Том 57 2021 Вып. 4

УДК 621.391.1:519.725

© 2021 г. **Н.А. Полянский**

О СПИСОЧНОМ ДЕКОДИРОВАНИИ НЕКОТОРЫХ \mathbb{F}_q -ЛИНЕЙНЫХ КОДОВ 1

Представлен алгоритм списочного декодирования \mathbb{F}_q -линейных кодов, обобщающих s-коды Рида – Соломона.

Kлючевые слова: списочное декодирование, s-коды Рида — Соломона, минимальное расстояние.

DOI: 10.31857/S0555292321040045

§ 1. Обозначения, определения и вспомогательные результаты

Множество натуральных чисел обозначим символом \mathbb{N} , причем будем считать, что $0 \in \mathbb{N}$. Множество последовательных целых чисел $\{i, i+1, \ldots, j\}$ для некоторых $i, j \in \mathbb{N}, i \leqslant j$, будем обозначать через [i, j]. Для множества [1, j] будем использовать сокращение [j]. Для обозначения векторов будем использовать полужирные символы, например, \boldsymbol{x} , а i-ю координату вектора \boldsymbol{x} будем записывать в виде x_i . Для векторов $\boldsymbol{i} = (i_1, \ldots, i_m)$ и $\boldsymbol{j} = (j_1, \ldots, j_m)$ из \mathbb{N}^m определим естественное отношение частичного порядка: $\boldsymbol{i} \leqslant \boldsymbol{j}$, если выполнено $i_k \leqslant j_k$ для всех $k \in [m]$. Через $\binom{i+j}{i}$ для некоторых $\boldsymbol{i}, \boldsymbol{j} \in \mathbb{N}^m$ будем обозначать произведение $\prod_{k=1}^m \binom{i_k+j_k}{i_k}$. Запись $\max\{i_1,\ldots,i_m\}$ обозначает максимум из чисел i_1,\ldots,i_m . Кодом $\mathcal C$ длины n над алфавитом $\mathcal A$ будем называть произвольное подмножество множества $\mathcal A^n$, т.е. $\mathcal C \subseteq \mathcal A^n$. Через $|\mathcal A|$ будем обозначать мощность множества $\mathcal A$, например, объем кода равен $|\mathcal C|$. Расстояние Хэмминга между двумя векторами $\boldsymbol{x}, \boldsymbol{y} \in \mathcal A^n$ определим как $d_H(\boldsymbol{x}, \boldsymbol{y}) := |\{i: x_i \neq y_i\}|$. Минимальное расстояние в коде $\mathcal C$ равно минимуму величины $d_H(\boldsymbol{x}, \boldsymbol{y})$ по всем $\boldsymbol{x}, \boldsymbol{y} \in \mathcal C$, $\boldsymbol{x} \neq \boldsymbol{y}$.

В настоящей статье будем рассматривать лишь конечные поля \mathbb{F}_q с характеристикой p, т.е. $q=p^c$ для некоторого $c\in\mathbb{N}\setminus\{0\}$ и простого числа p. Мультипликативную группу поля \mathbb{F}_q будем обозначать через \mathbb{F}_q^* . Символом $\mathbf{0}$ будем обозначать вектор из всех нулей, длина которого будет ясна из контекста. Будем использовать прописные символы для обозначения переменных, например, T или $\mathbf{X}=(X_1,\ldots,X_m)$. В ходе рассуждений число переменных m будет чаще всего фиксировано. Обозначим через $\mathbb{F}_q[\mathbf{X}]$ кольцо многочленов от m переменных X_1,\ldots,X_m над полем \mathbb{F}_q . Для вектора $\mathbf{v}=(v_1,\ldots,v_m)\in\mathbb{N}^m$ моном $\mathbf{X}^{\mathbf{v}}\in\mathbb{F}_q[\mathbf{X}]$ определяется как $\prod_{j=1}^m X_j^{v_j}$. Для многочлена $f(\mathbf{X})\in\mathbb{F}_q[\mathbf{X}]$ и вектора $\mathbf{i}\in\mathbb{N}^m$ будем обозначать через $[\mathbf{X}^{\mathbf{i}}]f(\mathbf{X})$ коэффициент перед $\mathbf{X}^{\mathbf{i}}$ в записи $f(\mathbf{X})$. Для вектора $\mathbf{x}_0\in\mathbb{F}_q^m$ значение многочлена $f(\mathbf{X})$ в точке \mathbf{x}_0 будем записывать в виде $f(\mathbf{x}_0)$, где $f(\mathbf{x}_0)\in\mathbb{F}_q$. Пусть $\mathbf{X}=(X_1,\ldots,X_m)$

