УДК 544.22

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ МОЛИБДАТА СТРОНЦИЯ-ВИСМУТА: ЭКСПЕРИМЕНТ И РАСЧЕТ ИЗ ПЕРВЫХ ПРИНЦИПОВ

© 2023 г. Е. В. Соколенко^{1,} *, Е. С. Буянова², З. А. Михайловская^{2, 3}, Г. В. Слюсарев¹

¹Северо-Кавказский федеральный университет, ул. Пушкина, 1, Ставрополь, 355017 Россия ²Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия

³Институт геологии и геохимии им. академика А.Н. Заварицкого УрО Российской академии наук, ул. Академика Вонсовского, 15, Екатеринбург, 620016 Россия

> *e-mail: sokolenko-ev-svis@rambler.ru Поступила в редакцию 24.09.2022 г. После доработки 22.01.2023 г. Принята к публикации 23.01.2023 г.

Из первых принципов выполнены квантово-химические расчеты колебательных спектров кластеров SrMoO₄ и катион-дефицитной фазы с шеелитоподобной структурой Sr_{0.4}Bi_{0.4}MoO₄. Вычисленные значения сравнивали со значениями, полученными из экспериментальных спектров комбинационного рассеяния. Влияние внедрения висмута и разупорядочения структуры кластеров проявляется в дополнительных ножничных колебаниях кислорода.

Ключевые слова: шеелит, нанокластеры, теория функционала плотности, КРС **DOI:** 10.31857/S0002337X23030132. **EDN:** YUARIY

введение

Соединения типа АВО₄ со структурой шеелита хорошо изучены, а легкость замещения позиций металлов позволяет тонко регулировать их функциональные характеристики. Поэтому они привлекательны для поиска новых материалов для сцинтилляторов, светодиодов и лазеров [1, 2], ионных проводников [3], люминофоров [4], фотокатализаторов [5], СВЧ-диэлектриков [6] и т.д. Решить задачу оптимизации составов и дефектной структуры можно с привлечением современных методов квантово-химических вычислений. Моделирование структуры и сравнение расчетных и экспериментальных частот [7] служит эффективным инструментом изучения влияния замены катионов в структуре шеелита [8] и структурного беспорядка [9]. Для шеелитоподобных составов $Ca_{1-3x}Bi_{2x}\Phi_xMoO_4$ результаты колебательной спектроскопии доказывают наличие существенных искажений полиэдров MoO4 и BiO8 при замещениях в катионной А-подрешетке АМоО₄ [10].

Мы теоретически исследовали влияние внедрения висмута и разупорядочения структуры нанокластера на кристаллическую решетку и спектры КРС шеелита. Нашей задачей было моделирование дефектной структуры молибдата стронциявисмута с использованием квантово-химического подхода, определение природы колебаний, соответствующих экспериментальным спектрам КРС, и оценка роли разупорядочения кластера.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Молибдат стронция SrMoO₄ кристаллизуется в структурном типе шеелита (пр. гр. $I4_1/a$), он построен из молибден-кислородных тетраэдров, между которыми располагаются восьмикоординированные атомы стронция [11]. Замещение позиций стронция в SrMoO₄ висмутом возможно путем формирования катиондефицитных фаз $Sr_{1-3x}Bi_{2x}MoO_4$ для концентраций висмута *x* < 0.15 [12, 13], при этом наблюдаются значительное искажение структуры и сжатие элементарной ячейки. Для составов с высоким содержанием висмута $(0.15 < x < 0.25 \text{ Sr}_{1-3x}\text{Bi}_{2x}\text{MoO}_4)$ отмечено наличие сверхструктурного упорядочения [12, 14]. Наличие дефектов и понижение симметрии решетки могут приводить к изменению формы линий КРС в исследуемых материалах [15].

В работе [12] предложена структурная модель, описывающая расширенную элементарную ячей-ку Sr_{0.4}Bi_{0.4}MoO₄, и получена информация о координатах кристаллографических позиций и их за-селенности.

