УДК 533.537

ИЗУЧЕНИЕ ПРОЦЕССОВ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ ПЛЕНОК МоО₃ ПРИ ТЕРМИЧЕСКОМ ОКИСЛЕНИИ И ИОННОЙ БОМБАРДИРОВКЕ

© 2021 г. Г. Х. Аллаярова^{*a*}, Д. А. Ташмухамедова^{*a*}, *, Р. Джаббарганов^{*b*}, Б. Е. Умирзаков^{*a*}, ^{*b*}, **

^а Ташкентский государственный технический университет им. Ислама Каримова, Ташкент, 100095 Узбекистан ^bИнститут ионно-плазменных и лазерных технологий им. У. Арифова, Ташкент, 100125 Узбекистан

*e-mail: ftmet@mail.ru **e-mail: ftmet@rambler.ru Поступила в редакцию 12.01.2020 г. После доработки 28.02.2020 г. Принята к публикации 03.03.2020 г.

Методом термического окисления и ионной имплантации на поверхности монокристалла Мо получены наноразмерные пленки MoO₃. Определены оптимальные режимы ионной имплантации (парциальное давление кислорода, энергия и доза ионов, температура отжига) для формирования однородных, с хорошей стехиометрией пленок MoO₃/Mo толщиной от 30 до 100 Å. Установлено, что при низких дозах ионов кислорода ($D \le 10^{16}$ см⁻²) на поверхности кристалла Mo образуются наноразмерные фазы MoO₃. Определена зависимость степени покрытия поверхности Мо кластерными фазами MoO₃ от дозы ионов. Пленки толщиной ~100 Å получены последовательной импланта-

цией ионов O_2^+ с энергией 5, 3 и 1 кэВ. С использованием комплекса методов (оже- и фотоэлектронной спектроскопии, вторичной электронной эмиссии и вторичной ионной масс-спектрометрии) исследованы состав, электронная структура, эмиссионные и оптические свойства наноразмерных фаз и пленок MoO₃.

Ключевые слова: ионная имплантация, доза ионов, глубина выхода электронов, эмиссионные свойства, степень покрытия, профили распределения.

DOI: 10.31857/S1028096021010040

введение

Интерес к тонким пленкам оксидов Мо прежде всего связан с широким применением их в создании новых видов дисплеев, органических солнечных элементов, сенсоров, транзисторов, интегральных схем [1-4]. Эти пленки в основном получены методами термического испарения порошкообразного МоО3 на подложки из стекла и анодного оксидирования [5, 6]. Поэтому в настоящее время хорошо изучены оптические, эмиссионные и электрофизические свойства тонких пленок оксида Мо и их изменение при облучении фотонами, электронами и ионами [7-10]. Результаты исследований, проведенные в последние годы [11-13], показали, что низкоэнергетическая имплантация ионов в сочетании с отжигом является эффективным средством создания сверхтонких наноструктур на поверхности материалов различной природы. В частности, в [14] имплан-

тацией ионов O_2^+ в Si с последующим отжигом по-

лучены сплошные однородные нанопленки SiO_2 толщиной 20–100 Å.

В настоящей работе приведены результаты исследования формирования наноразмерных фаз и пленок MoO₃ при термическом окислении и им-

плантации ионов O_2^+ в монокристаллические образцы Мо(111).

МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Эксперименты проводили в сверхвысоковакуумном ($P \approx 10^{-7}$ Па) приборе, состоящем из двух камер. В первой камере проводили термический отжиг, ионную бомбардировку, термическое окисление Мо, а во второй камере — исследования состава, структуры и свойств исследуемых образцов с использованием методов оже- и фотоэлектронной спектроскопии, вторичной ионной масс-спектрометрии и измерения энергетических зависимостей

Рис. 1. Масс-спектр отрицательно заряженных вторичных ионов, распыленных с поверхности Mo(111) ионами Ar⁺ с энергией 13 кэВ.