¹ Работа выполнена в Сколковском институте науки и технологий при поддержке гранта Российского научного фонда (номер проекта 19-71-00137).

и $\boldsymbol{Y}=(Y_1,\ldots,Y_k)$. Тогда для многочлена $f(\boldsymbol{X},\boldsymbol{Y})$ из $\mathbb{F}_q[\boldsymbol{X},\boldsymbol{Y}]$ через $\{\boldsymbol{Y^i}\}f(\boldsymbol{X},\boldsymbol{Y})$ будем обозначать многочлен из $\mathbb{F}_q[\boldsymbol{X}]$, определяемый равенством

$$\{\boldsymbol{Y^i}\}f(\boldsymbol{X},\boldsymbol{Y}) := \sum_{\boldsymbol{i} \in \mathbb{N}^m} ([\boldsymbol{X^jY^i}]f(\boldsymbol{X},\boldsymbol{Y}))\boldsymbol{X^j}.$$

1.1. Производная Хассе и эквивалентные многочлены.

Определение 1. Пусть $\boldsymbol{X}=(X_1,\ldots,X_m)$ и $\boldsymbol{Y}=(Y_1,\ldots,Y_m)$. Для вектора $\boldsymbol{i}\in\mathbb{N}^m$ определим \boldsymbol{i} -ю производную Хассе многочлена $f(\boldsymbol{X})\in\mathbb{F}_q[\boldsymbol{X}]$ как \boldsymbol{i} -й коэффициент "сдвинутого" многочлена $\widetilde{f}(\boldsymbol{X},\boldsymbol{Y}):=f(\boldsymbol{X}+\boldsymbol{Y})$, т.е.

$$f^{(i)}(\boldsymbol{X}) := \{\boldsymbol{Y^i}\}\widetilde{f}(\boldsymbol{X}, \boldsymbol{Y}).$$

Иногда для удобства будем использовать эквивалентное обозначение $D^{(i)}f(X) := f^{(i)}(X)$. Таким образом, выполнено соотношение

$$f(X + Y) = \sum_{i \in \mathbb{N}^m} f^{(i)}(X)Y^i.$$

Отметим несколько свойств производной Xacce, доказательство которых можно найти в [1].

Предложение 1. Пусть $f(X), g(X) \in \mathbb{F}_q[X], \lambda \in \mathbb{F}_q$, и пусть $i, j \in \mathbb{N}^m$. Тогда справедливы следующие соотношения:

1.
$$f^{(i)}(X) + g^{(i)}(X) = (f+g)^{(i)}(X);$$

2.
$$(\lambda f)^{(i)}(\boldsymbol{X}) = \lambda f^{(i)}(\boldsymbol{X});$$

$$3. \ (fg)^{(\boldsymbol{i})}(\boldsymbol{X}) = \sum_{\boldsymbol{0} \leqslant \boldsymbol{e} \leqslant \boldsymbol{i}} f^{(\boldsymbol{e})}(\boldsymbol{X}) g^{(\boldsymbol{i}-\boldsymbol{e})}(\boldsymbol{X});$$

$$4. \ (f^{(\boldsymbol{i})})^{(\boldsymbol{j})}(\boldsymbol{X}) = \binom{\boldsymbol{i}+\boldsymbol{j}}{\boldsymbol{i}} f^{(\boldsymbol{i}+\boldsymbol{j})}(\boldsymbol{X}).$$

