УДК 547.917

СИНТЕЗ НОНАНО-9-ЛАКТОНА, АННЕЛИРОВАННОГО С **б**-ЛАКТОННЫМ ЦИКЛОМ

© 2019 г. Л. Х. Файзуллина*, А. Р. Тагиров, Ш. М. Салихов, Ф. А. Валеев

ФГБУН «Уфимский институт химии Уфимского федерального исследовательского центра РАН», 450054, Россия, Республика Башкортостан, г. Уфа, пр. Октября 69 *e-mail: sinvmet@anrb.ru

> Поступила в редакцию 30 апреля 2019 г. После доработки 16 октября 2019 г. Принята к публикации 24 октября 2019 г.

С целью получения аннелированных дилактонов в аддуктах Михаэля левоглюкозенона циклогексанона осуществлена модификация углеводного остатка в б-лактон и его производные, конденсированные с октагидрохромановым бициклом. Последующее окислительное расщепление мостика в октагидрохромановом фрагменте действием РСС (пиридиний хлорхромат) привело к получению нонано-9-лактона, аннелированного в С⁶–С⁷-положениях с б-лактоном и б-метиллактолом. Установлено, что наличие карбонильной функции в углеводном остатке препятствует разрыву С–С-связи.

Ключевые слова: левоглюкозенон, аддукты Михаэля, ацетали, кетали, лактоны, дилактоны, окислительный разрыв С–С-связи.

DOI: 10.1134/S0514749219120048

Хиральные лактоны среднего и большого размеров, получаемые в 2 стадии из аддуктов Михаэля левоглюкозенона и циклоалканонов [1–3], содержат аннелированный с лактонным кольцом углеводный остаток, привлекательный для его превращения в лактоны обычного размера цикла. Как известно, у- и б-лактоны, конденсированные с центральным карбоили гетероциклическим кором, вносят существенный вклад в биологическую активность соответствующего природного соединения [4-12]. С целью получения конденсированного дилактона подобного строения мы изучили возможности превращения углеводного остатка в аддуктах Михаэля левоглюкозенона и циклогексанона в аннелированный в положениях C^6 – C^7 с δ -лактоном нонано-9-лактон.

В дикетонах **1а**, **b** кетогруппы защитили в виде диоксоланов **2а**, **b** [13] и после раскрытия 1,6ангидромостика действием $ZnCl_2$ в Ac_2O получили ацетаты **3а**, **b** (схема 1).

Гидролиз диацетатов **3a**, **b** осуществляли действием КОН–ЕtOH–H₂O. Полученные диолы перевели в кетали **4a**, **b** действием *p*-TsOH в метаноле. Альтернативный способ гидролиза-кетализации диацетатов **4a**, **b** действием MeONa в MeOH оказался эффективнее и привёл также к продуктам селективного метилирования только полукетальных центров (схема 2).

Об образовании соединений **4a**, **b** в спектре ¹H– ¹³С НМВС свидетельствуют корреляционные пики $H^{5'}/C^{6'a}$ и ОСН₃/С^{6'a}. Наличие эффекта Оверхаузера

1834

PDC – пиридинийдихромат

между протонами метоксигруппы и $H^{10'b}$ подтверждает *S*-конфигурацию центра $C^{6'a}$, а взаимодействие между $H^{10'a}/H^{4'a}$ свидетельствует о *R*-конфигурации центра $C^{10'a}$ в обоих изомерах. NOE-Эффекты между протонами $H^{3'}/H^{4'a}$, $H^{3'}/H^{1'B}$, $H^{4'a}/H^{10'a}$ у эпимера **4a** и $H^{3'}/H^{1'A}$ у аномера **4b** позволяют предполагать *R*- и *S*-конфигурацию центра $C^{3'}$, соответственно.

Попытка окисления аномерных ацеталей 4a, **b** действием Br_2 в растворе диоксан — вода завершилась образованием сложной смеси продуктов реакции, тогда как окисление по Коллинзу или действием PDСпривело к лактону **5** (схема 2).

Строение лактона 5 подтверждается сигналом лактонного карбонила при 168.03 м.д. в спектре ЯМР ¹³С, а также корреляционными взаимодействиями $H^{1}/C^{3'}$, $H^{4a}/C^{3'}$ в спектре ¹H–¹³C HMBC.

Попытка получения целевого конденсированного дилактона 6 действием окислителей на основе CrO₃ на кеталь 5 при комнатной температуре с целью расщепления смежной С–С-связи, в отличие от [1–3], оказалась безуспешной, только при кипячении раствора полуацеталей **4a**, **b** в CH_2Cl_2 в присутствии РСС с небольшим выходом удалось получить дилактон **6** (схема 2). Низкая эффективность превращения, по всей вероятности, обусловлена конкурирующей реакцией окисления полуацетальной функции, приводящей к образованию нереакционноспособного лактона **5**.

Строение дилактона **6** подтверждается сигналами четвертичных углеродов C² при 166.29 м.д., C⁵ при 205.81 м.д. и C¹⁰ при 171.95 м.д., а также корреляционными взаимодействиями H^4/C^2 , H^{12}/C^{10} и H^{4a}/C^5 в спектре ¹H–¹³C HMBC.

Полученный результат позволил направить наши исследования по альтернативному пути получения, включающего последовательные стадии защиты ацетальной гидроксильной группы в лактолах **4a**, **b** действием TBSCl (третбутилдиметилсилилхлорид), расщепления мостиковой С–С-связи в силанах, снятия TBS-защиты и окисления ацетального центра.

NOE-взаимодействия в диастереомерах соединения 4.

Так, обработка лактолов **4a**, **b** TBSCl в CH_2Cl_2 в присутствии имидазола привела к TBS-эфирам **7a**, **b**. Окислительным расщеплением С–С-связи в силанах **7a**, **b** в CH_2Cl_2 действием РСС получили аномерные нонано-9-лактоны **8a**, **b**. Гидролиз защитной группы в метаноле в присутствии камфорсульфокислоты (CSA) с хорошим выходом привел к лактолам **9a**, **b**, стадия окисления полуацеталей **9a**, **b** завершила синтез дилактона **6** с общим выходом 43% на 4 стадии (схема 3).

