УДК 544.2

АТОМНО-СЛОЕВОЕ ОСАЖДЕНИЕ АЛЮМИНИЙ-МОЛИБДЕНОВЫХ ОКСИДНЫХ ПЛЕНОК С ИСПОЛЬЗОВАНИЕМ ТРИМЕТИЛАЛЮМИНИЯ, ОКСОТЕТРАХЛОРИДА МОЛИБДЕНА И ВОДЫ

© 2023 г. А. М. Максумова¹, И. С. Бодалёв², С. И. Сулейманов¹, Н. М.-Р. Алиханов¹, И. М. Абдулагатов^{1, *}, М. Х. Рабаданов¹, А. И. Абдулагатов¹

¹Дагестанский государственный университет, ул. Гаджиева, 43-а, Махачкала, 367000 Россия ²Санкт-Петербургский государственный технологический институт, Московский пр., 24-26/49 лит. А, Санкт-Петербург, 190013 Россия

*e-mail: ilmutdina@gmail.com Поступила в редакцию 13.01.2023 г. После доработки 28.02.2023 г. Принята к публикации 01.03.2023 г.

В работе продемонстрировано атомно-слоевое осаждение (ACO) алюминий-молибденовых оксидных пленок ($Al_xMo_yO_z$) с использованием триметилалюминия (TMA, $Al(CH_3)_3$), оксотетрахлорида молибдена (MoOCl₄) и воды. Исследование процесса роста пленок осуществляли *in situ* с использованием кварцевых пьезоэлектрических микровесов и *ex situ* рентгеновскими методами анализа тонких пленок. ACO $Al_xMo_yO_z$ проводили с использованием суперциклов, состоящих из субциклов TMA/H₂O и MoOCl₄/H₂O. В работе получены два типа пленок, где соотношение субциклов составляло 1 : 1 (1Al1MoO) и 1 : 7 (1Al7MoO). При 150°С показана линейность роста пленок с постоянной роста 3.0 и 5.7 Å/суперцикл для 1Al1MoO и 1Al7MoO соответственно. Плотность полученных пленок составила 3.6 и 3.9 г/см³ для 1Al1MoO и 1Al7MoO соответственно, а шероховатость была в пределах 20 Å. Степень окисления молибдена в полученных пленках составляла 6+, 5+ и 4+. Рентгендифракционный анализ показал, что полученные пленки имели аморфную структуру.

Ключевые слова: $Al_x Mo_y O_z$, атомно-слоевое осаждение, $MoOCl_4$, нанопленки **DOI**: 10.31857/S0002337X2304005X, **EDN**: GMHSWK

ВВЕДЕНИЕ И ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Алюминий-молибденовые смешанные оксиды Al_xMo_yO_z, их гетерогенные смеси/наноламинаты Al_2O_3 -MoO_x, молибдат алюминия $Al_2(MoO_4)_3$ применяются или имеют перспективы применения в качестве твердофазных электролитов [1]. пассивирующих промежуточных слоев в солнечных элементах [2, 3], катализаторов [4, 5], при создании цветных стекол для фотоэлектрических элементов [6], а также в качестве красящих пигментов для керамики [7]. Другой потенциальной областью применения Al_xMo_vO_z-покрытий являются сухие смазки. Как и в случаях с твердыми растворами CuO-MoO₃, ZnO-MoO₃, Cs₂O-MoO₃ и др., пленки Al_xMo_vO₇ могут обеспечивать значительное снижение трения и износа при высоких температурах [8, 9].

Ранее тонкие пленки $Al_x Mo_y O_z$ получали методом плазменно-стимулированного атомно-слоевого осаждения (ПС-АСО) с использованием триметилалюминия $Al(CH_3)_3$, бис-(трет-бутилимидо)-бис-(диметиламино)молибдена(VI) $Mo(NtBu)_2(NMe_2)_2$ и O₂[10]. Метод АСО [11, 12] является одним из продвинутых методов получения высококонформных сложных оксидов типа $A_x B_y O_z$ с заданным соотношением элементов, которое обеспечивается регулированием соотношения циклов обработки соответствующими прекурсорами [13]. Прецизионность ланного метода достигается за счет самоограничивающихся поверхностных реакций, в результате которых формируются монослойные и субмонослойные атомарные слои нанопленки. В данной работе алюминий-молибденовые оксидные пленки получали методом термического АСО. В отличие от ПС-АСО в предложенном нами процессе рост пленки осуществляется за счет термически стимулированных поверхностных реакций без использования дорогостоящего источника плазмы. Использование в ПС-АСО оксидов О2 плазмы может привести к неконтролируемому окислению подложки и модификации границы раздела пленка/подложка из-за потока высокореакционных радикалов кислорода [14].

Предлагаемый способ роста Al_xMo_yO_z можно представить как объединение двух процессов ACO

Al₂O₃ и MoO₃ в одном. Ранее для ACO Al₂O₃ в качестве прекурсора алюминия в основном применяли хлорид алюминия AlCl₃, бромид алюминия AlBr₃, хлорид диметилалюминия Al(CH₃)₂Cl, триметилалюминий $Al(CH_3)_3$, триэтилалюминий $Al(C_2H_5)_3$, триэтоксид алюминия Al(OC₂H₅)₃, триизопропилоксид алюминия $Al(OiPr)_3$ в комбинации с O_2 , Н₂О или О₃ [15]. Наиболее привлекательным и часто используемым прекурсором алюминия является триметилалюминий ввиду его высокой летучести, термической стабильности и высокой реакционной способности. В качестве прекурсоров молибдена в АСО ранее были использованы гексакарбонил молибдена Мо(СО)₆ [16]; бис-этилбензол молибдена МоС₁₆Н₂₀ [17]; диоксобис-(N,N'-диизопропилацетоамидинат) молибдена MoO₂(*iPr₂amd*)₂) [18]; бис-(трет-бутилимидо)-бис-(диметиламино)молибден Мо(NtBu)₂(NMe₂)₂ [19]; диоксобис-(2,2,6,6-тетраметилгептан-3,5-дионато)молибден MoO₂(thd)₂ [20]; диоксобис-(N,N'третбутилацетоамидинато)молибден MoO₂(tBuamd)₂ [21] и оксотетрахлорид молибдена(VI) MoOCl₄ [22] в комбинации с H_2O , O_3 и $H_2O + O_3$.