Определим функцию

$$\deg \colon \mathbb{N}^m \to \mathbb{N}, \quad \deg(\boldsymbol{v}) = \sum_{j=1}^m v_j,$$

и функцию

$$\deg_q \colon \mathbb{N}^m \to \mathbb{N}, \quad \deg_q(\boldsymbol{v}) = \sum_{j=1}^m \lfloor v_j/q \rfloor.$$

Ствень $\deg(f(X))$ многочлена $f(X) \in \mathbb{F}_q[X]$ определим как максимальное значение $\deg(i)$ для вектора $i \in \mathbb{N}^m$, такого что $[X^i]f(X) \neq 0$. Следующее утверждение напрямую вытекает из [2, следствие 6.50].

Предложение 2. Для произвольного числа $s \in [q-1]$ определим многочлен от одной переменной $f(T) := (T^q - T)^s \in \mathbb{F}_q[T]$. Тогда

$$f^{(i)}(T) = \begin{cases} (-1)^i \binom{s}{i} (T^q - T)^{s-i} & \text{ons } 0 \leqslant i \leqslant s, \\ 0 & \text{ons } i > s. \end{cases}$$

Через $f^{(< s)}(\boldsymbol{x}_0) \in \mathbb{F}_q^{\binom{s+m-1}{m}}$ будем обозначать вектор, \boldsymbol{i} -я компонента которого равна $f^{(\boldsymbol{i})}(\boldsymbol{x}_0)$ для всех $\boldsymbol{i} \in \mathbb{N}^m$, $\deg(\boldsymbol{i}) < s$.

Определение 2. Два многочлена $f(\boldsymbol{X}), g(\boldsymbol{X}) \in \mathbb{F}_q[\boldsymbol{X}]$ назовем s-эквивалентными, если $f^{(< s)}(\boldsymbol{x}_0) = g^{(< s)}(\boldsymbol{x}_0)$ для всех $\boldsymbol{x}_0 \in \mathbb{F}_q^m$. В таком случае будем также писать $f(\boldsymbol{X}) \equiv_s g(\boldsymbol{X})$.

Доказательства следующего и некоторых последующих утверждений, для которых не указаны ссылки на работы, содержащие доказательства, приведены в § 3.

Предложение 3. Пусть q – степень простого числа p, и пусть $s \in [q-1]$. Тогда для всякого многочлена от одной переменной $f(T) \in \mathbb{F}_q[T]$ существует единственный многочлен $g(T) \in \mathbb{F}_q[T]$ степени не выше sq-1, такой что $f(T) \equiv_s g(T)$. Если s также является степенью p, то

$$f(T) \equiv g(T) \pmod{T^{qs} + (-T)^s}$$
.

В дальнейшем чаще всего будем предполагать, что s является степенью p. Это позволит существенным образом упростить анализ ввиду предложения 3. Определим функцию $\operatorname{Mod}_a^s\colon \mathbb{N}\to [0,qs-1]$ по следующему правилу:

- если a < s, то $\operatorname{Mod}_a^s(a) = a$;
- если $a\geqslant s$ и $a\equiv b\pmod{qs-s},\,b\in[s,qs-1],$ то $\operatorname{Mod}_q^s(a)=b.$

Эта функция имеет смысл благодаря следующему наблюдению. Если s является степенью p, то

$$T^a \equiv_s (-1)^t T^{\operatorname{Mod}_q^s(a)},$$
 (1) где $t = \frac{a - \operatorname{Mod}_q^s(a)}{qs - s}.$

1.2. Хорошие мономы и обобщение *s*-кодов Рида – Соломона. Определим отношение частичного порядка \leq_p на множествах $\mathbb N$ и $\mathbb N^m$ для некоторого простого числа p.