Для выяснения степени влияния δ-лактонного карбонила на реакцию расщепления С–С-связи в октагидрохромановом фрагменте его метилировали действием MeMgI. После обработки полученной смеси аномерных полукеталей **10а**, **b** РСС произошло гладкое расщепление С–С-связи с образованием диастереомерных лактонов **11а**, **b** с наиболее высоким выходом в этом ряду полукеталей – 78%. (схема 4).

Об образовании лактонов **11а**, **b** свидетельствуют сигналы карбоксильной группы при 172.62 [172.47] м.д., а также корреляционный пик H^{12A}/ С=О в спектре НМВС. Карбонильный атом углерода С⁵ регистрируется при 208.01 [208.00] м.д., который в спектре НМВС коррелирует с протонами H^{4A} и H^{12A} . Так как конфигурация центра C^{12a} в ходе реакции не затрагивается, наличие эффекта Оверхаузера между протонами H^{12A} с протоном H^{4a} позволяют утверждать о *S*-конфигурации центра C^{4a} .

Таким образом, наличие карбонильной функции в углеводном остатке полукеталей препятствует расщеплению С–С-связи. Введение метильной группы, несмотря на её удалённость от реакционного центра, как и в [14], способствует этому превращению (см. таблицу). Учитывая тот факт, что эти заместители не оказывают существенного влияния на конформацию молекулы, их действие на реакционную способность рассматриваемых полукеталей можно отнести к эффекту поля.

В результате исследования осуществлены синтезы нонано-9-лидов, в том числе аннелированного δ-лактонным циклом, перспективные для изучения взаимосвязи структура – активность в ряду полученных лактонов из левоглюкозенона.

\mathcal{N}_{Ω}	Кеталь	Лактон	Выход, %
1 ^a	MeO O H O O H O O O O O O O O O O O O O O	O O H O O O O O O O O O O O O O O O O O	42
2 ^b	HO O H O H O O		_
3	MeO O H O O O O O O O O O O O O O O O O O		_
4	MeO O H O Me H O OH H O OH	o H O O H O C O H O C O H O O H O O H O O H O O H O O O H O O O O H O O O O O H O	78
5 ^b	$\begin{array}{c} 10a, b \\ MeO \\ H \\ H \\ O \\ H \\ O \\ O \\ O \\ O \\ O \\ $	$ \begin{array}{c} 11a, b\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	65
^a [1]. ^b [15].	1	1	1

Окисление кеталей в лактоны действием РСС.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записывали на спектрометре Вгикег АМ-300 (Германия) с рабочими частотами 300 (¹Н) и 75.47 МГц (¹³С) соответственно и спектрометре Вгикег Аvance III (Германия), 500 МГц, растворитель CDCl₃, использование других растворителей указано в каждом конкретном случае. Масс-спектры зарегистрированы на ВЭЖХ масс-спектрометре LCMS-2010 EV Shimadzu (Япония) с одним квадруполем в режиме регистрации положительных и отрицательных ионов при потенциале капилляра 4.5 и -3.5 кВ соответственно, ионизация электрораспылением, элюент –

МеСN–H₂O ИК спектры сняты на приборах Shimadzu IR Prestige-21 (Япония) или Bruker Tensor 27 (Германия) (в пленке или в вазелиновом масле). Для аналитической ТСХ применяли пластины Sorbfil марки ПТСХ-АФ-А, изготовитель ЗАО «Сорбполимер» (г. Краснодар). Температуры плавления измеряли на приборе Воёtius РНМК 05 (Германия). Элементный анализ проводили на СНNS(O)-анализаторе Евро-3000 (Италия). Углы оптического вращения измеряли на поляриметре Perkin Elmer-341 (США).

Реактивы РСС (98%), РDС (99%), CSA (99%), *n*-TsOH (99%) были приобретены в Sigma Aldrich, TBSCl (98%) – ABCR. Очистку растворителей проводили по известным методикам [16–18], и они имели константы, соответствующие литературным данным [16–18].

6а'-Метоксидекагидро-1'*H***-спиро([1,3]диоксолан-2,2'-пирано[2,3-***c***]хромен)-3'-ол (4а, b). К раствору 880 мг (2.27 ммоль) бидиоксаланов 2а**, b в 10.0 мл Ac₂O при перемешивании и охлаждении добавили 380 мг (2.27 ммоль) ZnCl₂ и перемешивали до исчезновения исходного (контроль методом TCX). Затем реакционную массу выливали в ледяной раствор 15.0 мл насыщенного водного раствора NaHCO₃, продукты реакции экстрагировали этилацетатом (3×15 мл). Экстракт сушили MgSO₄, растворитель отогоняли, остаток хроматографировали на SiO₂. Выход 830 мг (71%), карамель, R_f 0.8 (петролейный эфир–этилацетат, 1:1). ИК спектр, v_{max} , см⁻¹: 3378, 2940, 2867, 1735, 1706, 1374, 1234, 1123, 1097, 1038, 951, 908.