Использование методов моделирования может быть эффективно для тяжелых атомов со сложной

Рис. 1. Исходная ячейка SrMoO₄ размером $2 \times 2 \times 1$ (а) и кластер SrMoO₄ (б).

электронной структурой для понимания механизмов различных процессов, в первую очередь дефектообразования. Поэтому интерес представляет расчет колебательной структуры нанокластеров шеелита, включающих собственные и примесные дефекты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спекты КРС были получены с помощью спектрометра Horiba LabRam HR800 Evolution, включающего конфокальный микроскоп Olympus BX-FM. Для возбуждения применялись He–Ne-лазер (длина волны 633 нм) и решетка 600 штр./мм. Использовался объектив Olympus 50× (числовая апертура 0.7). Спектральное разрешение составляло ~1 см⁻¹.

Для моделирования структуры кластера на основе SrMoO₄ были использованы координаты атомов из работы [11]. Предварительно построены ячейки размером 2 × 2 × 1 (рис. 1а). Все связи Мо-О равны 1.84785 Å. Длина четырех связей в SrO₈ равна 2.4980 Å, еще четырех – 2.53734 Å. На рис. 16 атомы, связанные с остальной структурой единичными связями, отсутствуют. Кластеры Sr_{0.4}Bi_{0.4}MoO₄ построены аналогично на основе структурных данных [12, 16], исходная ячейка 1 × 1 × 1. Все связи Мо-О разные: 1.69211, 1.70114, 1.74779 и 2.00408 Å. Соответственно, длины всех связей в SrO₈ тоже разные и равны для Мо-О5 2.66093 Å, Mo-O6 2.58162 Å, Mo-O7 2.61325 Å, Mo-O8 2.55154 Å, Mo-O9 2.50434 Å, Mo-O10 2.59692 Å, Mo–O11 2.47705 Å, Mo–O12 2.67940 Å.

Эти искажения с учетом большей массы висмута должны привести к появлению дополнительных колебательных частот.

Расчеты колебательных спектров кластеров с помощью метода теории функционала плотности выполнялись программой Q-chem в режиме удаленного доступа на сервере СКФУ [17, 18]. Использование квантово-химического подхода позволяет моделировать необходимую дефектную структуру любой сложности, однако висмут накладывает ограничения при выборе волновых функций. Мы применяли набор Кристиансена–Росса–Эрмлера–Нэша–Бурстена (CRENBL) и базисные наборы Карлсруэ def2 с ECP, которые рекомендуется использовать от Na до Bi [19, 20].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В кластерах SrMoO₄ и Bi_{0.4}Sr_{0.4}MoO₄ частоты, расположенные в дальней ИК-области 80—180 см⁻¹, связаны с колебаниями решетки (табл. 1, линии 86, 93, 113 и 139 см⁻¹). Экспериментальная линия 139 см⁻¹ и соответствующие расчетные частоты дополнительно связаны с асимметричными колебаниями связи Sr–O и веерными колебаниями кислорода (рис. 2). В кластере Bi_{0.4}Sr_{0.4}MoO₄ дополнительно появились частоты 146.03, 146.56 и 146.82 см⁻¹, связанные с симметричными валентными колебаниями связи Bi–O.

Экспериментальной линии 162 см⁻¹ соответствует набор частот кластера SrMoO₄ (табл. 1), который обусловлен колебаниями решетки и асимметричными колебаниями связи Sr—O. В кластере

СОКОЛЕНКО и др.