Определение 3. Возьмем целые числа $n,k\in\mathbb{N}$, простое число p и положим $t:=\lfloor\log_p(\max\{n,k\})\rfloor$. Рассмотрим p-ичные представления чисел $n=\sum\limits_{i=0}^t n^{(i)}p^i$ и $k=\sum\limits_{i=0}^t k^{(i)}p^i$. Определим следующий порядок: $k\leqslant_p n$, если $k^{(i)}\leqslant n^{(i)}$ для всех $i\in[0,t]$. Для вектора ${\boldsymbol v}=(v_1,\ldots,v_m)\in\mathbb{N}^m$ будем писать ${\boldsymbol v}\leqslant_p n$, если $v_j\leqslant_p n$ для всех $j\in[m]$. Для двух векторов одной длины ${\boldsymbol v},{\boldsymbol w}\in\mathbb{N}^m$ определим порядок ${\boldsymbol v}\leqslant_p {\boldsymbol w}$, если выполнено $v_j\leqslant_p w_j$ для всех $j\in[m]$.

Следующий результат, доказанный в [3], поясняет удобство использования вышеуказанного частичного порядка.

Предложение 4. Пусть даны целые числа $n>0,\ k\geqslant 0,\ k\leqslant n,\ u$ простое число p. Определим $t:=\lfloor \log_p(n)\rfloor$ и рассмотрим p-ичные представления чисел $n=\sum_{i=0}^t n^{(i)}p^i$ и $k=\sum_{i=0}^t k^{(i)}p^i$. Тогда для биномиального коэффициента справедливо соотношение

$$\binom{n}{k} \equiv \prod_{i=0}^t \binom{n^{(i)}}{k^{(i)}} \pmod{p}.$$

В частности, равенство $\binom{n}{k} \equiv 0 \pmod{p}$ выполнено в том и только том случае, когда существует хотя бы один индекс $i \in [0,t]$, для которого $k^{(i)} > n^{(i)}$. Другими словами, соотношение $\binom{n}{k} \not\equiv 0 \pmod{p}$ верно тогда и только тогда, когда $k \leqslant_p n$.

Следствие 1. Пусть даны целые числа $n, k_j \in \mathbb{N}, j \in [m], \sum_{j=1}^m k_j = n, u$ простое число p. Тогда соответствующий мультиномиальный коэффициент не равен нулю, $\binom{n}{k_1, \ldots, k_m} \not\equiv 0 \pmod{p},$ тогда u только тогда, когда отношение порядка $k_j \leqslant_p n$ справедливо для всех $j \in [m]$.

Определение 4. Пусть q и s являются степенью простого p, s < q, и пусть даны числа $m \geqslant 1$ и $d \in [sq]$. Будем говорить, что моном $\mathbf{X}^{\boldsymbol{v}} \in \mathbb{F}_q[\mathbf{X}]$, где $\mathbf{v} \in \mathbb{N}^m$, является $(m,d)_g^s$ -хорошим, если выполнены следующие два условия:

- 1. $\deg_a(\mathbf{v}) \leqslant s 1$;
- 2. для всякого $i \in \mathbb{N}^m$, такого что $i \leqslant_p v$, выполнено неравенство $\mathrm{Mod}_a^s(\deg(i)) < d$.

Заметим, что все мономы X^v , для которых выполнено первое условие определения 4 и при этом $\deg(v) < d$, являются $(m,d)_q^s$ -хорошими. Однако общее число $(m,d)_q^s$ -хороших мономов может быть значительно большим. Вышеуказанное определение иллюстрирует следующий

Пример 1. Пусть $m=s=2,\,d=7,\,q=2^2=4$; рассмотрим моном $f(X_1,X_2)=X_1^2X_2^6$, т.е. $f(\boldsymbol{X})=\boldsymbol{X^v}$ для $\boldsymbol{v}=(v_1,v_2)=(2,6)$ и $\deg(\boldsymbol{v})=8>d$. Проверим, что этот моном является $(m,d)_a^s$ -хорошим. Во-первых, выполнено

$$\deg_q(\boldsymbol{v}) = \left\lfloor \frac{v_1}{q} \right\rfloor + \left\lfloor \frac{v_2}{q} \right\rfloor = \left\lfloor \frac{2}{4} \right\rfloor + \left\lfloor \frac{6}{4} \right\rfloor = 1 \leqslant s - 1.$$