Раствор 830 мг (21.10 ммоль) диацетатов 3а, b и 1 г КОН в 2.2 мл Н₂О и 6.7 мл С₂Н₅ОН перемешивали 30 мин (контроль методом ТСХ). Смесь нейтрализовали 10%-ным раствором HCl до pH 7, экстрагировали EtOAc (3×10.0 мл), объединенные органические слои промывали насыщенным раствором NaCl, сушили MgSO₄, концентрировали, сырую смесь 0.60 г растворяли в 5 мл абсолютного метанола и добавляли каталитическое количество TsOH. По окончании реакции (контроль TCX) растворитель отгоняли, остаток хроматографировали. Выход 420 мг (73%) в виде смеси 2 диастереомеров в соотношении 1:1. Кристаллическое вещество, т.пл. 252°С. Rf 0.17 (петролейный эфирэтилацетат, 1:1). ИК спектр, v_{max}, см⁻¹: 3357, 2932, 2887, 1086, 1050, 990, 869, 649. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.06–1.29 м (6H, H^{1B}, H^{10b}, H^{7B}, H^{8B}, 3.01 с (3H, CH₃) [3.18 с (3H, CH₃)], 3.27 д.т (1H, H^{4a}, ³*J*_{4*a*,5*A*} 5.2, ³*J*_{4*a*,5*B*} 10.3, ³*J*_{4*a*,10b} 10.3 Гц) [3.68 д.т (1Н, H^{4a} , ${}^{3}J_{4a,5A}$ 5.1, ${}^{3}J_{4a,5B}$ 10.2, ${}^{3}J_{4a,10b}$ 10.3 Γμ)], 3.52 τ (1H, H^{5A} , ${}^{2}J_{5A,5B}$ 10.3, ${}^{3}J_{5A,4a}$ 10.3 Γμ) [3.53 τ (1H, H^{5A} , $^{2}J_{5A,5B}$ 10.3, $^{3}J_{5A,4a}$ 10.3 Γ u], 3.65 д.д (1H, H^{5B}, $^{2}J_{5B,5A}$ 10.3, ³*J*_{5*B*,4*a*} 5.2 Гц) [3.60 д.д (1Н, Н^{5*B*}, ³*J*_{5*B*,5*A*} 10.3, ³*J*_{5В.4а} 5.2 Гц)], 3.94–4.12 м (8Н, СН₂О), 4.78 с (1Н, H³) [4.62 c (1H, H³)]. Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 22.26 [22.43] (С⁹), 24.75 [24.37] (С⁸), 25.34 [25.31] (C¹⁰), 31.23 [31.29] (C⁷), 35.83 [35.85] (C^{10a}), 35.73 [30.86] (C¹), 46.55 [46.63] (OCH₃), 47.03 [47.19] (C^{10b}), 62.13 [62.58] (C⁵), 65.11 [65.26] $(OCH_2), 66.05 [65.60] (OCH_2), 74.96 [67.94] (C^{4a}),$ 96.46 [92.85] (С³), 97.93 [98.10] (С^{6а}),105.39 [105.80] (С²). Масс-спектр, *m/z*: 301 [*M* + H]⁺. Найдено, %: С 59.95, Н 7.97. С₁₅Н₂₄О₆. Вычислено, %: С 59.98, Н 8.05. М_{выч} 300.35.

(4a'S,6a'S,10a'R,10b'R)-6a'-Метоксиоктагидро-1'*H*-спиро([1,3]диоксолан-2,2'-пиран[2,3-*c*]хромен)-3'(10b'*H*)-он (5). *а*. К раствору 38.94 мл СH₂Cl₂ и 2.02 мл пиридина в атмосфере Ar добавляли 1.515 г (14.9 ммоль) CrO₃ и перемешивали 20 мин. Затем к полученной реакционной массе добавляли 0.330 г (1.15 ммоль) спирта **4a**, **b** и перемешивали 7 мин (контроль методом TCX). Реакционную смесь обрабатывали насыщенным водным раствором NaHCO₃, продукты реакции экстрагировали эфиром (3×10 мл). Экстракт сушили MgSO₄, растворитель упаривали, остаток хроматографировали на колонке с силикагелем. Выход 0.232 г (71%).

б. К раствору 76 мг (0.25 ммоль) лактола **4a**, **b** в 5.0 мл CH_2Cl_2 при тщательном перемешивании небольшими порциями добавляли 190 мг (0.5 ммоль) PDC. Через 48 ч (контроль по TCX) в реакционную массу добавляли 5.0 мл Et_2O , отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 65 мг (87%).

в. К раствору 130 мг (0.43 ммоль) лактола **4а**, **b** в 7.0 мл CH₂Cl₂ при тщательном перемешивании небольшими порциями добавляли 186 мг (0.86 ммоль) РСС. Через 48 ч (контроль по ТСХ) в реакционную массу добавляли 8.0 мл Еt₂O, отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 90 г (70%), белые кристаллы, т.пл. 81°С, $[\alpha]_D^{20}$ +123.8° (с 1.0, CHCl₃), R_f 0.5 (петролейный эфир-EtOAc, 1:1). ИК спектр, v_{max}, cm⁻¹: 3405, 2964, 1753, 1464, 1245, 1120, 1063, 665. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.15–1.34 м (5H, H^{10b} , H^{7B} , H^{8B} , H^{9B} , H^{10B}), 1.55–1.62 M (2H, H^{8A} , H^{9A}), 1.71–1.76 м (2H, H^{IA}, H^{I0A}), 2.02 м (1H, H^{7A}), H²¹), 1./1–1./0 M (2H, H, H¹⁰), 2.02 M (11, H), 2.18–2.24 M (2H, H^{1B}, H^{10a}), 3.13 c (3H, CH₃), 3.54 T (1H, H^{5A}, ² $J_{5A,5B}$ 10.6, ³ $J_{5A,4a}$ 10.6 Fu), 3.75 д.д (1H, Н^{5B}, ²*J*_{5B,5A} 10.6, ³*J*_{5B,4a} 5.3 Гц), 4.05–4.08 м (2Н, СН2О), 4.05–4.08 м (2Н, СН2О), 4.18–4.23 м (3Н, СН₂О, Н⁴*a*). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 22.23 (C^9) , 24.87 (C^8) , 25.24 (C^{10}) , 31.04 (C^7) , 34.49 (C^{10a}) , 35.81 (C¹), 46.77 (OCH₃), 47.65 (C^{10b}), 61.30 (C 65.48 (OCH₂), 66.09 (OCH₂), 76.82 (C^{4a}), 97.88(C^{6a}), 102.73 (C²), 168.06 (C³). Масс-спектр, m/z: 299 [M+ H]⁺. Найдено, %: С 60.11, Н 7.37. С₁₅H₂₂O₆. Вычислено, %: С 60.39, Н 7.43. *М*_{выч} 298.33.

трет-Бутил{(4a'S,6a'S,10a'R,10b'R)-6a'-метоксидекагидро-1'*H*-спиро([1,3]диоксолан-2,2'-пирано[2,3-с]хромен)-З'-илокси}диметилсилан (7а, b). Раствор 150 мг (0.5 ммоль) спирта 4а, b, 150 мг (1.0 ммоль) TBSCl и 68 мг (1.0 ммоль) имидазола в 15.0 мл CH₂Cl₂ перемешивали при комнатной температуре. После исчезновения исходного соединения (контроль по TCX) реакционную массу разбавляли водой (20.0 мл), затем экстрагировали CH₂Cl₂ (3×30.0 мл), экстракт сушили MgSO₄. Растворитель отгоняли, остаток хроматографировали на SiO₂. Выход 206 мг (99%). Маслообразное вещество, R_f 0.45 (петролейный эфир–EtOAc, 1:1).