В данной работе в качестве прекурсоров алюминия использовали Al(CH₃)₃, молибдена – MoOCl₄, кислорода – H₂O. Целью работы является подтверждение применимости данных прекурсоров на основании исследования механизма поверхностных реакций и состава получаемых нанопленок. Комбинация данных прекурсоров для осаждения пленок Al_xMo_yO_z используется впервые. Оксотетрахлорид молибдена привлекателен тем, что относительно легко переходит в газовую фазу сублимацией. Возможность получения ACO-пленок MoO₃ с использованием MoOCl₄ в комбинации с H₂O была ранее изучена в работах [22, 23].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

АСО оксидных пленок проводили на оборудовании компании ООО АСО НаноТех (г. Махачкала, Россия). Экспериментальная установка оборудована вакуумной камерой с горячими стенками, которая продувалась потоком инертного газа. ACO всех пленок проводили при 150°С. В качестве инертного газа использовали азот (ОСЧ, ООО "Гермес-газ", 99.999%). Давление в реакторе поддерживалось около отметки 1.0 Торр. Чистота Al(CH₃)₃ (CAS номер 75241, Sigma-Aldrich) и MoOCl₄ (CAS HOMEP 13814750, Sigma-Aldrich) coставляла ~97.0%. MoOCl₄ загружали в контейнер для подачи реагента в перчаточном боксе в атмосфере аргона. Вода перед использованием подвергалась деионизации и дегазации. Во время ACO MoOCl₄ грели до 60°С для достижения достаточного давления паров. Температура плавления MoOCl₄ составляет 105°С [24]. Из литератур-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 4 2023

ных источников известно, что MoOCl₄ термически нестабилен и при комнатной температуре медленно разлагается [25]. Несмотря на это, визуально изменения цвета прекурсора после нагревания в контейнере до 60°С не наблюдалось.

Мониторинг процесса роста пленок проводили в режиме реального времени (*in situ*) с использованием кварцевых пьезоэлектрических микровесов (**КПМ**) [26]. Разрешение КПМ по массе составляет ~0.3 нг/см². Погрешности КПМ для каждой из точек в кривых насыщения прекурсоров рассчитывали по стандартным отклонениям не менее 10 измерений.

Для осаждения пленок в качестве подложек использовали кремниевые пластины Si(100) размером 1.5 × 1.5 см со слоем естественного оксида кремния толщиной ~20 Å. Перед использованием подложки последовательно очищали ацетоном, изопропанолом, деионизированной водой и высушивали в потоке N_2 "ос. ч.". До начала осаждения подложки выдерживали в реакционной камере в течение ~30 мин. До начала АСО $Al_xMo_yO_z$ поверхность кварцевого кристалла или кремниевой подложки Si(100) покрывали в том же реакторе пленкой ACO- Al_2O_3 толщиной примерно 60 Å, для этого использовали триметилалюминий (**TMA**) и H_2O .

Данные рентгеновской рефлектометрии и рентгендифракционного анализа получены с помощью исследовательского комплекса Bruker D8 Discover (Bruker, Германия). Для моделирования слоев в составе пленок для рентгеновской рефлектометрии использован пакет программ Bruker Diffrac.Suite. Методом рентгеновской рефлектометрии была получена информация о толщине, плотности и поверхностной среднеквадратичной шероховатости (RMS) полученных пленок, а методом рентгендифракционного анализа — информация об их кристаллической структуре.

С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) исследован атомный состав и определена энергия связей элементов в пленке. РФЭС-данные получены с использованием комплексного спектрометра Escalab 250Xi (Thermo Fisher Scientific, Великобритания), снабженного монохроматическим AlK_{α} -рентгеновским источником (1486.6 эВ), с энергией пропускания 100.0 эВ для обзорных спектров и 50.0 эВ для спектров высокого разрешения. Размер шага сканирования составлял 0.5 эВ для обзорных спектров и 0.1 эВ для спектров высокого разрешения. Все спектры были откалиброваны по пику С 1s с центром при 284.8 эВ. Разложение спектральных фотоэлектронных линий провели функцией Гаусса, фоновую составляющую вычитали методом Ширли. Удаление приповерхностного слоя ионами Ar⁺ до снятия спектров не проводили из-за возможной модификации химического состава пленок.

Повтор, N раз

Рис. 1. Последовательность подачи реагентов в суперцикле процесса ACO $Al_x Mo_y O_7$ (1A11MoO).

Время напуска и продувки прекурсоров во время одного ACO-суперцикла $Al_xMo_yO_z$ обозначали как $\tau_1/\tau_2/\tau_3/\tau_4/\tau_5/\tau_6/\tau_7/\tau_8$, где τ_1 – время напуска паров TMA; τ_2 , τ_4 , $\tau_6 \tau_8$ – время продувки (30 c); τ_3 , τ_7 – время напуска паров H₂O; τ_5 – время напуска паров MoOCl₄. Соотношение субциклов TMA-H₂O и MoOCl₄–H₂O в процессе ACO Al_xMo_yO_z варьировали, меняя количество субциклов $\tau_5/\tau_6/\tau_7/\tau_8$ в суперцикле. Парциальные давления MoOCl₄, TMA и H₂O при времени напуска в течение 1.0 с составляли ~5, ~20 и ~70 мТорр соответственно.