Для проверки второго условия отметим, что существует несколько различных векторов $i = (i_1, i_2)$, удовлетворяющих соотношению $i \leqslant_2 v$. Подходят все векторы (i_1, i_2) , такие что $i_1 \in \{0, 2\}$ и $i_2 \in \{0, 2, 4, 6\}$. Поскольку функция $\operatorname{Mod}_q^s(\cdot)$ не увеличивает аргумент, достаточно проверить условие $\operatorname{Mod}_q^s(\operatorname{deg}(i)) < d = 7$ лишь для i = (2, 6). Действительно, для i = (2, 6) выполнено

$$\operatorname{Mod}_q^s(\deg(i)) = \operatorname{Mod}_q^s(8) = 2 < d,$$

поскольку $8 \equiv 2 \pmod{qs-s}$ и $2 \in [s, qs-1]$.

Обозначим множество $(m,d)_q^s$ -хороших мономов через $G_q^s(m,d)\subseteq \mathbb{F}_q[\boldsymbol{X}]$, а его мощность – через $N_q^s(m,d)$. Заметим, что кольцо $\mathbb{F}_q[\boldsymbol{X}]$ можно рассматривать как \mathbb{F}_q -линейное векторное пространство. Пусть $V_q^s(m,d)\subseteq \mathbb{F}_q[\boldsymbol{X}]$ обозначает линейную оболочку множества $G_q^s(m,d)$ над \mathbb{F}_q . В следующем утверждении указано важнейшее свойство хороших мономов и пространства $V_q^s(m,d)$.

Предложение 5. Пусть задан произвольный вектор из линейных многочленов от одной переменной $\gamma(T) = aT + b, \ a,b \in \mathbb{F}_q^m, \ a \neq 0,$ а также произвольный многочлен $f(\boldsymbol{X}) \in V_q^s(d,m)$. Тогда многочлен g(T), определяемый как композиция $f \circ \gamma(T)$, s-эквивалентен некоторому многочлену $h(T) \in \mathbb{F}_q[T]$ степени $\deg(h(T)) < d$.

Замечание 1. Отметим, что в предложении 5 образ отображения вычисления значений функции $\gamma(T)\colon \mathbb{F}_q\to\mathbb{F}_q^m$ соответствует некоторой прямой в пространстве \mathbb{F}_q^m . Таким образом, предложение 5 утверждает, что если рассмотреть линейную комбинацию хороших многочленов и ограничить их на произвольную прямую в пространстве, то полученный многочлен от одной переменной может быть эквивалентным образом задан (с точки зрения вычисления значений многочлена и всех его производных до (s-1)-го порядка включительно) многочленом от одной переменной невысокой степени.

Обозначим отображение вычисления значений многочлена и всех его производных до (s-1)-го порядка включительно во всех точках пространства \mathbb{F}_q^m через

$$\mathrm{Ev}_{q,m}^s\colon \mathbb{F}_q[\boldsymbol{X}]\to \left(\mathbb{F}_q^{\binom{s+m-1}{m}}\right)^{q^m}.$$

Для произвольного многочлена $f(X) \in \mathbb{F}_q[X]$ его образ равен

$$\operatorname{Ev}_{q,m}^{s}(f(\boldsymbol{X})) = \left(f^{(< s)}(\boldsymbol{x}_{0})\right)\big|_{\boldsymbol{x}_{0} \in \mathbb{F}_{q}^{m}}.$$

Наконец, определим коды, которые будут исследоваться в данной статье.

Определение 5 (обобщение s-кодов Рида – Соломона). Пусть q и s – степени простого числа $p,\,s< q,$ и пусть даны положительные числа $m\geqslant 1$ и $d\leqslant sq.$ Тогда определим код $\mathcal{C}_q^s(m,d)$ длины q^m над алфавитом $\mathbb{F}_q^{\binom{m+s-1}{m}}$ как

$$\mathcal{C}_q^s(m,d) := \left\{ \operatorname{Ev}_{q,m}^s(f(\boldsymbol{X})) : f(\boldsymbol{X}) \in V_q^s(d,m) \right\}.$$

Определение 5 в указанном виде ранее в литературе не вводилось. Далее мы приведем историческую справку, которая раскрывает мотивацию для изучения обобщений s-кодов Рида – Соломона.