V, CM^{-1}		
эксперимент	расчет SrMoO ₄	расчет Bi _{0.4} Sr _{0.4} MoO ₄
86	86.88, 88.71	86.26, 87.71, 89.30, 90.33, 92.5
93	97.03, 99.47, 100.98, 104.67, 109.45	93.86, 94.92, 96.57, 100.25, 101.82, 103.46, 105.65, 107.14,111.56, 112.97
113	<i>114.44, 116.82, 118.49, 120.35, 123.13,</i> 128.58, <i>135.68</i>	113.08, 115.35, 117.51, 118.06, 121.08, 122.05, 124.72, 126.94, 128.44, 131.00, 131.37, 133.07, 136.08
139	136.44, 139.63 , 141.65, 143.74, <i>146.40</i>	<i>137.74</i> , 139.18, <i>141.40</i> , <i>142.55</i> , <i>146.03</i> , 146.56, 146.82
162	<i>150.12,153.55, 158.26, 162.13, 164.07, 169.51, 171.47,</i> 178.95	152.02, 154.22 , 156.11, <i>158.72</i> , <i>161.41</i> , <i>165.35</i> , <i>166.32</i> , 173.22, <i>177.85</i>
183	182.34 , <i>185.62</i> , <i>191.68</i> , <i>197.21</i> , <i>203.03</i>	175.95 , 178.71, 183.52, 188.29, 189.75, <i>193.10</i> , <i>197.08</i> , 200.06 , 201.70, <i>204.79</i> , <i>208.25</i> , <i>216.44</i> , <i>229.12</i>
233	235.75 , 254.84, 258.28, 259.63, 266.2 7, 276.56, 280.57	233.01, <i>236.16</i> , 236.82, 240 .77, 245.19 , <i>251.48</i> , 256.16, 258.14, 259.83, 264.40, 266.12, 267.69, 271.31, 277.38, 282.58, 284.99, 291.33, 293.18
	287.45, 289.51 , 296.03, 301.65, 305.9	300.83 , 320.07, 322.91, 325.68, 331.67, 280.59, 294.92, 307.47, 315.04
327	<i>307.92, 314.62, 316.3, 03, 318.03, 322.6, 329.49, 335.22, 335.52, 340.38, 344.36, <i>351.22, 352.82, 358.42</i></i>	333.80 , 335.24,335.99, 343.54, 346.90, 350.18, 354.45, 356.96
367	364.10 , 367.34, 371.13, 375.47	361.01 , 374.07, 362.00 , 362.74, 367.03, 371.60, 375.60, 379.26, 380.14, 383.05
383	383.26, 385.78, 388.78, 399.32	384.27 , 387.80,389.04, 391.45, 396.36, 397.96, 402.64
407	410.48 , 417.21, 423.2, <i>425.14</i> , <i>434.98</i> , 436.71 , 444.09, 453.73, <i>457.42</i> , 466.15, 473.9, 477.99	408.87, 411.59, 413.39, 419.84, 423.40, 436.40 , 437.53, 439.79, 445.79, 458.40, 461.41, 467.70, 486.74
	484.33, 496.42, <i>508.92</i> , 520.09, 549.56 , 613.14 , 615.35, 624.68, <i>632.72</i> , 638.23, <i>651.04</i> , <i>661.53</i> , <i>670.71</i> , <i>681.53</i> , <i>698.57</i> , 712.36	424.90, 453.37, 456.66, 468.01, 476.63, 493.15 , 506.33, 525.62, 531.01, 536.03 , 558.72, 591.61, 597.54 , 615.37
796	731.18, 758.16, 764.7, 773.29, 787.64	764.07
845		
887		884.30, 891.60, 897.65, 911.02, 913.37
931		930.39 , 951.13 , 968.11, 952.67 , 964.17, 970.93, 973.68, 976.88, 984.02, 997.00

Таблица 1. Значения колебательных частот, полученные экспериментально и в результате расчета

примечание. Полужирным шрифтом выделены моды, представленные на рис. 2, курсивом – колебания, в которые вносят по амплитуде основной вклад поверхностные связи.

Ві_{0.4}Sr_{0.4}MoO₄ дополнительно появились асимметричные валентные колебания связи Ві-О. Линия 183 см⁻¹ соответствует асимметричным колебаниям связи Sr-O и веерным колебаниям кислорода. По расчетным данным, в кластерах SrMoO₄ и Bi_{0.4}Sr_{0.4}MoO₄ дополнительно появились ножничные колебания кислорода, связанного со стронцием. Таким же образом можно интерпретировать линию 233 см⁻¹. Дополнительный набор частот кластера SrMoO₄ в интервале 287.45–305.9 см⁻¹ связан с маятниковыми колебаниями тетраэдра МоО₄.