Все термохимические расчеты проводили с использованием программы HSC Chemistry (Версия 9.0).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

АСО $Al_x Mo_y O_z$ осуществляли за счет поверхностных реакций паров $Al(CH_3)_3$, $MoOCl_4 u H_2O$ в заданной последовательности. Полученные пленки обозначили как 1Al1MoO u 1Al7MoO, где коэффициенты соответствуют количеству субциклов $Al(CH_3)_3/H_2O$ и $MoOCl_4/H_2O$ в суперцикле. Для осаждения 1Al1MoO использовали восьмиступенчатый ACO-суперцикл, состоящий из последовательного напуска паров $Al(CH_3)_3, H_2O$, $MoOCl_4, H_2O$, H_2O , $MoOCl_4, H_2O$, H_2O , $H_$

КПМ. На рис. 2 показаны КПМ-данные по изменению массы при напуске и продувке реагентов в процессе осаждения пленок 1АШМоО при 150°С. Для данного процесса использовали параметры цикла 1/30/1/30/1/30, где Al(CH₃)₃, MoOCl₄ и H₂O напускали в течение 1.0 с, а время продувки было 30 с. Прирост массы после Al(CH₃)₃/H₂O-субцикла составил 59.0 нг/см², что почти вдвое выше прироста массы, наблюдаемого в процессе роста Al₂O₃ (~32.0 нг/см²) с использованием ТМА и H₂O при схожих условиях [27, 28].

Прирост массы оксида алюминия более чем в два раза превышает теоретический прирост массы для одного монослоя Al_2O_3 , равный 26.4 нг/см² и рассчитанный из уравнения

$$\Delta m(\text{AlO}_{3/2}) = M/(\sigma N_A), \qquad (1)$$

где M – молярная масса AlO_{3/2} (г/моль), σ – эффективная посадочная площадка для молекул TMA (нм²), N_A – число Авогадро (ат./моль). Эффективную посадочную площадку рассчитывали по формуле Брунауэра–Эмметта–Теллера

$$\sigma = 1.09 \left(M / (\rho N_A) \right)^{2/3}, \tag{2}$$

где M — молярная масса ТМА (г/моль), ρ — плотность жидкого ТМА (г/см³). Из уравнения (2) посадочная площадка ТМА равна 0.320 нм².

Рис. 2. Наблюдаемый при КПМ прирост массы при напуске реагентов в процессе ACO $Al_xMo_yO_z$ (1A11MoO) для двух суперциклов.

Экспериментально наблюдаемое значение прироста массы для Al_2O_3 отличается от теоретического в пределах 20%, что объяснимо ошибкой формулы Брунауэра–Эмметта–Теллера, не учитывающей конкретное количество и конфигурацию лигандов. Следовательно, в случае ACO Al_2O_3 присоединяется один монослой, а для ACO $Al_xMo_yO_z$ – два монослоя.

Прирост массы после MoOCl₄/H₂O-субцикла составил 48.0 нг/см², что на ~41.0 нг/см² выше значения прироста массы, наблюдаемого в процессе ACO MoO₃ (7.0 нг/см²) с использованием MoOCl₄ и H₂O [29]. Однако данное значение (48 нг/см²) существенно меньше массы теоретического монослоя, рассчитанного из формулы (1): Δm (MoO₃) = 78.1 нг/см² (MoOCl₄, σ = 0.320 нм²), что говорит о субмонослойном режиме роста. Увеличение прироста массы за MoOCl₄/H₂O-субцикл может быть обусловлено увеличением количества реакционных поверхностных групп вследствие включения алюминий-оксидных слоев.

Согласно приведенной выше схеме (рис. 1), реакция алюминийметилированной поверхности с H_2O (реакция II) должна привести к замещению – CH_3 -групп на –OH и, соответственно, к прибавке массы [26, 28], а в случае реакции поверхностных молибденоксохлоридных групп с H_2O (реакция IV) – к ее снижению. Из рис. 2 видно, что напуск TMA или MoOCl₄ приводит к приросту массы, а после напуска паров воды для случая Al(CH_3)₃/ H_2O не наблюдается ожидаемой прибавки массы, тогда как в случае MoOCl₄/ H_2O происходит ее снижение примерно на 2 нг/см².

Зависимость прироста массы, приходящегося на один суперцикл, от продолжительности напус-

Рис. 3. Зависимости прироста массы за ACO-суперцикл $Al_x Mo_y O_z$ от времени напуска паров TMA, MoOCl₄ и H₂O при 150°C.

ка реагентов приведена на рис. 3. Данные эксперименты проведены для определения самонасышаемости поверхностных реакций прекурсоров. что является необходимым условием АСО. Кривые насыщения для Al(CH₃)₃ или MoOCl₄ получали, фиксируя время напуска $H_2O(2.0 c)$ и одного из прекурсоров металла (1.5 с). Прирост массы за цикл достигал насыщения уже при времени напуска паров Al(CH₃)₃ и MoOCl₄ в течение примерно 1.0 с. Кривая насыщения для ТМА имеет самоограничивающийся характер, тогда как кривая насыщения MoOCl₄ – менее идеальна. На рис. 3 также представлены результаты для поверхностной реакции H₂O, полученные фиксированием времени напуска паров $MoOCl_4$ и $Al(CH_3)_3$ в течение 1.5 с. Прирост массы за шикл достигал насыщения при времени напуска H₂O в течение 1.0 с. Следовательно, поверхностная реакция H₂O при рассмотренной температуре имеет самоограничивающийся характер. Время продувки прекурсоров во всех случаях составило 30 с.

Для увеличения относительного содержания молибдена в получаемых пленках ACO проводили с использованием одного субцикла Al(CH₃)₃/H₂O и семи субциклов MoOCl₄/H₂O в суперцикле (пленки 1Al7MoO). На рис. 4 приведены данные КПМ для одного ACO-суперцикла 1Al7MoO, проводимого с временными параметрами напуска и продувки 1/30/1/30/((1/30/3/30) × 7).

Прирост массы после субцикла $Al(CH_3)_3/H_2O$ составил 57.0 нг/см², а после семи $MoOCl_4/H_2O$ -субциклов — 145.0 нг/см², что соответствует массе примерно двух мономолекулярных слоев для обоих субциклов. Прирост массы после субцикла $Al(CH_3)_3/H_2O$ для 1Al7MoO на 2.0 нг/см² ниже,

Рис. 4. КПМ-данные прироста массы для одного суперцикла в процессе ACO $Al_xMo_yO_z$ (1Al7MoO) при 150°С.