Код Рида – Соломона, один из наиболее исследованных в теории кодирования на данный момент, был изобретен в 1960 г. Ридом и Соломоном. Этот код в частном случае может быть задан как образ отображения вычисления значений многочленов от одной переменной степени не выше d-1 во всех точках поля \mathbb{F}_q . Отметим очевидное и при этом важное свойство, что при d < q произвольная стертая координата кодового слова кода Рида – Соломона может быть восстановлена при чтении всех остальных координат.

Недвоичные коды Рида – Маллера, предложенные в ряде параллельных работ в 1968–1970 гг., являются естественным обобщением кодов Рида – Соломона. Подобный код может быть задан как образ отображения вычисления значений многочленов от $m \geqslant 2$ переменных степени не выше d-1 во всех точках пространства \mathbb{F}_q^m . При d < q недвоичные коды Рида – Маллера обладают свойством локального восстановления: произвольная стертая координата кодового слова, соответствующая вычислению в точке $\boldsymbol{x}_0 \in \mathbb{F}_q^m$, может быть восстановлена после прочтения координат кодового слова, соответствующих произвольной прямой в \mathbb{F}_q^m , проходящей через \boldsymbol{x}_0 . Это свойство выполнено, поскольку ограничение кодового слова недвоичного кода Рида – Маллера на произвольную прямую является кодовым словом кода Рида – Соломона. Однако кодовая скорость недвоичных кодов Рида – Маллера при d < q и $m \geqslant 2$ не превышает 1/2.

Чтобы построить код более высокой скорости, сохранив при этом свойство локального восстановления, Го, Коппарти и Судан [4] предложили в 2013 г. так называемые многомерные коды Рида – Соломона (lifted Reed–Solomon codes), соответствующие определению 5 при s=1. Другой естественный способ обобщить коды Рида – Соломона был также предложен Розенблюмом и Цфасманом [5] в 1997 году в контексте введенной ими же новой метрики (так называемой s-метрики, или метрики Розенблюма – Цфасмана). Таким образом, в [5] был построен код, соответствующий определению 5 при m=1, и назван s-кодом Рида – Соломона. Отметим, что s-код Рида – Соломона, так же как и обычный код Рида – Соломона, не обладает желанным сочетанием высокой скорости и локального восстановления. Таким образом, в 2014 г. Коппарти, Шараф и Еханин [6] разработали недвоичные s-коды Рида – Маллера (multiplicity codes), которые можно задать как образ отображения вычисления значений многочленов от $m \ge 2$ переменных степени не выше d-1 и всех их производных до (s-1)-го порядка во всех точках пространства \mathbb{F}_q^m , т.е.

$$\mathcal{M}_q^s(d,m) := \big\{ \mathrm{Ev}_{q,m}^s(f(\boldsymbol{X})) : f(\boldsymbol{X}) \in \mathbb{F}_q[\boldsymbol{X}], \ \deg(f(\boldsymbol{X})) < d \big\}.$$

При $d \leqslant sq$ имеет место вложение $\mathcal{M}_q^s(d,m) \subseteq \mathcal{C}_q^s(d,m)$, поскольку множество $V_q^s(m,d)$ содержит всевозможные многочлены степени, меньшей d, а также некоторые многочлены значительно большей степени (см. подробнее [7]). В той же работе [6] было также показано, что недвоичные s-коды Рида – Маллера наряду с многомерными кодами Рида – Соломона могут достигать высокой скорости (сколь угодно близкой к 1), сохраняя при этом хорошие свойства локального восстановления.