В кластере Bi_{0.4}Sr_{0.4}MoO₄ набор частот 245.19-284.99 см⁻¹ (табл. 1) определяется асимметричными валентными колебаниями связи Ві-О.

Частота 291.33 см⁻¹ обусловлена асимметричными валентными колебаниями связей Ві-О-Мо, Sr—O–Mo, проявились ножничные колебания кислорода, связанного со стронцием, и веерные коле-

Рис. 2. Модели вибраций некоторых частот.

бания кислорода. Расчетная частота 293.18 см⁻¹ связана с маятниковыми колебаниями тетраэдра MoO_4 . Линия 327 см⁻¹ является комбинацией веерных колебаний кислорода с асимметричными валентными колебаниями связи Sr–O, асимметричными валентными колебаниями связей Sr–O–Mo и маятниковыми колебаниями тетраэдра MoO_4 . В окрестности линии 367 см⁻¹ набор частот 364.10–388.78 см⁻¹ кластера SrMoO₄ связан дополнительно

с ножничными колебаниями O—Sr—O и O—Mo—O. В кластере $Bi_{0.4}Sr_{0.4}MoO_4$ проявились валентные и ножничные колебания Bi.

Линия 383 см⁻¹ и, соответственно, 399.32 см⁻¹ при расчете кластера $SrMoO_4$ определяется комбинацией веерных колебаний кислорода, асимметричными валентными колебаниями связи Sr-O и маятниковыми колебаниями тетраэдра MoO_4 . В

Рис. 2. Окончание

кластере Bi_{0.4}Sr_{0.4}MoO₄ дополнительно вносят вклад асимметричные валентные колебания связи Bi–O.

298

Линии 407 см $^{-1}$ отвечает частота 410.48 см $^{-1}$ из расчета кластера SrMoO₄, которая связана с комбинацией веерных колебаний кислорода, асимметричными валентными колебаниями связи Sr-O и ножничными колебаниями O-Sr-O и O-Mo-O. Соответственно, в кластере Bi_{0.4}Sr_{0.4}MoO₄ дополнительно наблюдаются асимметричные валентные колебания связи Ві-О. Спектр частот из расчета кластера SrMoO₄ в области 417-520 см⁻¹ опрелеляется комбинацией веерных колебаний кислорода, асимметричными валентными колебаниями связи Sr-O и ножничными колебаниями О-Мо-О. Частота 549.56 см⁻¹ связана дополнительно с ножничными колебаниями O-Sr-O. Расчет кластера $Bi_{0,4}Sr_{0,4}MoO_4$ дал две полосы частот: 408.87-486.74 и 424.90-615.37 см⁻¹. Вторая определяется комбинацией веерных колебаний кислорода, асимметричными валентными колебаниями связи Sr-O и ножничными колебаниями О-Мо-О. А первая - дополнительно асимметричными валентными колебаниями связи Bi-O. Частота 549.56 см⁻¹ кластера SrMoO₄ связана с комбинацией веерных колебаний кислорода, асимметричными валентными колебаниями связи Sr-O и ножничными колебаниями O-Sr-O и О-Мо-О. В группе частот 493.15-531.01 см⁻¹ в кластере Bi_{0.4}Sr_{0.4}MoO₄ появляется дополнительно асимметричное валентное колебание связи

Мо–О, которое в различных вариациях наблюдается в группе частот 536.03–615.37 см⁻¹. Асимметричное валентное колебание связи Мо–О наблюдается в группе частот 613.14–712.36 см⁻¹ кластера SrMoO₄ (табл. 1) в дополнение к ножничным колебаниям O–Sr–O.

Линия 796 см⁻¹ обусловлена с частотами 731.18– 787.64 см⁻¹ кластера SrMoO₄, которые определены в качестве симметричных валентных мод растяжения связей Мо–О в тетраэдре MoO₄ и ножничных колебаний O–Sr–O. В кластере Bi_{0.4}Sr_{0.4}MoO₄ частота 764.07 см⁻¹ отражает асимметричные валентные колебания связей Sr–O и O–Mo–O. Линия 887 см⁻¹ обусловлена частотами 884.30– 913.37 см⁻¹, ей соответствует асимметричное валентное колебание связей Мо–O и Sr–O. Кроме того, в частоте 884.30 см⁻¹ отмечен вклад валентных колебаний Bi–O.