Эпимер 7а. Спектр ЯМР ¹Н (CDCl₃), δ , м.д.: 0.10 с (3H, CH₃Si), 0.12 с (3H, CH₃Si) 0.92 с [9H, (CH₃)₃C], 1.13–1.24 м (3H, H^{10b}, H^{7B}, H^{8B}) 1.27 т (1H, H^{1B}, ²J_{1B,1A} 13.0, ³J_{1B,10b} 12.8 Гц), 1.48–1.52 м (1H, H^{10B}), 1.54–1.59 м (2H, H^{9B}, H^{8A}), 1.62–1.67 м (2H, H^{9A}, H^{10A}), 1.71–1.75 м (1H, H^{7A}), 1.89 д.д (1H, H^{1A}, ²J_{1A,1B} 13.0 Гц, ³J_{1A,10b} 3.8 Гц), 2.04 д.д.д.д. (1H, H^{1A}, ³J_{10a,10B} 12.9, ³J_{10a,10A} 2.8 Гц), 3.25 д.т (1H, H^{4a}, ³J_{4a,5A} 5.1, ³J_{4a,5B} 10.3, ³J_{4a,10b} 10.3 Гц), 3.67 д.д (1H, H^{5B}, ²J_{5B,5A} 10.5, ³J_{5B,4a} 5.2 Гц), 3.94–4.09 м (4H, H^{5A}, CH₂O), 4.20–4.23 м (1H, CH₂O), 4.63 с (1H, H³). Спектр ЯМР ¹³С (CDCl₃), δ , м.д.: –4.16 (CH₃Si), – 4.20 (CH₃Si), 18.04 [(<u>C</u>H₃)₃C], 22.87 (C⁹), 24.98 (C⁸), 25.46 (C⁷), 25.72 [(<u>C</u>H₃)₃C], 36.40 (C^{10a}), 36.67 (C¹), 38.58 (C¹⁰), 46.45 (C^{10b}), 62.30 (C⁵), 65.71 (OCH₂), 67.06 (OCH₂), 75.35 (C^{4a}), 95.81 (C^{6a}), 98.61 (C³), 105.73 (C²).

Эпимер 7b. ИК спектр, v_{max}, см⁻¹: 3457, 2954, 1715, 1472, 1252, 1075, 838,780, 665. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.05 с (3H, CH₃Si), 0.07 с (3H, CH₃Si), 0.84 с [9H, (CH₃)₃C], 1.46–1.50 м (2H, H^{1B}, H^{7B}), 1.60–1.63 M (2H, H^{8B} , H^{9B}), 1.82–1.93 M (2H, H^{1A} , H^{9A}), 2.01–2.05 M (2H, H^{7A} , H^{8A}), 2.18–2.23 M (1H, H^{10B}), 2.39–2.41 M (1H, H^{10A}), 2.52–2.58 M (1H, H^{10a}), 2.72–2.77 M (1H, H^{10b}), 3.38 g.t (1H, H^{4a}, ${}^{3}J_{4a,54}$ 11 9, 2.72 2.77 m (111, 11 9, 5.50 μ.1 (111, 11 , $04_{a,5A}$ 5.4, ${}^{3}J_{4a,5B}$ 10.2, ${}^{3}J_{4a,10b}$ 10.2 Γμ), 3.69 м (1H, H 5B), 3.92–4.10 м (4H, H 5A , CH₂O), 4.20–4.23 м (1H, CH₂O), 4.52 c (1H, H 3). Спектр ЯМР ¹³C (CDCl₃), δ, м.д.: -3.59 (CH₃Si), -2.96 (CH₃Si), 18.29 [(CH₃)₃C], 22.96 (C⁹), 25.74 [(<u>CH₃</u>)₃C], 27.09 (C⁸), 27.91 (C), 34.52 (C¹), 36.59 (C^{10a}), 42.29 (C¹⁰), 49.09 (C^{10b}), 65.53 (C⁵), 66.20 (OCH₂), 66.93 (OCH₂), 78.25 (C^{4a}), 98.36 (C³), 98.59 (C^{6a}), 105.44 (C²). Масс-спектр, m/ $z: 415 [M + H]^+$. Найдено, %: С 60.71, Н 9.19. С₂₁Н₃₈О₆Si. Вычислено, %: С 60.83, Н 9.24. М_{выч} 414.24.

(4a'S,12a'S)-2'-(*трет*-Бутилдиметилсилилокси)гексагидро-2'*H*-спиро([1,3]диоксолан-2,3'пирано[2,3-*c*]оксецин)-5',10'(12'*H*,12a'*H*)-дион (8а, b). К раствору 168 мг (0.4 ммоль) ТВS-эфиров 7а, b в 5.0 мл CH₂Cl₂ при тщательном перемешивании небольшими порциями добавляли 261 мг (1.2 ммоль) РСС. Через 48 ч (контроль по TCX) в реакционную массу добавляли 5.0 мл Et₂O, отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 129 мг (65%) лактонов 8а, b. Бесцветное маслообразное вещество, R_f 0.42 (петролейный эфир–EtOAc, 1:1).