Наконец, отметим, что наиболее родственные по смыслу коды, но все же отличные (см. [7]) от определения 5, – многомерные s-коды Рида – Соломона (чаще всего называемые в англоязычной литературе lifted multiplicity codes) – были изначально определены Ву [8] в 2015 г. с целью построить наиболее широкий класс кодов с высокой скоростью и отличными способностями локального восстановления. Подобный m-мерный s-код Рида – Соломона может быть задан как образ отображения вычисления значений всевозможных $(m,d)_q^s$ -хороших многочленов и их производных. Здесь под $(m,d)_q^s$ -хорошим многочленом мы понимаем такой многочлен, который при ограничении на произвольную прямую в пространстве \mathbb{F}_q^m является s-эквивалентным некоторому многочлену от одной переменной степени не выше d-1. В работах [7–9] приведен анализ скорости многомерных s-кодов Рида – Соломона и предложены некоторые алгоритмы локального восстановления.

Очевидно, что обобщение s-кода Рида – Соломона $\mathcal{C}^s_q(m,d)$ является подкодом соответствующего m-мерного s-кода Рида – Соломона. В данной статье нам необходимо непосредственно использовать структурное свойство кода $\mathcal{C}^s_q(m,d)$, а именно то, что всякое кодовое слово этого кода соответствует линейной комбинации $(m,d)^s_q$ -хороших мономов. В следующем предложении отметим несколько важных свойств кода $\mathcal{C}^s_q(m,d)$, которые более формально разъясняют вышеописанную мотивацию. Это утверждение было доказано в [7,9] для полей характеристики 2. В общем случае доказательство работает без изменений.

Предложение 6. Пусть $m\geqslant 2$ и $\mathcal{C}=\mathcal{C}_q^s(m,d)$. Тогда имеют место следующие свойства.

1. Мощность кода удовлетворяет соотношению

$$\log_a |\mathcal{C}| = N_a^s(m, d).$$

Другими словами, образ $(m,d)_q^s$ -хороших мономов при отображении $\operatorname{Ev}_{q,m}^s$ задает \mathbb{F}_q -базис кода \mathcal{C} , и кодовое слово, состоящее из символов $\mathbf{0}$, соответствует лишь тождественно нулевому многочлену;

2. Минимальное расстояние в коде C не меньше

$$1 + \left\lceil \frac{qs - d - s + 1}{s} \right\rceil (q - s)q^{m-2};$$

3. Пусть даны точка в пространстве $x_0 \in \mathbb{F}_q^m$ и m-1 множество $A_j \subseteq \mathbb{F}_q$, $|A_j|=s,\ j\in [m-1]$. Определим множество

$$S := \{ \boldsymbol{x}_0 + \lambda \boldsymbol{a} : \ \lambda \in \mathbb{F}_q^*, \ \boldsymbol{a} = (a_1, \dots, a_{m-1}, 1), \ a_j \in A_j, \ j \in [m-1] \}.$$

Пусть $d\leqslant qs-s$. Тогда для произвольного $\mathbf{x}_0\in\mathbb{F}_q^m$ компонента $f^{(< s)}(\mathbf{x}_0)\in\mathbb{F}_q^{\binom{s+m-1}{m}}$ кодового слова $\mathrm{Ev}_{q,m}^s(f(\mathbf{X}))$ может быть восстановлена с помощью вектора значений $(f^{(< s)}(\mathbf{y}_0))\big|_{\mathbf{y}_0\in S}$. Таким образом, можно найти $\left(\frac{q}{s}\right)^{m-1}$ вза-

имно непересекающихся восстанавливающих множеств для каждой компоненты $f^{(< s)}(x_0)$ кодового слова кода \mathcal{C} .

Замечание 2. Как сказано ранее, интерес к кодам $\mathcal{C}_q^s(m,d)$ в последние годы во многом объясняется свойством 3 в предложении 6, а также тем фактом, что при $d\geqslant qs-q$, фиксированном m, и $q=p^c\to\infty$ скорость этих кодов можно оценить величиной

$$1 - O\left(s^{-1} \left(\frac{q}{qs - d}\right)^{\lambda_p}\right),\,$$

где константа $\lambda_p < 0$. Также отметим, что при $qs - q \leqslant d < qs$, фиксированном m и $q = p^c \to \infty$ скорость кодов $\mathcal{M}_q^s(d,m)$ (недвоичных s-кодов Рида – Маллера) равна $1 - \Theta(s^{-1})$, что меньше вышеуказанной оценки скорости кодов $\mathcal{C}_q^s(m,d)$ (более подробно см. в [7]).

