K.S. Enhanced Photocatalytic Activity of Transition Metal Ions Mn²⁺, Ni²⁺ and Zn²⁺ Doped Polycrystalline Titania for the Degradation of Aniline Blue under UV/Solar Light // J. Mol. Catal. A. 2010. V. 328. № 1–2. P. 44–52. https://doi.org/10.1016/j.molcata.2010.05.021
- 29. *Anpo M*. Use of visible Light. Second-Generation Titanium Oxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-Implantation Method //

Pure Appl. Chem. 2000. V. 72. № 9. P. 1787–1792. https://doi.org/10.1351/pac200072091787

- 30. Brus V.V., Kovalyuk Z.D., Maryanchuk P.D. Optical Properties of TiO₂-MnO₂ thin Films Prepared by Electron-Beam Evaporation // Tech. Phys. 2012. V. 57. № 8. P. 1148-1151. https://doi.org/10.1134/S1063784212080063
- Ivanova T., Harizanova A. Characterization of TiO and TiO-MnO Oxides Prepared by Sol-gel Method // Solid State Ionics. 2001. V. 138. P. 227–232. https://doi.org/10.1016/S0167-2738(00)00798-0
- 32. Опра Д.П., Гнеденков С.В., Синебрюхов С.Л. и др. Легированный марганцем диоксид титана с улучшенными электрохимическими характеристиками для литий-ионных аккумуляторов // Электрохимическая энергетика. 2019. Т. 19. № 3. С. 123–140. https://doi.org/10.18500/1608-4039-2019-19-3-123-140
- 33. Беликов М.Л., Седнева Т.А., Локшин Э.П. Адсорбционные и фотокаталитические свойства диоксида титана, модифицированного вольфрамом // Неорган. материалы. 2021. Т. 47. № 2. С. 154–162. https://doi.org/10.31857/S0002337X21020020
- 34. Jin Q., Arimoto H., Fujishima M., Tada H. Manganese Oxide-Surface Modified Titanium (IV) Dioxide as Environmental Catalyst // Catalysts. 2013. V. 3. № 2. P. 444–454.

https://doi.org/10.3390/catal3020444

- 35. Седнева Т.А., Локшин Э.П., Беликов М.Л., Калинников В.Т. Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана: Пат. № 2435733 РФ. 2011. БИ № 34.
- 36. Седнева Т.А., Локшин Э.П., Беликов М.Л., Беляевский А.Т. Синтез и исследования фотокаталитических оксидных композитов титана(IV) и кобальта(II) // Хим. технология. 2015. Т. 16. № 7. С. 398– 407.
- Matthews R.W., McEvoy S.R. Destruction of Phenol in Water with Sun, Sand, and Photocatalysis // Sol. Energy. 1992. V. 49. № 6. P. 507–513. https://doi.org/10.1016/0038-092X(92)90159-8

- Иванова В.П., Касатов Б.К., Красавина Т.Н., Розинова Е.Л. Термический анализ минералов и горных пород. Л.: Недра, 1974. С. 47.
- 39. *Liptay G.* Atlas of Thermoanalytical Curves. Budapest: Academiai Kiado, 1973. V. 2. P. 78.
- 40. *Казенас К.Е., Цветков Ю.В.* Испарение оксидов. М.: Наука, 1997. 543 с.
- 41. Грег С., Синг К. Адсорбция. Удельная поверхность, пористость. М.: Мир, 1984. 306 с.
- 42. *Parida K.M., Sahu N.* Visible Light Induced Photocatalytic Activity of Rare Earth Titania Nanocomposites // J. Mol. Catal. A. 2008. V. 287. № 1–2. P. 151–158. https://doi.org/10.1016/j.molcata.2008.02.028
- 43. Агафонов А.В., Редозубов А.А., Козик В.В., Краев А.С. Фотокаталитическая активность нанопорошков диоксида титана, полученных золь-гель методом при различных значениях pH // Журн. неорган. химии. 2015. Т. 60. № 8. С. 1001–1008. https://doi.org/10.7868/S0044457X15080024
- 44. Степанов А.Ю., Сотникова Л.В., Владимиров А.А. и др. Синтез и исследование фотокаталитических свойств материалов на основе TiO₂ // Вестн. Кемеровского гос. ун-та. 2013. Т. 1. № 2. С. 249–255.
- 45. Sabnis R.W., Ross E., Köthe J., Naumann R. et al. Indicator Reagents // Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley, 2009. V. 19. P. 9–53. https://doi.org/10.1002/14356007.a14_127.pub2
- 46. Наянова Е.В., Елипашева Е.В., Сергеев Г.М., Сергеева В.П. Редокс-свойства метиленового голубого как перспективного фотометрического реагента для определения галогенных окислителей // Аналитика и контроль. 2015. Т. 19. № 2. С. 154–160. https://doi.org/10.15826/analitika.2015.19.2.005
- 47. Вакулин И.В., Бугаец Д.В., Зильберг Р.А. Анализ точности расчета Red/Ox потенциалов замещенных фенолов, хинонов, и анилинов полуэмпирическими методами AM1, RM1 и PM7 // Бутлеровские сообщения. 2017. Т. 52. № 11. С. 53–59. https://doi.org/10.37952/ROI-jbc-01/17-52-11-53