коэффициента вторичной электронной эмиссии σ, квантового выхода фотоэлектронов. Профили распределения атомов по глубине образцов измеряли методом электронной оже-спектроскопии в сочетании с травлением поверхности ионами Ar⁺. Перед термическим окислением и ионной имплантацией образцы Мо(111) очищали в ходе температурного отжига сначала при T = 1700 - 1800 К в течение 20-25 ч, затем путем многократного кратковременного отжига при $T \approx 2200$ K. Результаты вторичной ионной масс-спектрометрии, полученные до отжига, показали, что на поверхности Мо наряду с интенсивными пиками Н, О, С и их соединений с кислородом четко выделяются пики тяжелых масс Мо₂, МоО₃ и МоО₄ (рис. 1). После отжига поверхность полностью очищается от атомов водорода и от двухкомпонентных примесей, и на поверхности содержатся только атомы кислорода и углерода, общая концентрация которых не превышает 1.5-2 ат. %. После достижения вакуума ~10⁻⁷ Па в отсек ионной пушки напускали кислород до $P_{O_2} \approx 10^{-2}$ Па. Термическое окисление и ионную бомбардировку проводили при температуре ~850-900 К.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 приведена зависимость толшины d пленки МоО₃ от времени *t* термического окисления Мо(111) в атмосфере кислорода при давлении 10^{-2} и 10^{-3} Па. В обоих случаях однородное окисление наблюдалось начиная с $d \approx 15-20$ Å. В случае $P_{O_2} = 10^{-3}$ Па в интервале t = 5-50 мин d росла практически линейно, скорость роста составляла ~1.5 Å/мин. Однако в пленке МоО₃ содержались молекулы нестехиометрического оксида. Их концентрация при t = 50 мин составляла ~10-15 ат. %. Наиболее совершенные (однородные по глубине и поверхности), с хорошей стехиометрией пленки МоО₃ получены при $P_{O_2} \approx 10^{-2}$ Па. Из кривой 2 (рис. 2) видно, что в интервале от 5 до 20 мин толщина пленки растет линейно, в интервале 20-30 мин скорость роста немного уменьшается и при t = 30 мин составляет ~75-80 Å. При t >> 30 мин с ростом *t* толщина пленки монотонно увеличивается со скоростью ~0.7-0.8 Å/с.

Известно [14], что при малых дозах ионов $D \le 10^{15}$ см⁻² на поверхности исследуемых образцов формируются отдельные кластерные фазы. Отношение площади ионно-имплантированных участ-

Рис. 2. Зависимость толщины пленки MoO₃ от времени термического окисления Mo(111) в атмосфере кислорода при давлении P_{O_3} , Па: $1 - 10^{-3}$; $2 - 10^{-2}$.

ков (кластерных фаз) к общей площади поверхности называется степенью покрытия Q поверхности. С ростом D площадь нанокластерных фаз увеличивается. На рис. 3 приведена зависимость Q для поверхности кристалла Мо, покрытого пленкой оксида МоО₃ при имплантации O₂⁺ с энергией 1 кэВ, от

дозы облучения. Видно, что до $D \approx 10^{15}$ см⁻² Q линейно растет до ~0.5, затем скорость роста замедляется, при $D \approx 10^{17}$ см⁻² достигает единицы и с дальнейшим ростом D практически не меняется. Из этого следует, что при $D \approx 10^{17}$ см⁻² границы соседних кластерных фаз начинают перекрывать друг друга, и формируется сплошная однородная пленка MoO₃.

На рис. 4 приведены профили распределения атомов кислорода по глубине кристалла Мо, имплантированного ионами О₂⁺ с энергией 1 и 3 кэВ при $D \approx 2 \times 10^{17}$ см⁻². Имплантацию проводили при температуре подложки 850 К. Видно, что в случае $E_0 = 1$ кэВ концентрация О на поверхности составляет ~70-75 ат. % и практически не меняется до глубины ~30 Å, т.е. формируется сплошная однородная пленка МоО₃ толщиной ~30 Å. В случае $E_0 = 3 \, \kappa \Im B$ формируется пленка оксида молибдена толщиной 55-60 Å. Однако концентрация O₂ от поверхности до глубины ~25-30 Å меньше, чем 70-75 ат. %, т.е. в этих слоях наряду с МоО3 может содержаться нестехиометрический оксид молибдена. Для получения однородных пленок толшиной 60 Å имплантацию проводили сначала с энергией 3 кэВ, а затем с 1 кэВ (рис. 3, кривая 3). Таким же способом получены пленки

Рис. 3. Зависимость степени покрытия поверхности кристалла молибдена пленкой MoO₃ от дозы облучения ионов кислорода. Энергия ионов 1 кэВ, температура подложки 850 К.