чем в процессе ACO 1Al1MoO (59.0 нг/см²). Как видно из рис. 4, включение одного субцикла TMA/H₂O после 7 субциклов MoOCl₄/H₂O позволяет значительно регенерировать реакционность поверхности и стимулировать рост слоя MoO_x, который в противном случае имеет затухающий характер, как и на первых циклах в процессе ACO MoO₃ на подложке Al₂O₃.

КПМ-данные зависимости прироста массы от времени (количества циклов) в процессе роста 1Al1MoO и 1Al7MoO при 150°С представлены на рис. 5. Видны линейность роста пленок с количеством ACO-циклов, а также высокая повторяемость процесса от цикла к циклу. Угол наклона линии прироста массы для 1Al1MoO выше и, соответственно, скорость роста пленки в данном случае выше, чем для 1Al7MoO.

Рентгеновская рефлектометрия и рентгендифракционный анализ пленок. На кремниевые подложки $Al_x Mo_y O_z$ -пленки осаждали при температуре 150°С, где продолжительность напуска $Al(CH_3)_3$, MoOCl₄ и H₂O составляла 1.0 с, а продувки – 30 с. Все пленки осаждали на затравочном слое ACO-Al₂O₃, полученном при той же температуре после 50 циклов TMA и H₂O. Затравочный слой использовали для улучшения нуклеации пленок.

Методом рентгеновской рефлектометрии определили постоянную роста пленок, которая составила 3.0 и 5.7 Å/суперцикл для 1А11МоО и 1А17МоО соответственно. Средняя плотность пленок 1А11МоО составила 3.6 г/см³, а 1А17МоО – 3.9 г/см³. Увеличение плотности пленок с повышением количества MoOCl₄/H₂O-субциклов объясняется повышением концентрации молибдена. Для сравнения плотность аморфной ACO-пленки MoO₃, полученной при той же температуре с ис-

Рис. 5. Прирост массы в процессе роста $Al_x Mo_y O_z$ пленок с разным соотношением субциклов при устоявшемся режиме (после нуклеации).

пользованием MoOCl₄ и H₂O, составляет 3.9 г/см³ [23], а ACO-пленки Al₂O₃ – примерно 3.0 г/см³ [30]. Исходя из этих значений вычислили расчетную плотность синтезированных пленок по правилу смесей:

$$\rho_{\rm cm} = 1/(w_1/\rho_1 + w_2/\rho_2), \qquad (3)$$

где w_1 и w_2 – массовые доли атомов Al и Mo в пленках соответственно, полученных методом РФЭС; ρ_1 и ρ_2 – плотности АСО-оксидов алюминия и молибдена соответственно. Отсюда получили значения 3.36 и 3.51 г/см³ для 1Al1MoO и 1А17МоО соответственно, что близко к экспериментальным данным, полученным рентгеновской рефлектометрией. Используя значения плотностей пленок, полученные рентгеновской рефлектометрией, и прироста массы за суперцикл из КПМ, рассчитали ожидаемые величины постоянных роста, равные 2.97 и 5.2 Å/суперцикл для 1А11МоО и 1А17МоО соответственно. Методом рентгеновской рефлектометрии получили также среднеквадратичную шероховатость пленок. Так, пленка 1Al1MoO толщиной 413.0 Å имела шероховатость 16.73 Å, а пленка 1АІ7МоО толщиной 294.5 Å – 20.4 Å. Рентгендифракционный анализ полученных пленок показал, что все они имели аморфную структуру.

РФЭС-анализ. Элементный состав полученных пленок определяли из обзорных РФЭС. Анализ пленки 1Al1MoO показал следующий состав (ат. %): Al – 26.00, Mo – 8.15, O – 65.85, C – 31.57, а пленки 1Al7MoO: Al – 19.76, Mo – 11.66, O – 68.58, C – 25.74. Содержание атомов хлора в пленках было ниже чувствительности прибора (<0.5 ат. %). Присутствие примесей углерода скорее всего обусловлено загрязнением поверхности образцов при контакте с воздухом в промежутке

Рис. 6. РФЭС линии Мо 3*d* высокого разрешения с моделями для ACO-пленки MoO₃, полученной при 150°С с использованием MoOCl₄ и H₂O.

между осаждением и РФЭС-анализом. Увеличение количества субциклов MoOCl₄/H₂O от одного (1Al1MoO) до семи (1Al7MoO) привело к увеличению концентрации молибдена примерно в 1.4 раза.

Для обоих типов ACO-пленок содержание алюминия превышает содержание молибдена, следовательно, реальный механизм роста пленок $Al_x Mo_y O_z$ отличается от предложенной программы синтеза, представленной на рис. 1. Используя основанное на правиле смесей уравнение, предложенное в работе [31]

$$\chi_{\rm K\Pi M} = n_{\rm Mo} / (n_{\rm Al} + n_{\rm Mo}) =$$

= 1/(1 + 2(M_{\rm MoO_3}/M_{\rm Al_2O_3})(\Delta m_{sub,\rm Al-O}/\Delta m_{sub,\rm Mo-O})),(4)

где Δm_{sub} (нг/см²) — прирост массы за субцикл (в случае 1Al7MoO средний прирост за 7 субциклов Мо-О), М – молярная масса, получили относительную концентрацию Мо ($\chi_{K\Pi M}$) для 1Al1MoO, равную 0.224, для 1А17МоО – 0.474, что схоже с РФЭС-данными для 1Al1MoO (0.239) и отличается для 1Al7MoO (0.371). Близость значений для 1Al1MoO, возможно, говорит о минимально выраженных процессах "конверсии", часто наблюдаемых для АСО-смесей [32] или атомно-слоевого травления [33, 34], проводимых с использованием ТМА. Отклонение от правила смесей наблюдали и в других схожих АСО-процессах [27, 32, 35, 36]. Среди причин такого поведения систем называют эффект "конверсии" [33, 34], который в общем виде ранее представляли как $MO_w + NL_x$ (г.) $\rightarrow NO_v +$ $+ ML_{z}(r.),$ где М – металл исходного оксида (Мо), а N и \tilde{L} – металл (Al) и лиганд (–CH₃) напускаемого прекурсора соответственно [33]. Среди легколетучих метилпроизводных молибдена известны термически устойчивый гексаметилмолибден Мо(CH₃)₆ и