Эпимер 8а. Спектр ЯМР ¹Н (CDCl₃), δ , м.д.: 0.09 с (3H, CH₃Si), 0.10 с (3H, CH₃Si), 0.92 с (9H, (CH₃)₃C), 1.42–1.48 м (1H, H^{7B}), 1.52–1.58 м (1H, H^{8B}), 1.72 д.д (1H, H^{4B}, ²J_{4B,4A} 13.7, ³J_{4B,4a} 3.9 Гц), 1.82–1.90 м (1H, H^{8A}), 2.01–2.08 м (1H, H^{4A}, H^{7A}), 2.23–2.34 м (2H, H^{6B}, H^{9B}), 2.42–2.53 м (2H, H^{6A}, H^{9A}), 2.82 д.д.д.д (1H, H^{4a}, ³J_{4a,12a} 5.9, ³J_{4a,4B} 3.9, ³J_{4a,4A} 9.8 Гц), 3.92–4.06 м (5H, H^{12B}, H^{12a}, CH₂O), 4.18–4.20 м (1H, CH₂O), 4.42 т (1H, H^{12A}, ²J_{12A,12B} 10.7, ³J_{12A,12a} 10.7 Гц), 4.68 с (1H, H²). Спектр ЯМР ¹³С (CDCl₃), δ , м.д.: –5.28 (CH₃Si), –4.32 (CH₃Si), 17.99 [(<u>C</u>H₃)₃C], 20.38 (C⁸), 22.47 (C⁷), 25.58, 25.65, 25.70 [(<u>C</u>H₃)₃C], 34.07 (C⁹), 35.83 (C⁴), 41.09 (C⁶), 52.75 (C^{4a}), 64.39 (C¹²), 65.74 (OCH₂), 67.06 (OCH₂), 75.12 (C^{12a}), 97.94 (C²), 104.37 (C³), 172.23 (C¹⁰), 207.96 (C⁵).

Эпимер 8b. ИК спектр, v_{max}, см⁻¹: 2956, 2857, 1740, 1706, 1472, 1252, 1249, 1193, 1068, 841, 782, 756. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.11 с (3H, CH₃Si), 0.13 c (3H, CH₃Si), 0.90 c [9H, (CH₃)₃C], 1.52 д.д (1H, H^{4B}, ² $J_{4B,4A}$ 13.6, ³ $J_{4B,4a}$ 3.9 Гц), 1.56– 1.62 м (2H, H^{7B}, H^{8B}), 1.68 т (1H, H^{4A}, ² $J_{4A,4B}$ 13.6, ³*J*_{4A,4a} 13.6 Гц), 1.92–1.95 м (1Н, Н^{7A}), 2.08–2.11 м (1H, H^{8A}), 2.26–2.36 м (2H, H^{9B}, H^{6B}), 2.44–2.55 м (2H, H^{9A}, H^{6A}), 2.85–2.89 м (1H, H^{4a}), 3.51 т.д (1H, H^{12a} , ${}^{3}J_{12a,4a}$ 10.6, ${}^{3}J_{12a,12A}$ 10.6, ${}^{3}J_{12a,12A}$ 5.6 Гц), 3.65 д.д (1H, H^{12B} , ${}^{2}J_{12B,12A}$ 10.6, ${}^{3}J_{12B,12a}$ 5.6 Гц), 3.93–4.22 м (5H, H^{12A}, CH₂O), 4.54 с (1H, H²). Спектр ЯМР ¹³С (CDCl₃), б, м.д.: -5.33 (CH₃Si), -4.22 (CH₃Si), 18.08 $[(\underline{C}H_3)_3C]$, 20.31 (\mathbb{C}^8), 23.29 (\mathbb{C}^7), 25.70 [($\underline{C}H_3$)_3C], 34.05 (C^9), 35.84 (C^4), 42.47 (C^6), 52.81 (C^{4a}), 62.57 (C^{12}) , 65.64 (OCH₂), 66.97 (OCH₂), 69.87 (C^{12a}), 98.59 (C^2), 106.12 (C^3), 172.42 (C^{10}), 207.85 (C^5). Масс-спектр, m/z: 415 $[M + H]^+$. Найдено, %: С 57.85, H 8.21. C₂₀H₃₄O₇Si. Вычислено, %: С 57.94, H 8.27. М_{выч} 414.57.

(4a'S,12a'S)-2'-Гидроксигексагидро-2'*H*-спиро-([1,3]диоксолан-2,3'-пирано[2,3-*c*]оксецин)-5',10'(12'*H*,12a'*H*)-дион (9а, b). К раствору 105 мг (0.25 ммоль) ТВЅ-эфиров 8а, b в 5.0 мл МеОН добавляли каталитические количества СЅА. Через

24 ч (контроль по ТСХ) в реакционную массу добавляли воду и экстрагировали EtOAc (3×20 мл), экстракт сушили MgSO₄. Растворитель упаривали, остаток хроматографировали на SiO₂. Выход 70 мг (92%) лактолов 9a, b, белые кристаллы, т.пл. 268°С, $R_{\rm f}$ 0.1 (петролейный эфир-EtOAc, 1:1). ИК спектр, v_{max}, cm⁻¹: 3430, 2931, 1734, 1707, 1441, 1248, 1163, 1047, 952, 632. Спектр ЯМР ¹Н (CDCl₃), б, м.д.: 1.45–1.54 м (2H, H^{7B} [H^{7B}]), 1.57–1.62 м (3H, H^{8B}, [H^{8B}, H^{4B}]), 1.79–1.89 M (3H, H^{4B}, [H^{7A}, H^{7A}]), 2.02– 2.09 м (1H, H^{4A}, [H^{8A}, H^{8A}]), 2.23–2.37 м (5H, H^{9B}, Н^{6B}, [H^{9B}, H^{6B}, H^{4A}]), 2.44–2.54 м (4H, H^{9A}, H^{6A}, [H^{9A}, H^{64}]), 2.78 д.д.д.д (1H, H^{4a} , ${}^{3}J_{4a,12a}$ 6.4, ${}^{3}J_{4a,4B}$ 3.9, ${}^{3}J_{4a,4A}$ 10.3 Γμ) [2.85 д.д.д.д (1H, H^{4a} , ${}^{3}J_{4a,12a}$ 5.8, ${}^{3}J_{4a,4A}$ 10.5 FH() [2.65 μ , A, A, (11, 11, 5), ${}^{3}J_{4a,12a}$ 5.6, ${}^{3}J_{4a,4B}$ 4.1, ${}^{3}J_{4a,4A}$ 9.9 FU)], 3.34 c (1H, OH) [3.34 μ (1H, OH, ${}^{3}J_{2,OH}$ 6.7 FU)], 3.93–4.09 M (7H, H^{12a}, CH₂O) [4.47 μ , A, A, (1H, H^{12a}, ${}^{2}J_{12a,12A}$ 10.6, ${}^{3}J_{12a,12B}$ 4.4 FU)], 4.14–4.18 M (3H, H^{12B}, [H^{12A}], CH₂O), 4.39 T.T (1H, H^{12A}, ${}^{2}J_{12A,12B}$ 10.7, ${}^{3}J_{12A,12a}$ 10.7 FU), 4.80 c (1H, H²) [4.73 д (1H, H², ³J_{OH 2} 6.7 Гц)]. Спектр ЯМР ¹³С (CDCl₃), б, м.д.: 20.26 [20.26] (С⁸), 22.51 [22.45] (C^7) , 34.06 [34.09] (C^9) , 35.02 [30.21] (C^4) , 41.86 [40.10] (C⁶), 52.86 [52.54] (C^{4a}), 64.35 [64.88] (C¹²), 65.30 [65.41] (OCH₂), 65.71 [66.23] (OCH₂), 74.95 [67.55] (C^{12a}), 95.96 [92.23] (C²), 104.04 [104.61] (C^3) , 172.57 [172.42] (C^{10}) , 207.81 [207.69] (C^5) . Масс-спектр, m/z: 301 $[M + H]^+$. Найдено, %: С 55.94, H 6.68. C₁₄H₂₀O₇. Вычислено, %: С 55.99, H 6.71. М_{выч} 300.30.