толщиной 90—100 Å. Для этого имплантацию ионов O_2^+ проводили в следующей последовательности: 5, 3 и 1 кэВ. Однородные по глубине пленки МоO₃ толщиной более 120—150 Å с хорошей стехиометрией методом ионной имплантации невозможно было получить.

Были изучены эмиссионные и оптические свойства нанопленок MoO₃/Mo(111) разной толщины, полученные термическим окислением и ионной имплантацией. В табл. 1 приведены мак-

Рис. 4. Концентрационные профили распределения атомов кислорода по глубине пленок MoO₃ разной толщины, полученных имплантацией ионов кислорода ($D = 2 \times 10^{17}$ см⁻²) в монокристалл Мо с энергией: I - 1; 2 - 3; 3 - 3 и 1 кэВ.

Параметры	d, Å (термическое окисление)				d, Å (ионная имплантация)			
	60	100	300	600	30	60	90	
σ _{max}	2.2	2.6	3.2	3.4	1.9	2.3	2.6	
$E_{pmax}, \Im \mathbf{B}$	650	700	800	800	600	650	700	
$R (\lambda = 600 \text{ нм})$	—	0.1	_	0.06	0.15	_	0.1	
<i>x</i> ′, Å	_	_	250	250	—	—	—	

Таблица 1. 🔅	Эмиссионные и	оптические свойства	а нанопленок MoO	₃ /Mo	(111)	разной толщины
--------------	---------------	---------------------	------------------	------------------	-------	----------------

Примечание: d – толщина пленки; σ_{max} – коэффициент вторичной электронной эмиссии; E_{pmax} – энергия первичных электронов, соответствующая значению σ_{max} ; R – коэффициент отражения света; $x^{/}$ – глубина зоны выхода истинно вторичных электронов.

симальные значения коэффициента вторичной электронной эмиссии σ_{max} , энергия первичных электронов E_{pmax} , соответствующая значению σ_{max} , коэффициент отражения света *R* и глубина зоны выхола истинно вторичных электронов x' лля системы МоО₃/Мо. Из табл. 1 видно, что коэффициент отражения света с увеличением толщины пленки d уменьшается, что связано с влиянием подложки: $R_{Mo} > R_{MoO_3}$. Значение σ_{max} и E_{pmax} при $d \leq 300$ Å с ростом d существенно увеличивается. Это обусловлено тем, что, во-первых, эмиссионная эффективность слоев МоО3 больше, чем эмиссионная эффективность слоев Мо. во-вторых, с ростом d увеличивается глубина выхода истинно вторичных электронов x'. Начиная с $d \approx$ ≈ 300 Å значения σ_{\max} и $E_{p\max}$ заметно не меняются. Глубина выхода истинно вторичных электронов достигает своего максимального значения, которая называется глубиной зоны выхода $x^{/}$. Значения x' = 250 Å vдовлетворительно согласуются с данными, рассчитанными по формуле [15]:

$$x'$$
 [см] = $\frac{5.2 \times 10^{-6} A(Z_{3\phi})}{\rho Z_{3\phi}} E_{pmax}^{1.4}$

 ρ – плотность MoO₃ [г/см³], A – атомная масса, $Z_{3\phi}$ – эффективный порядковый номер.