менее устойчивый пентаметилмолибден Mo(CH₃)₅ [37]. Можно предположить, что конверсия MoO₃ в данном процессе может протекать по реакции MoO₃ + 2Al(CH₃)₃(г.) \rightarrow Al₂O₃ + Mo(CH₃)₆(г.). Вышеизложенное указывает на то, что наряду с ростом пленки могут также протекать процессы ее травления. Расчетным путем оценили эту возможность количественно. Если предположить, что на TMA/H₂O-субцикле наряду с присоединением оксида алюминия происходит стравливание оксида молибдена в количестве $\Delta m_{etch,Mo-O}$ (нг/см²), то уравнение (4) примет вид

$$\chi_{\rm K\Pi M} = n_{\rm Mo}/(n_{\rm Al} + n_{\rm Mo}) = 1/(1 + (2M_{\rm MoO_3}/M_{\rm Al_2O_3})(\Delta m_{sub,\rm Al-O} + (5))$$

$$\Delta m_{etch,\rm Mo-O}/(\Delta m_{sub,\rm Mo-O} - \Delta m_{etch,\rm Mo-O})),$$

откуда

$$\Delta m_{etch,Mo-O} = (\Delta m_{sub,Mo-O}(1/\chi_{K\Pi M} - 1) \times \\ \times M_{Al_2O_3}/(2M_{MoO_3} - \Delta m_{sub,Al-O}))/((1/\chi_{K\Pi M} - 1) \times (6) \\ \times M_{Al_2O_3}/(2M_{MoO_3} + 1)).$$

Для 1Аl7MoO $\Delta m_{etch,Mo-O} = 18.8$ нг/см², что составляет 13% от общего количества присоединенного молибдена. Согласно уравнению реакции травления, стравливание оксида молибдена должно привести к образованию такого же количества оксида алюминия, масса которого составит 13.3 нг/см². Общая масса синтезированного за суперцикл оксида алюминия будет равна $\Delta m_{\rm Al} = B \Delta m_{sub, \rm Al-O} +$ $+\Delta m_{etch,Mo=O} = 75.8$ нг/см², из которых 13.3 нг/см² – за счет травления оксида молибдена, а остальное (62.5 нг/см^2) — за счет тралиционного ACO. Как видим, это значение только увеличилось по сравнению с приростом без травления и оно по-прежнему около двух монослоев. Таким образом, процесс конверсии (травления), хотя и позволяет понять отклонение $\chi_{K\Pi M}$ от $\chi_{P\Phi \to C}$, но не объясняет сверхмонослойный рост на субцикле оксида алюминия.

Для детального определения химического состояния молибдена в полученных пленках провели РФЭС-сканирование высокого разрешения в области спектральных линий 3*d*-уровня Мо. Для сравнения на рис. 6 приведен РФЭС для ACO-пленки MoO₃ (на затравочном Al₂O₃), полученной при той же температуре с использованием MoOCl₄ и H₂O. В спектре остовных уровней Mo 3*d* преобладает спин-орбитальный дублет Mo 3*d*_{3/2}—Mo 3*d*_{5/2}. Позиция пика Mo 3*d*_{5/2} с энергией связи 233.2 эВ находится в пределах литературных значений для MoO₃, где Мо имеет степень окисления 6+ [38], что соответствует степени окисления молибдена в прекурсоре (MoOCl₄).

Спектральные данные и модели линий остовного уровня Мо 3*d* для 1Al1MoO и 1Al7MoO представлены на рис. 7а и 7б соответственно. Спектры

Рис. 7. РФЭС линии Мо 3*d* высокого разрешения с моделями для пленок 1Al1MoO (а) и 1Al7MoO (б), полученных при 150°С.

данных пленок более сложные и состоят из суперпозиции пиков, характерных для оксида молибдена в различных степенях окисления. Для пленки IAIIMoO (рис. 7а) два новых пика Mo $3d_{5/2}$ с энергиями связи 231.4 и 229.9 эВ отнесли к молибдену со степенями окисления 5+ [39, 40] и 4+ [40] соответственно. Расчет площади фотоэлектронных линий новых Mo3*d*-пиков показал, что относительная концентрация ионов Мо в степени окисления 4+ превышает значение для 5+.

Для пленки 1Аl7MoO (рис. 76) два новых пика Мо $3d_{5/2}$ с энергиями связи 231.6 и 230.2 эВ также отнесли к молибдену со степенями окисления 5+ и 4+ соответственно [41]. В данном случае относительная концентрация Mo⁵⁺ выше концентрации Mo⁴⁺. Из рис. 7а и 76 видно, что с увеличением количества субциклов MoOCl₄/H₂O в суперцикле относительная концентрация Mo⁶⁺ увеличивается в сравнении с Mo⁴⁺ и Mo⁵⁺. Относительная концентрация Mo⁶⁺ для обоих типов пленок может быть завышена из-за возможного окисления на воздухе [40] верхних слоев пленок.

РФЭС-сканы высокого разрешения, полученные в области энергий связи атомов алюминия (65–84 эВ, Al 2*p*) для 1Al1MoO и 1Al7MoO, показали синглетные пики с энергиями связи 74.6 и 74.75 эВ соответственно, что согласуется с данными [42] для Al_2O_3 и соответствует Al^{3+} в TMA.