(4а'S,12а'S)-Гексагидро-2'*H*-спиро([1,3]диоксолан-2,3'-пирано[2,3-с]оксицеин)-2',5',10'-(12'*H*,12а'*H*)-трион (6). *а*. Раствор 83 мг (0.27 ммоль) спирта 9а, b и 118 мг (1.1 ммоль) РСС в CH₂Cl₂ кипятили в течение 3 ч. После исчезновения исходного спирта (контроль по TCX) реакционную массу охлаждали, добавляли 5.0 мл Et₂O, отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 60 мг (72%).

б. К раствору 40 мг (0.13 ммоль) лактола **9а**, **b** в 5.0 мл CH_2Cl_2 при тщательном перемешивании небольшими порциями добавляли 20 мг (0.53 ммоль) PDC. Через 48 ч (контроль по TCX) в реакционную массу добавляли 5.0 мл Et_2O , отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 10 мг (20%).

в. Раствор 148 мг (0.49 ммоль) спирта **4a**, **b** и 424 мг (1.9 ммоль) РСС в 3.0 мл CH₂Cl₂ кипятили в течение 12 ч. После исчезновения исходного спирта (контроль по TCX) реакционную массу охлаждали, добавляли 5.0 мл Et₂O, отфильтровывали осадок,

фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 38 мг (26%), белые кристаллы, т.пл. 156° C, $[\alpha]_{D}^{20}$ -30.1° (c 0.86, CHCl₃), R_{f} 0.3 (netpoлейный эфир-ЕtOAc, 1:1). ИК спектр, v_{max} , см⁻¹: 2964, 1737, 1420, 1284, 1229, 1114, 1036, 958, 742. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.48–1.52 м (1Н, H^{8B}), 1.60–1.64 м (1Н, Н^{7B}), 1.89–1.91 м (1Н, Н^{8A}), 11), 1.00 1.01 м (11, 11), 1.05 1.01 м (11, 11), 2.04 д.д. (1H, H^{9B} , ${}^{2}J_{9B,9A}$ 14.2, ${}^{3}J_{9B,8A}$ 4.4, ${}^{3}J_{9B,8B}$ 9.8 Гц), 2.09–2.17 м (1H, H^{7A}), 2.29 д.д.д.д (1H, H^{4B} , 9.8 Fu), 2.09–2.17 M (IH, H), 2.29 Д.Д.Д.Д (IH, H , ${}^{2}J_{4B,4A}$ 11.6, ${}^{3}J_{4B,4a}$ 2.4 Fu), 2.45 M (2H, H^{9A}, H^{6B}), 2.51 д.д.д.д. (IH, H^{4A}, ${}^{2}J_{4A,4B}$ 11.6, ${}^{3}J_{4A,4a}$ 7.5 Fu), 2.62 M (IH, H^{6A}), 3.14 д.д.д.д (IH, H^{4a}, ${}^{3}J_{4a,12a}$ 4.6, ${}^{3}J_{4a,4B}$ 7.5 Fu), 4.05–4.14 M (4H, CH₂O, H^{12B}), 4.37 M (IH, CH₂O), 4.52 T (IH, H^{12A}, ${}^{2}J_{12A,12B}$ 10.9, ${}^{3}J_{12A,4a}$ 10.8 Fu), 4.78 д.д.д (IH, H^{12a}, ${}^{3}J_{12a,4a}$ 4.6, ${}^{3}J_{12a,12A}$ 10.8, ${}^{3}J_{12a,12B}$ 4.6 Гц). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 20.25 (С⁸), 22.52 (C^7), 33.92 (C^4), 34.55 (C^9), 41.09 (C^6), 50.14 (C^{4a}) , 63.55 (C^{12}) , 65.49 (OCH_2) , 66.82 (OCH_2) , 78.46 $(C^{12a'})$, 100.96 (C^{2}) , 166.29 (C^{10}) , 171.95 (C^{2}) , 205.81 (C⁵). Масс-спектр, m/z: 299 $[M + H]^+$. Найдено, %: С 56.29, H 6.00. С₁₄Н₁₈О₇. Вычислено, %: С 56.37, Н 6.08. *М*_{выч} 298.29.