ЗАКЛЮЧЕНИЕ

Таким образом, в результате проведенных исследований установлено, что в процессе термического окисления можно получить однородные, с хорошей стехиометрией пленки MoO_3 толщиной от 50–60 до 600–700 Å, а в ходе ионной имплантации – пленки толщиной от 25–30 до 100 Å. Показано, что глубина зоны выхода истинно вторичных электронов для MoO_3 составляет ~250 Å; максимальное значение коэффициента вторичной эмиссии электронов 3.4, коэффициента отражения света с длиной волны $\lambda = 600$ нм составляет 0.06.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев В.Н., Никитин С.Е., Климов В.А., Козырев С.В., Лещев Д.В., Штельмах К.Ф. // ФТТ. 2001. Т. 43. № 4. С. 755. http://journals.ioffe.ru/articles/38146.
- Yao J.N., Yang Y.A., Loo B.H. // J. Phys. Chem. B. 1998. V. 102. № 11. P. 1856. https://doi.org/10.1021/jp972217u
- Shakir I., Shahid M., Yang H.W., Kang D.J. // Electrochem. Acta. 2010. V. 56. P. 376. https://doi.org/10.1016/j.electacta.2010.09.028
- Миннеханов А.А., Вахрина Е.В., Константинова Е.А., Кашкаров П.К. // Письма в ЖЭТФ. 2018. Т. 107. Вып. 4. С. 270. https://doi.org/10.7868/S0370274X18040124
- 5. Бугерко Л.Н., Борисова Н.В., Суровая В.Э., Еремеева Г.О. // Ползуновский вестн. Общая и теор. химия. 2013. № 1. С. 77. http://elib.altstu.ru/journals/Files/pv2013_01/pdf/077bugerko.pdf.
- Гаврилов С.А., Белов А.Н. Электрохимические процессы в технологии микро- и наноэлектроники. М.: Высшее образование, 2009. 272 с.
- 7. *Суровой Э.П., Борисова Н.В.* // Журн. физ. химии. 2008. Т. 82. № 11. С. 2120. https://elibrary.ru/item.asp?id=11533000.
- Yang Y.A., Cao Y.W., Loo B.N., Yao J.N. // J. Phys. Chem. B. 1998. V. 102. P. 9392. https://doi.org/10.1021/jp9825922
- 9. Arnoldussen T.C. // J. Electrochem. Sol.: Solid-State Sci. Technol. 1976. V. 123. P. 527.
- Scanlon D.O., Watson G.W., Payne D.J., Atkinson G.R., Egdell R.G., Law D.S.L. // J. Phys. Chem. C. 2010. V. 114. P. 4636. https://doi.org/10.1021/jp9093172
- Донаев С.Б., Умирзаков Б.Е., Таимухамедова Д.А. // ЖТФ. 2015. Т. 85. Вып. 10. С. 148–151. http://journals.ioffe.ru/articles/42348.
- 12. Эргашов Ё.С., Ташмухамедова Д.А., Умирзаков Б.Е. // Поверхность. Рентген., синхротр. и нейтрон. ис-

ИЗУЧЕНИЕ ПРОЦЕССОВ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ ПЛЕНОК МоО3

след. 2017. № 4. С. 104. https://doi.org/10.7868/S0207352817040084

- 13. Юсупжанова М.Б., Ташмухамедова Д.А., Умирзаков Б.Е. // ЖТФ. 2016. Т. 86. Вып. 4. С. 148–150. http://journals.ioffe.ru/articles/42980
- 14. Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 4. С. 38. https://doi.org/10.7868/S0207352815040083
- 15. Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М.: Наука, 1969. 305 с.

Study of Processes of Formation of Nanosized MoO₃ Films by Thermal Oxidation and Ion Bombardement

G. X. Allayarova¹, D. A. Tashmukhamedova^{1, *}, R. Djabbarganov², B. E. Umirzakov^{1, 2, **}

¹Tashkent State Technical University Named after Islama Karimova, Tashkent, 100095 Uzbekistan ²Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent, 100125 Uzbekistan *e-mail: ftmet@mail.ru **e-mail: ftmet@rambler.ru

Nanosized MoO₃ thin films were obtained by thermal oxidation and ion implantation on the surface of a Mo single crystal. The optimal modes of ion implantation (oxygen partial pressure, ion energy and dose, annealing temperature) were determined for the formation of homogeneous, with good stoichiometry, MoO₃/Mo films with a thickness of 30 to 100 Å. At low doses of oxygen ions ($D \le 10^{16}$ cm⁻²), nanosized MoO₃ phases were found to be formed on the Mo crystal surface. The dependence of the degree of Mo surface coverage by the MoO₃ cluster phases on the ion dose are determined. Films with a thickness of ~100 Å were obtained by se-

quential implantation of O_2^+ ions with energies of 5, 3, and 1 keV. Using a complex of methods (Auger and photoelectron spectroscopy, secondary electron emission, and secondary ion mass spectrometry), the composition, electronic structure, emission and optical properties of nanoscale phases and MoO₃ films were studied.

Keywords: ion implantation, ion dose, electron exit depth, emission properties, degree of coverage, distribution profiles.