Частичное восстановление Mo^{6^+} до Mo^{4^+} и Mo^{5^+} в процессе роста $Al_x Mo_y O_z$ -пленок связано с восстановительной способностью ТМА. Восстановление катионов оксидов металлов в реакциях с ТМА наблюдали и в ряде других работ [27, 34, 43, 44]. Так, восстановление Si⁴⁺ в составе SiO₂ при реакции с газофазным ТМА в работе [34] связывали с тем, что метильные группы ТМА имеют меньшее значение электроотрицательности по сравнению с атомами кислорода, связанными с Si. Таким образом, ТМА помимо образования связей Mo-O-Al может способствовать восстановлению Мо⁶⁺. Термодинамические расчеты процессов восстановления МоО₃ до МоО₂ с участием СН₄, являющегося побочным продуктом поверхностных реакций ТМА и H_2O (реакции I и II) (рис. 1), дали следующий результат: $4MoO_3 + CH_4(r.) \rightarrow 4MoO_2 +$ + CO₂(г.) + 2H₂O(г.), где ΔG (150°C) = -71.7 ккал, и/или $3MoO_3 + CH_4(r.) \rightarrow 3MoO_2 + CO(r.) +$ $+ 2H_2O(\Gamma)$, где $\Delta G (150^{\circ}C) = -42.7$ ккал. Данные расчеты показывают, что эти процессы возможны, однако из литературных данных известно, что процессы восстановления МоО3 метаном начинают протекать с выраженной интенсивностью только при достижении температуры реакционной среды ~700°С [42]. Другим путем восстановления МоО₃, связанного с присутствием триметилалюминия в системе, может быть реакция $3MoO_3 + 2Al(CH_3)_3(\Gamma) \rightarrow 3MoO_2 + Al_2O_3 + 3C_2H_6(\Gamma),$ где $\Delta G(150^{\circ}\text{C}) = -301.1$ ккал, что указывает на более выраженные восстановительные свойства ТМА по сравнению с CH₄. Интересно, что данный процесс более термодинамически выгоден в сравнении с реакцией ТМА с H₂O: $3H_2O(\Gamma) + 2Al(CH_3)_3(\Gamma) \rightarrow$ \rightarrow Al₂O₃ + 6CH₄(г.), где ΔG (150°C) = -282.7 ккал.

Возможный механизм восстановления поверхностных молибденоксидных групп схематически представлен на рис. 8. Предположительно, восстановление Mo⁶⁺ до Mo⁴⁺ в результате реакции с TMA осуществляется за счет параллельно происходящих процессов: образования ковалентной связи по донорно-акцепторному механизму

Рис. 8. Предлагаемый механизм восстановления Mo_{0}^{6+} до Mo_{1}^{4+} в пленках $Al_{x}Mo_{y}O_{7}$.

между терминальным кислородом Mo=O: и атомом алюминия в TMA, отщепления поверхностной OH-группы от молибдена и ее присоединения к Al, отщепления CH₃-лигандов TMA и их рекомбинации в молекулы C₂H₆. Механизм дополняется реакцией замещения между TMA и поверхностными OH-группами с выделением CH₄.

По предложенному выше механизму во время стадии напуска ТМА может появиться ОН-группа, которая открывает возможность обеспечения хемосорбции дополнительной молекулы ТМА, за счет чего почти вдвое может увеличиться прибавка массы, что и наблюдалось на КПМ (рис. 2 и 4). Оценить эту возможность количественно можно с использованием уравнения (4). Если предположить, что на ТМА/H₂O-субцикле наряду с присоединением оксида алюминия происходит восстановление оксида молибдена, в результате которого он теряет атомы кислорода в количестве $\Delta m_{red,O}$ (нг/см²), то уравнение (4) примет вид:

$$\chi_{\rm K\Pi M} = n_{\rm Mo} / (n_{\rm Al} + n_{\rm Mo}) = 1 / (1 + (2M_{\rm MoO_3} / M_{\rm Al_2O_3}) (\Delta m_{sub,\rm Al-O} + (7) + \Delta m_{red,\rm O}) / (\Delta m_{sub,\rm Mo-O})),$$
(7)

откуда:

$$\Delta m_{red,O} = \Delta m_{sub,Mo-O} \left(1/\chi_{K\Pi M} - 1 \right) \times \\ \times \left(M_{Al_2O_3} / (2M_{MoO_3}) - \Delta m_{sub,Al-O} \right).$$
(8)

Для 1А17МоО $\Delta m_{red,O} = 30.1$ нг/см² или 1.88 нмоль/см². Согласно уравнению реакции восстановления, на каждые 3 моля триоксида молибдена, восстановленного до диоксида, образуется 1 моль оксида алюминия. Таким образом, по реакции восстановления должно образоваться 0.63 нмоль/см² (63.9 нг/см²) оксида алюминия. Общая же масса синтезированного за суперцикл оксида алюминия будет равна $\Delta m_{Al} = B\Delta m_{sub,Al-O} +$ $+ \Delta m_{red,O} = 87.1$ нг/см². Таким образом, на традиционное ACO Al₂O₃ остается 23.2 нг/см², что находится в пределах мономолекулярного слоя, тогда как сверхмонослойный рост происходит по реакции восстановления, в ходе которой OH-группы не расходуются.

Таким образом, процесс восстановления оксида молибдена ТМА позволяет объяснить как отклонение $\chi_{K\Pi M}$ от $\chi_{P\Phi \ni C}$, так и сверхмонослойный рост на субцикле оксида алюминия. Следует, однако, отметить, что расчетное количество восстановленного за суперцикл триоксида молибдена (1.88 нмоль/см²) превышает его наличное количество, присоединяемое за семь Мо-полуциклов (145 нг/см², что соответствует 1.01 нмоль/см²). Это противоречие может объясняться либо более глубоким восстановлением (до степени окисления 2+, которая в природе встречается редко и не обнаружена в РФЭС, что легко объяснить окислением на воздухе), либо уменьшением числа ОН-групп в ходе Al-субцикла (в данном случае влияние этого процесса на изменение массы сопоставимо с влиянием восстановления). В любом случае можно утверждать, что процесс восстановления молибдена ТМА согласуется со всеми имеющимися наблюдениями на полуколичественном уровне.

ЗАКЛЮЧЕНИЕ

Таким образом, в данной работе с привлечением известных физико-химических подходов к выбору прекурсоров и режимов процесса ACO разработана новая программа синтеза алюминий-молибденовых оксидных пленок с использованием ТМА, оксотетрахлорида молибдена и воды. Полученные пленки были исследованы *in situ* и *ex situ* с привлечением комплекса современных методов анализа. Пленки имели аморфную структуру. *In situ*-мониторинг роста пленок показал высокую реакционную способность MoOCl₄ в процессах роста Al_xMo_yO_z и перспективность его использования для получения других смешанных оксидов.