В кластере $Bi_{0.4}Sr_{0.4}MoO_4$ частоты, расположенные около 951.13, 968.11 см⁻¹, определены в качестве симметричных валентных мод растяжения связей Мо–О в тетраэдре и представляют проекцию движений кислорода относительно Мо (рис. 2). Частоты 952.67, 964.17, 970.93, 973.68, 976.88, 984.02 и 997.00 см⁻¹ принадлежат асимметричным валентным колебаниям растяжения связей Мо–О.

Таким образом, замещение висмутом стронция в молибдате $SrMoO_4$, сопровождающееся генерацией катионных вакансий, влияет на упругие характеристики поликристаллических образцов $Sr_{1-3x}Bi_{2x}MoO_4$ и приводит к расщеплению колебаний под действием локального кристаллического поля [14].

Наблюдается существенное расхождение по числу мод между предсказанным для шеелита значением из теоретико-группового анализа колебаний и наблюдаемыми значениями в эксперименте и расчетах. Это является подтверждением понижения симметрии структуры. Использование метода теории функционала плотности для шеелитов приводит к отличиям в расчетных и экспериментальных спектрах. как отмечено в работе [21], авторы которой выдвинули предположение о причине различий. Структура шеелита подтверждается данными РФА, который дает усредненную по кристаллу картину [13]. В целом структура шеелита сохраняется, но в искаженном виде. Величина искажений определяется катионной и анионной подрешетками, размером кристаллитов, дефектами в объеме и на поверхности.

Влияние двухвалентных катионов малозаметно в спектрах КРС [5, 19, 20], а зонный расчет выявил наличие двух дополнительных частот [20]. Внедрение трехвалентных ионов и образование двойных шеелитов приводит к существенным искажениям структуры и понижению сингонии до моноклинной [22, 23], при этом также увеличивается число наблюдаемых мод.

Замена аниона тоже проявляется в разупорядочении и спектрах [21]. Эти моды не полностью поляризованы, и, следовательно, они появляются во всех спектрах КРС и ИК. Исследования нанопорошков [6] тоже обнаружили ряд дополнительных линий в спектрах КРС, которые нельзя отнести к погрешности эксперимента. К влиянию дефектов и поверхностной обработки [24] ИКспектры более чувствительны, чем РФА. Об этом говорит появление широких полос комбинационного рассеяния пропорционально расширению решетки [25]. Причинами этого явления тоже являются снижение симметрии и неэквивалентность связей нанокристалла или кластера.

ЗАКЛЮЧЕНИЕ

Расчет спектров КРС кластеров SrMoO₄ и $Bi_{0,4}Sr_{0,4}MoO_4$ выявил дополнительные частоты, которые обусловлены понижением симметрии структуры соединений. В частности, это дополнительные асимметричные и симметричные колебания связи Bi-O, ножничные колебания кислорода, связанного со стронцием, и веерные колебания кислорода, а также маятниковые колебания тетраэдра MoO_4 .

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 3 2023

ФИНАНСИРОВАНИЕ РАБОТЫ

Синтез, аттестация и экспериментальное определение функциональных характеристик материалов были проведены при поддержке гранта РНФ 20-73-10048.

Работа выполнена с использованием оборудования Центра коллективного пользования Северо-Кавказского федерального университета (ЦКП СКФУ) при финансовой поддержке Минобрнауки России, уникальный идентификатор проекта RF—2296.61321X0043 (соглашение № 075-15-2021-672).