(4a'S,6a'S,10a'R,10b'R)-6a'-Метокси-3'-метилдекагидро-1'Н-спиро([1,3]диоксолан-2,2'-пирано-[2,3-с]хромен)-3'-ол (10a, b). К раствору 200 мг (0.7 ммоль) лактона 5 в 3.0 мл Еt₂О при перемешивании добавляли 0.3 мл (0.7 ммоль) MeMgI. Через 15 мин (контроль по ТСХ) в реакционную массу добавляли 1.0 мл насыщенного водного раствора NH₄Cl, продукты реакции экстрагировали этилацетатом (2×5.0 мл). Экстракт сушили MgSO₄, растворитель отогоняли, остаток хроматографировали на колонке с силикагелем. Выход 145 мг (69%) эпимерных спиртов 10а, b в соотношении 1:1. Масло, *R*_f 0.33 (петролейный эфир-EtOAc, 1:1). ИК спектр, v_{max}, см⁻¹: 3338, 3082, 2984, 2468, 1309, 1043, 991, 1170, 936, 700. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.10–1.32 м (6H, H^{IB} , H^{7B} , H^{8B} , H^{9B} , H^{10B} , H^{10b}) [1.10–1.32 м (5H, H^{7B} , H^{8B} , H^{9B} , H^{10B} , H^{10b})], 1.49–1.59 м (2H, H^{8A} , H^{9A}) [1.49–1.59 м (3H, H^{IB} , H^{8A}, H^{9A})], 1.68–1.71 м (2H, H^{7A}, H^{10A}) [1.68–1.71 м (2H, H^{7A}, H^{10A})], 1.89–2.07 м (2H, H^{1A}, H^{10a}) [1.89– 2.07 м (2H, H^{IA}, H^{10a})], 3.11 с (3H, OCH₃) [3.12 с (3H, OCH₃)], 3.29 \exists .T (1H, H^{4a}, ³J_{4a,10b} 10.3, ³J_{4a,5B} 10.3, ³J_{4a,5A} 5.2 Γ II) [3.81 \exists .T (1H, H^{4a}, ³J_{4a,10b} 10.3, ³J_{4a,5B} 10.3, ³J_{4a,5A} 5.2 Γ II)], 3.52 T (1H, H^{5B}, ²J_{5B,5A} 10.3, ${}^{3}J_{5B,4a}$ 10.3 Гц) [3.53 т (1H, H^{5B}, ${}^{2}J_{5B,5A}$ 10.3, ${}^{3}J_{5B,4a}$ 10.3 Гц)], 3.68 д.д (1H, H^{5A}, ${}^{2}J_{5A,5B}$ 10.3, ${}^{3}J_{5A,4a}$ 5.2 Γ u) [3.62 д.д (1H, H⁵⁴, ²J_{54,5B} 10.3, ³J_{54,4a} 5.2 Γ u)], 3.94-4.03 м (4Н, СН₂О) [3.97-4.17 м (4Н, СН₂О)], 4.62 c (1H, H³) [4.79 c (1H, H³)]. Спектр ЯМР ¹³C, δ,

м.д.: 22.25 [25.26] (С⁹), 24.74 [24.37] (С⁸), 25.34 [25.31] (С¹⁰), 31.29 [31.23] (С⁷), 35.73 [30.86] (С¹), 35.83 [35.85] (С^{10a}), 46.55 [46.63] (ОСН₃), 47.03 [47.19] (С^{10b}), 62.13 [62.58] (С⁵), 65.11 [65.26] (СН₂О), 65.60 [66.06] (СН₂О), 74.96 [67.94] (С^{4a}), 96.46 [92.85] (С³), 97.93 [98.10] (С^{6a}), 105.39 [105.80] (С²). Масс-спектр, *m/z*: 315 [*M* + H]⁺. Найдено, %: С 61.09, Н 8.27. С₁₆Н₂₆О₆. Вычислено, %: С 61.13, Н 8.34. *М*_{выч} 314.37.

(4а'S,12а'S)-2'-Гидрокси-2'-метилгексагидро-2'Н-спиро([1,3]диоксолан-2,3'-пирано[2,3-с]оксецин)-5',10'(12'H,12a'H)-дион (11a, b). К раствору 100 мг (0.30 ммоль) лактолов 10a, b в 5.0 мл CH₂Cl₂ при тщательном перемешивании небольшими порциями добавляли 140 мг (0.60 ммоль) РСС. Через 48 ч (контроль по ТСХ) в реакционную массу добавляли 5.0 мл Еt₂O, отфильтровывали осадок, фильтрат упаривали, остаток хроматографировали на SiO₂. Выход 81 мг (78%) лактонов **11а**, **b**. Белые кристаллы, т.пл. 106°С, Rf 0.22 (петролейный эфир-EtOAc, 1:1). ИК спектр, v_{max}, см⁻¹: 3487, 2954, 2854, 1735, 1706, 1457, 1378, 1249, 1170, 1049, 912, 768, 721. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 1.35 с (CH₃) [1.53 c (CH₃)], 1.54–1.62 M {(4H, H^{7B} , H^{8B}), [H^{7B} $[1.73 \text{ д.д }(1\text{H}, \text{H}^{4B}, {}^{2}J_{4B,4A} 13.0, {}^{3}J_{4B,4a} 3.8 \text{ }\Gamma\text{u})]$ 1.88 M {(2H, H^{8,4}) [H^{8,4}]}, 1.93–2.01 M {(2H, H^{7,4}) [H^{7,4}]}, 2.23–2.30 M {(2H, H^{9,8}), [H^{9,8}]}, [2.15 μ . μ (1H, H^{4,4}, ² $J_{4A,4B}$ 13.0, ³ $J_{4A,4a}$ 13.8 Γ μ)], 2.23–2.52 M {7H, H^{6,4}, H^{6,6}, H^{6,4}, H^{9,4}]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}, H^{6,4}, H^{6,4}]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}, H^{6,4}]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}, H^{6,4}]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}]]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}, H^{6,4}]]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}]]}, 2.82 μ . μ . μ (1H, H^{4,4}) [H^{6,4}, H^{6,4}]]} H^{4a} , ${}^{3}J_{4a,12a}$ 10.5, ${}^{3}J_{4a,4A}$ 13.8, ${}^{3}J_{4a,4B}$ 3.8 Гц) [2.78 д.д.д (1H, H^{4a} , ${}^{3}J_{4a,12a}$ 10.3, ${}^{3}J_{4a,4A}$ 13.7, ${}^{3}J_{4a,4B}$ 3.7 Гц)], 3.96–4.04 м (10H, CH₂O, H^{12B})[CH₂O, H^{12B}], 4.07– 4.13 м (3H, H^{12A})[H^{12A} , H^{12a}], 4.30 т (1H, H^{12A} , ² $J_{12A,12B}$ 10.6, ³ $J_{12A,12a}$ 10.6 Γ ц) [4.39 T (1H, H^{12A}, ² $J_{12A,12B}$ 10.5, ³ $J_{12A,12a}$ 10.5 Γ ц], 4.48 д.T (1H, H^{12a}, ³ $J_{12A,12B}$ 10.6, ³ $J_{12a,12B}$ 4.4, ³ $J_{12a,4a}$ 10.5 Γ ц). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 20.26 [20.31] (С⁸), 22.00 [18.19] (CH₃), 22.49 [22.53] (C⁷), 31.25 [33.33] (C⁴), 34.08 [34.13] (C⁹), 39.95 [40.97] (C⁶), 53.34 [52.91] (C^{4a}) , 65.02 [65.06] (C^{12}) , 65.59 [65.80] (OCH_2) , 66.01 [66.02] (OCH₂), 68.86 [73.00] (C^{12a}), 97.50 [98.50] (C^2) , 106.14 [106.18] (C^3) , 172.61 [172.60] (C^{10}) , 208.00 [208.01] (C⁵). Macc-спектр, m/z: 315 [M + H]⁺. Найдено, %: С 57.29, Н 7.10. С₁₅Н₂₂О₇. Вычислено, %: С 57.32, Н 7.05. М_{выч} 314.33.