Анализ КПМ-данных показал, что в процессах 1Al1MoO и 1Al7MoO в каждом суперцикле к поверхности присоединяются два алюминийоксидных монослоя, а присоединение молибденоксидных слоев происходит в субмонослойном режиме для процесса 1Al1MoO и сопровождается присоединением двух мономолекулярных молибденоксидных слоев для 1Al7MoO.

Анализ РФЭС-данных полученных пленок указывает на частичное восстановление Mo⁶⁺ до Мо⁵⁺ и Мо⁴⁺ в процессе роста пленки, что связано с восстановительной способностью ТМА.

Анализ данных рентгеновской рефлектометрии показал, что плотности и постоянные роста для полученных пленок имели значения, близкие к ожидаемым, рассчитанным с использованием РФЭС и КПМ-данных соответственно.

Выявленные закономерности формирования алюминий-молибденовых оксидных пленок на поверхности кремниевой подложки могут способствовать пониманию процессов "конверсии" и окислительно-восстановительных процессов, связанных с присутствием ТМА в реакционной системе, а также более детальному анализу ростовых характеристик процессов АСО многокомпонентных оксидных пленок.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (Государственное задание FZNZ-2020-0002).

СПИСОК ЛИТЕРАТУРЫ

- 1. Matsumoto Y., Shimanouchi R. Synthesis of Al₂(MoO₄)₃ by Two Distinct Processes, Hydrothermal Reaction and Solid-State Reaction // Procedia Eng. 2016. V. 148. P. 158-162. https://doi.org/10.1016/j.proeng.2016.06.507
- 2. Davis B.E., Strandwitz N.C. Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722–728. https://doi.org/10.1109/jphotov.2020.2973447
- 3. Chowdhury S., Khokhar M.Q., Pham D.Ph., Yi J. Al₂O₃/MoO_x Hole-Selective Passivating Contact for Silicon Heterojunction Solar Cell // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
- 4. Харлампова Р.Н., Зайдман Н.М., Плясова Л.М., Мипова Л.П., Нагаева Л.А., Шкарин А.В. Дисперсность активного компонента в алюмомолибденовых катализаторах // Кинетика и катализ. 1973. Т. 14. № 6. C. 1538–1543.
- 5. Haber J. The Role of Molybdenum in Catalysi. London: Climax Molybdenum Co, 1981. P. 479.
- 6. Gasonoo A., Ahn H.-S., Jang E.-J., Kim M.-H., Gwag J.S., Lee J.-H., Choi Y. Fabrication of Multi-Layer Metal Oxides Structure for Colored Glass // Materials. 2021. V. 14. P. 2437. https://doi.org/10.3390/ma14092437
- 7. Dondi M., Matteucci F., Baldi G., Barzanti A., Cruciani G., Zama I., Bianchi C.L. Gray-Blue Al₂O₃-MoO_x Ceramic Pigments: Crystal Structure, Colouring Mechanism and Performance // Dyes Pigm. 2008. V. 76. № 1. P. 179-186. https://doi.org/10.1016/j.dyepig.2006.08.021

- 8. Erdemir A. A Crystal-Chemical Approach to Lubrication by Solid Oxides // Tribol. Lett. 2000. V. 8. № 2–3. P. 97-102. https://doi.org/10.1023/A:1019183101329
- 9. Erdemir A. A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings // Surf. Coat. Technol. 2005. V. 200. № 5-6. P. 1792-1796. https://doi.org/10.1016/j.surfcoat.2005.08.054
- 10. Vitale S.A., Hu W., D'Onofrio R., Soares T., Geis M.W. Interface State Reduction by Plasma-Enhanced ALD of Homogeneous Ternary Oxides // ACS Appl. Mater. Interfaces. 2020. V. 12. № 38. P. 43250-43256. https://doi.org/10.1021/acsami.0c11882
- 11. Кольцов С.И., Алесковский В.Б. Некоторые закономерности реакций МН // Тез. докл. Науч.-техн. конф. ЛТИ им. Ленсовета. Ленинград. 1965. С. 67.
- 12. Малыгин А.А. С.И. Кольцов главный создатель метода молекулярного наслаивания // Сб. тез. докл. III Междунар. семинара "Атомно-слоевое осаждение: Россия, 2021". Санкт-Петербург. 2021. С. 13-14.
- 13. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
- 14. Profijt H.B., Potts S.E., Van de Sanden M.C.M., Kessels W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges // Vac. Sci. Technol. A. 2011. V. 29. № 5. P. 050801. https://doi.org/10.1116/1.3609974
- 15. Ponraj J.S., Attolini G., Bosi M. Review on Atomic Layer Deposition and Applications of Oxide Thin Films // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 3. P. 203-233. https://doi.org/10.1080/10408436.2012.736886
- 16. Diskus M., Nilsen O., Fjellva H. Growth of Thin Films of Molybdenum Oxide by Atomic Layer Deposition // J. Mater. Chem. 2011. V. 21. P. 705-710. https://doi.org/10.1039/C0JM01099E
- 17. Drake T.L., Stair P.C. Vapor Deposition of Molybdenum Oxide Using Bis(ethylbenzene) Molybdenum and Water // Vac. Sci. Technol. A. 2016. V. 34. P. 051403. https://doi.org/10.1116/1.4959532
- 18. Jurca T., Peters A.W., Mouat A.R., Farha O.K., Hupp J.T., Lohr T.L., Delferro M., Marks T.J. Second-Generation Hexavalent Molybdenum Oxo-Amidinate Precursors for Atomic Layer Deposition // Dalton Trans. 2017. V. 46. P. 1172–1178. https://doi.org/10.1039/C6DT03952A
- 19. Vos M.F.J., Macco B., Thissen N.F.W., Bol A.A., Kessels W.M.M. Atomic Layer Deposition of Molybdenum Oxide from $(NtBu)_2(NMe_2)_2Mo$ and O_2 Plasma // Vac. Sci. Technol. A. 2016. V. 34. P. 01A103. https://doi.org/10.1116/1.4930161
- 20. Mattinen M., King P.J., Khriachtcheva L., Heikkilä M.J., Fleming B., Rushworth S., Mizohatac K., Meinander K., Räisänen J., Ritala M., Leskelä M. Atomic Layer Deposition of Crystalline Molybdenum Oxide Thin Films and Phase Control by Post-Deposition Annealing // Mater. Today Chem. 2018. V. 9. P. 17-27. https://doi.org/10.1016/j.mtchem.2018.04.005