СПИСОК ЛИТЕРАТУРЫ

- 1. Danevich F.A., Georgadz A.Sh., Kobychev V.V., Kropivyansky B.N., Nagorny S.S. Application of PbWO₄ Crystal Scintillators in Experiment to Search for 2β Decay of 116cd // Nucl. Instrum. Methods Phys. Res., Sect. A. 2006. V. 556. P. 259–265. https://doi.org/10.1016/j.nima.2005.09.049
- Shimamura K., Sato H., Bensalah A., Machida H., Sarukura N., Fukuda T. Growth of Ce-Doped Colquiriite- and Scheelite-Type Single Crystals for Uv Laser // Appl. Opt. Mater. 2002. V. 19. № 1. P. 109–116. https://doi.org/10.1016/S0925-3467(01)00207-5
- Emelynova Y.V., Krylov A.A., Kasantseva A.D., Buyanova E.S., Petrova S.A., Nikolaenko I.V. Bismuth Niobates Bi₃Nb_{1-x}Er_xO_{7-δ}: Structure and Transport Properties // Russ. J. Inorg. Chem. 2019. V. 64. № 1.2. P. 151–157.
- Баковец В.В., Золотова Е.С., Антонова О.В., Корольков И.В., Юшина И.В. Возможности адаптации спектра фотолюминесценции шеелитов Са к спектру эмиссии ламп накаливания: соединения CaMoO₄:Eu³⁺ и CaWO4:Eu³⁺// ЖТФ. 2016. Т. 86. Вып. 7. С. 104–111.
- Parulin R.A., Timoshenko I.V., Kuznetsova Yu.A., Zatsepin A.F., Buyanova E.S., Mikhaylovskaya Z.A., Koubisy M.S.I. Optical Properties and Energy Band Parameters of Luminescent CaMoO₄:Bi Ceramics // J. Phys.: Conf. Ser. 2018. V. 1124. P. 051005. https://doi.org/10.1088/1742-6596/1124/5/051005
- Vidya S., John A., Solomon S., Thomas J.K. Optical and Dielectric Properties of SrMoO₄ Powders Prepared by the Combustion Synthesis Method // Adv. Mater. Res. 2012. V. 1. № 3. P. 191–204. doi: 10.12989 /amr.2012.1.3.191
- 7. *Bilkan M.T., Yurdakul S.* Experimental and Theoretical Studies on Molecular Structures and Vibrational Modes of Novel Compounds Containing Silver // Russ. J. Inorg. Chem. 2017. V. 62. № 7. P. 910–924. https://doi.org/10.1134/S0036023617070038
- Кожевникова Н.М. Синтез и исследование тройных молибдатов KCaLn(MoO₄)₃ шеелитоподобной структуры в системах K₂MoO₄-CaMoO₄-Ln₂(MoO₄)₃ (Ln = Nd, Sm, Eu, Gd) // Журн. неорган. химии. 2018. Т. 63. № 2. С. 147–161. https://doi.org/10.7868/S0044457X18020034
- Ляшенко Л.П., Щербакова Л.Г., Тартаковский И.И., Максимов А.А., Светогоров Р.Д., Зубавичус Я.В. Структурные преобразования порядок-беспорядок в нанокристаллических высокодефектных флюоритпроизводных Gd₂MO₅ (M-Zr, Hf) // Не-

300

орган. материалы. 2018. Т. 54. № 3. С. 257–264. https://doi.org/10.7868/S0002337X18030065