БЛАГОДАРНОСТИ

Анализы выполнены на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН г. Уфа.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена по теме № АААА-А17-117011910022-5 госзадания и финансовой поддержке гранта Российского фонда фундаментальных исследований (проект № 17-43-020166-р а).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Халилова Ю.А., Спирихин Л.В., Салихов Ш.М., Валеев Ф.А. *ЖОрХ*. 2014, 50, 117. [Khalilova Yu.A., Spirikhin L.V., Salikhov Sh.M., Valeev F.A. *Russ. J. Org. Chem.* 2014, 50, 125.] doi 10.1134/ S1070428014010229
- 2. Тагиров А.Р., Файзуллина Л.Х., Салихов Ш.М., Валеев Ф.А. Бутлеровские сообщ. **2014**, *39*, 48.
- Файзуллина Л.Х., Халилова Я.А., Салихов Ш.М., Валеев Ф.А. *ЖОрХ*. 2018, 54, 598. [Faizullina L.Kh., Khalilova Y.A., Salikhov Sh.M., Valeev F.A. *Chem. Heterocycl. Compd.* 2018, 54, 598.] doi 10.1007/ s10593-018-2314-y
- Fraga B.M. Natural Product Rep. 1994, 11, 533. doi 10.1039/np9941100533
- Collins I. J. Chem. Soc., Perkin Trans. 1. 1999, 1377. doi 10.1039/A8081371
- Blay G., Cardona M.L., Garcia B., Pedro J.R. J. Org. Chem. 1991, 56, 6172. doi 10.1021/jo00021a040
- Blay G., Cardona M.L., Garcia B., Pedro J.R. *Tetrahedron*. **1989**, *45*, 5925. doi 10.1016/S0040-4020 (01)89119-5
- Patel R.M, Puranik V.G., Argade N.P. Org. Biomol. Chem. 2011, 9, 6312. doi 10.1039/C10B05709J
- Girard A., Greck Ch., Gene^ît J.P. *Tetrahedron Lett.* 1998, 39, 4259. doi 10.1016/S0040-4039(98)00697-2
- Mehl F., Bombarda I., Vanthuyne N., Faure R., Gaydou E.M. *Food Chem.* 2010, *121*, 98. doi 10.1016/ j.foodchem.2009.12.010
- Negishi E., Kotora M. *Tetrahedron*. 1997, 53, 6707. doi 10.1016/S0040-4020(97)00199-3
- 12. Grieco P.A., Nishizawa M., Burke S.D., Marinovic N. J. Am. Chem. Soc. 1976, 98, 1612. doi 10.1021/ja00422a072
- Галимова Ю.С., Тагиров А.Р., Файзуллина Л.Х., Салихов Ш.М., Валеев Ф.А. *ЖОрХ*. 2017, 53, 377. [Galimova Yu.S., Tagirov A.R., Faizullina L.Kh., Salikhov Sh.M., Valeev F.A. *Rus. J. Org. Chem.* 2017, 53, 374.] doi 10.1134/S1070428017030113
- Borowitz I.J., Williams G.J., Gross L., Rapp R.D. J. Org. Chem. 1968, 33, 2013. doi 10.1021/jo01269a067

- Тагиров А.Р., Файзуллина Л.Х., Еникеева Д.Р., Галимова Ю.С., Салихов Ш.М., Валеев Ф.А. *ЖОрХ*.
 2018, *54*, 723. [Tagirov A.R., Faizullina L.Kh., Enikeeva D.R., Galimova Yu.S., Salikhov Sh.M., Valeev F.A. *Russ. J. Org. Chem.* **2018**, *54*, 723.] doi 10.1134/S1070428018050093
- 16. Вайсберг А., Прооскауэр Э., Риддик Д., Тупс Э. *Органические растворители*. М.: Наука. **1958**, 518.
- 17. Гордон А., Форд Р. *Спутник химика*. М.: Мир. **1976**, 541.
- Riddick J.A., Bunger W.B., Sakano T.K. The Techniques of Chemistry. Organic Solvents. Physical Properties and Methods of Purification. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley – Interscience publication. 1986, 1325.

Synthesis of Nonano-9-lacton Annelated with a δ-Lacton Cycle

L. Kh. Faizullina*, A. R. Tagirov, Sh. M. Salikhov, and F. A. Valeev

Ufa Institute of Chemistry, Ufa Researcher Centre, RAS, 450054, Russia, Republic of Bashkortostan, Ufa, pr. Oktyabrya 69 *e-mail: sinvmet@anrb.ru

Received April 30, 2019; revised October 16, 2019; accepted October 24, 2019

In order to of obtain annelated dilactones in Michael adducts of levoglucosenone and cyclohexanone the carbohydrate residue was modified into a δ -lactone and its derivatives condensed with an octahydrochroman bicycle. Subsequent oxidative cleavage of the bridge in the octahydrochromanic fragment by PCC resulted in nonano-9-lactone, annelated at C⁶-C⁷ positions with δ -lactone and δ -methyl lactol. It has been established that the presence of a carbonyl function in the carbohydrate residue prevents the rupture of the C–C bond.

Keywords: levoglucosenone, Michael adducts, acetals, ketals, lactones, dialactones, C-C bond oxidative breakdown