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 Nº 4 2023

- Mouat A.R., Mane A.U., Elam J.W., Delferro M., Marks T.J., Stair P.C. Volatile Hexavalent Oxo-Amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition // Chem. Mater. 2016. V. 28. № 6. P. 1907–1919. https://doi.org/10.1021/acs.chemmater.6b00248
- Kvalvik J.N., Borgersen J., Hansen P.-A., Nilsen O. Area-Selective Atomic Layer Deposition of Molybdenum Oxide // Vac. Sci. Technol. A. 2020. V. 38. P. 042406. https://doi.org/10.1116/6.0000219#suppl
- Maksumova A.M., Abdulagatov I.M., Palchaev D.K., Rabadanov M.Kh., Abdulagatov A.I. Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance // Russ. J. Phys. Chem. A. 2022. V. 96. № 10. P. 2206–2214. https://doi.org/10.31857/S0044453722100181
- 24. *Haynes W.M.* CRC Handbook of Chemistry and Physics. 95ed. Boca Raton: CRC, 2014. P. 4–77.
- Pershina V., Fricke B. Group 6 Oxychlorides MOCl₄, where M = Mo, W, and Element 106 (Sg): Electronic Structure and Thermochemical Stability // Russ. J. Phys. Chem. 1995. V. 99. № 1. P. 144–147.
- Elam J.W., Groner M.D., George S.M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition // Rev. Sci. Instrum. 2002. V. 73. № 8. P. 2981–2987. https://doi.org/10.1063/1.1490410
- Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения алюминий-ванадиевых оксидных тонких пленок // ЖОХ. 2022. Т. 92. № 8. С. 1310–1324. https://doi.org/10.31857/S0044460X22080182
- 28. Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al₂O₃ Atomic Layer Deposition Using Trimethylaluminum and Water at 125°C // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1281–1289. https://doi.org/10.1021/jp9049268
- 29. Максумова А.М., Абдулагатов И.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов А.И. Исследование процесса атомно-слоевого осаждения оксида молибдена и титан-молибденовых оксидных пленок методом кварцевого пьезоэлектрического микровзвешивания // ЖФХ. 2022. Т. 96. № 10. С. 1490–1498. https://doi.org/10.31857/S0044453722100181
- 30. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al₂O₃ Atomic Layer Deposition // Chem. Mater. 2004. V. 16. № 4. P. 639–645. https://doi.org/10.1021/cm0304546
- Larsson F., Keller J., Primetzhofer D., Riekehr L., Edoff M., Törndahl T. Atomic Layer Deposition of Amorphous Tin-Gallium Oxide Films // J. Vac. Sci. Technol. A. 2019. V. 37. № 3. P. 030906. https://doi.org/10.1116/1.5092877
- 32. Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
- 33. Myers T.J., Cano A.M., Lancaster D.K., Clancey J.W., George S.M. Conversion Reactions in Atomic Layer

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 59 № 4

Processing with Emphasis on ZnO Conversion to Al_2O_3 by Trimethylaluminum // J. Vac. Sci. Technol. A. 2021. V. 39. No 2. P. 021001. https://doi.org/10.1116/6.0000680

34. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal Atomic Layer Etching of SiO₂ by a "Conversion-Etch" Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296– 10307.

https://doi.org/10.1021/acsami.7b01259

- Coll M., Napari M. Atomic Layer Deposition of Functional Multicomponent Oxides // Apll. Mater. 2019. V. 7. № 11. P. 110901. https://doi.org/10.1063/1.5113656
- 36. Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения титан-ванадиевых оксидных тонких пленок // ЖПХ. 2021. Т. 94. № 7. С. 835–848. https://doi.org/10.1134/S1070427221070053
- Roessler B., Kleinhenz S., Seppelt K. Pentamethylmolybdenum // Chem. Commun. 2000. V. 12. P. 1039–1040. https://doi.org/10.1039/B000987N
- Plyuto Yu.V., Babich I.V., Plyuto I.V., Van Langeveld A.D., Moulijn J.A. XPS Studies of MoO₃/Al₂O₃ and MoO₃/SiO₂ Systems // Appl. Surf. Sci. 1997. V. 119. № 1-2. P. 11-18.
- Clayton C.R., Lu Y.C. Electrochemical and XPS Evidence of the Aqueous Formation of Mo₂O₅ // Surf. Interface. 1989. V. 14. № 1–2. P. 66–70.
- 40. *Choi J.G., Thompson L.T.* XPS Study of As-Prepared and Reduced Molybdenum Oxides // Appl. Surf. Sci. 1996. V. 93. № 2. P. 143–149. https://doi.org/10.1063/1.370690
- Baltrusaitis J., Mendoza-Sanchez B., Fernandez V., Veenstra R., Dukstiene N., Roberts A., Fairley N. Generalized Molybdenum Oxide Surface Chemical State XPS Determination via Informed Amorphous Sample Model // Appl. Surf. Sci. 2015. V. 326. P. 151–161. https://doi.org/10.1016/j.apsusc.2014.11.077
- 42. NIST Standard Reference Database.

2023

- Bellenger F., Houssa M., Delabie A., Afanasiev V., Conard T., Caymax M., Meuris M., Meyer K.De., Heyns M.M. Passivation of Ge(100)/GeO₂/high-k Gate Stacks Using Thermal Oxide Treatments // J. Electrochem. Soc. 2008. V. 155. № 2. P. G33–G38. https://doi.org/10.1149/1.2819626
- Abdulagatov A.I., Sharma V., Murdzek J.A., Cavanagh A.S., George S.M. Thermal Atomic Layer Etching of Germanium-Rich SiGe Using an Oxidation and "Conversion-Etch" Mechanism // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 022602. https://doi.org/10.1116/6.0000834