- Guo J., Randall A.C., Zhang G., Zhou D., Chen Y., Wang H. Synthesis, Structure, and Characterization of New Low-Firing Microwave Dielectric Ceramics: (Ca_{1-3x}Bi_{2x}Φ_x)MoO₄ // J. Mater. Chem. C. 2014. V. 35. № 2. P. 7364–7372. https://doi.org/10.1039/C4TC00698D
- SrMoO₄ (Sr[MoO₄]) Crystal Structure // Inorganic Solid Phases // Pauling File / Ed. Villars P. Heidelberg: Springer. https://materals.springer.com/isp/crystallographic/ docs/sd 1014644
- 12. Михайловская З.А., Буянова Е.С., Петрова С.А., Кузнецова Ю.А., Пьянкова Д.В. Синтез и свойства твердых растворов (Ca/Sr)_{1-3x}Bi_{2x}MoO₄ // Неорган. материалы. 2019. Т. 55. № 10. С. 1080–1086. https://doi.org/10.1134/ S0002337X19080098
- Sleight J.A.W., Aykan K. New Nonstoichiometric Molybdate, Tungstate, and Vanadate Catalysts with the Scheelite-Type Structure // Solid State Chem. 1975. V. 13. № 3. P. 231–236.
- 14. Михайловская З.А., Буянова Е.С., Соколенко Е.В., Слюсарев Г.В., Петрова С.А., Зацепин А.Ф. Влияние добавок висмута на кристаллическую и электронную структуру молибдата стронция // ЖФХ. 2020. Т. 94. № 12. С. 1857–1864.
- Воронько Ю.К., Соболь А.А., Шукшин В.Е., Загуменный А.И., Заварцев Ю.Д., Кутовой С.А. Исследование структурного разупорядочения в кристаллах YVO₄, GdVO₄ и CaWO₄ методом спектроскопии комбинационного рассеяния света // ФТТ. 2009. T. 51. № 9. С. 1776–1782.
- Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A., Nikitina A.A. Sheelite-Related Strontium Molybdates: Synthesis and Characterization // Chim. Tech. Acta. 2018. V. 5. № 4. P. 189–195. https://doi.org/10.15826/chimtech.2018.5.4.03
- 17. Соколенко Е.В., Слюсарев Г.В. Моделирование дефектов в структуре карбида кремния // Неорган. материалы. 2019. Т. 55. № 1. С. 21–33. https://doi.org/10.1134/S0002337X19010159

- Furlani Th.R., Kong J., Gill P.M.W. Parallelization of SCF Calculations Within Q-Chem // Comput. Phys. Commun. 2000. V. 128. P. 170–177.
- Wadt W.R., Hay P.J. Ab Initio Effective Core Potentials for Molecular Calculations Potentials for Main Group Elements Na to Bi // J. Chem. Phys. 1985. V. 82. P. 284–298. https://doi.org/10.1063/1.448800
- Botelho G., Nogueir I.C., Moraes E., Longo E. Study of Structural and Optical Properties of CaMoO₄ Nanoparticles Synthesized by the Microwave-Assisted Solvothermal Method // Mater. Chem. Phys. 2016. V. 183. P.110–120. https://doi.org/10.1016/j.matchemphys.2016.08.008
- Oliveira F.K.F., M.C., Gracia L., Tranquilin R.L., Paskocimas C.A., Motta F.V., Longo E., Andr'es J., Bomio M.R.D. Experimental and Theoretical Study to Explain the Morphology of CaMoO₄ Crystals // J. Phys. Chem. Solids. 2018. V. 114. P. 141–152. https://doi.org/10.1016/j.jpcs.2017.11.019
- Sczancoski J.C., Cavalcante L.S., Marana N.L., Silva R.O., Tranquilin R.L., Joya M.R., Pizani P.S., Varela J.A., Sambrano J.R., Siu Li M., Longo E., Andrés J. Current Electronic Structure and Optical Properties of BaMoO₄ Powders // Appl. Phys. 2010. V. 10. P. 614–624. https://doi.org/10.1016/j.cap.2009.08.006
- 23. Hanuza J., Benzar A., Haznar A., Maczka M., Pietraszko A., Maas J.H. Structure and Vibrational Dynamics of Tetragonal NaBi(WO₄)₂ Scheelite Crystal // Vibr. Spectrosc. 1996. V. 12. P. 25–36.
- Hanuza J., Maczka M., Maas J.H. Vibrational Characteristics of the Single-Bridge MoOMo and Doublebridge MoO₂Mo Intermolecular Interactions-Polarized Infrared and Raman Spectra of Monoclinic KBi(MoO₄)₂ Single Crystal // Vibr. Spectrosc. 1995. V. 8. P. 417–423.
- Hanuza J., Maczka M., Maas J.H. Polarized IR and Raman Spectra of Tetragonal NaBi(WO₄)₂, NaBi(MoO₄)₂ and LiBi(Mo₄)₂ Single Crystals with Scheelite Structure // J. Mol. Struct. 1995. V. 348. P. 349–352.