1.3. Списочное декодирование s-кодов Рида – Соломона. Обобщение списочного алгоритма декодирования Гурусвами – Судана на случай s-кодов Рида – Соломона было впервые предложено в работе [10]. Отметим, что в случае m=1 можно опустить ограничение на то, что s является степенью простого p в определениях 4, 5. Мы приведем чуть более слабую версию утверждения из [10], более удобную для использования.

Предложение 7. Пусть даны целые положительные числа s u q, r de q – c m ень простого числа p, a s q. Выберем некоторое целое число $\varphi \geqslant 3$ u целое число $d \in [s,qs]$. Тогда существует алгоритм $\mathfrak{A}_q^s(d,\varphi)$, входом которого является произвольный вектор $r \in (\mathbb{F}_q^s)^q$, a выходом – множество всевозможных кодовых слов s-кода P uда – Cоломона $\mathcal{L} \subseteq \mathcal{C}_q^s(1,d)$, для которых расстояние Хэмминга $d_H(\mathbf{c},r)$ удовлетворяет неравенству

$$d_H(\boldsymbol{c}, \boldsymbol{r}) \leqslant q - (1 + 3/\varphi)\sqrt{q(d-1)/s} - 1, \quad \boldsymbol{c} \in \mathcal{L}.$$

Более того, время работы этого алгоритма равно $\operatorname{poly}(q,\varphi)$, а размер списка $|\mathcal{L}| = O(\varphi \sqrt{sq/d})$.

В дальнейшем были найдены [11,12] более эффективные списочные декодеры для s-кода Рида — Соломона, заданного над простым полем \mathbb{F}_p . Однако мы воспользуемся вышеуказанным утверждением, поскольку нам потребуется использовать биективное отображение между пространством \mathbb{F}_q^m и полем \mathbb{F}_{q^m} , а поле \mathbb{F}_{q^m} при $m \geqslant 2$ гарантированно не является простым. Также отметим, что при s=1 списочное декодирование соответствующих кодов $\mathcal{C}_q^1(m,d)$ (m-мерных кодов Рида — Соломона) было впервые предложено в работе [13]. Мы воспользуемся идеями из этой работы, а также структурой алгоритма списочного декодера кодов $\mathcal{M}_q^s(d,m)$ (недвоичных s-кодов Рида — Маллера) из работы [11].

1.4. Вазис в поле \mathbb{F}_{q^m} и параметризация пространства \mathbb{F}_q^m . Пусть элементы $\alpha_1,\dots,\alpha_m\in\mathbb{F}_{q^m}$ образуют \mathbb{F}_q -базис поля \mathbb{F}_{q^m} , т.е. всякий элемент $\beta\in\mathbb{F}_{q^m}$ представим в виде $\beta=\sum\limits_{j=1}^m\lambda_j\alpha_j$ для некоторых $\lambda_j\in\mathbb{F}_q,\ j\in[m]$. Через $\pmb{\alpha}$ обозначим вектор $(\alpha_1,\dots,\alpha_m)$. В дальнейшем будем кратко говорить, что $\pmb{\alpha}\in\mathbb{F}_{q^m}^m$ является базисом.

Определение 6. Будем говорить, что набор из базисов $\alpha_1, \ldots, \alpha_t \in \mathbb{F}_{q^m}^m$ находится в *s-общем положении*, если для произвольного ненулевого многочлена $r(X) \in \mathbb{F}_{q^m}[X]$ степени $\deg(r(X)) < s$ существует такое число $i \in [t]$, что $r(\alpha_i) \neq 0$.

Следующее утверждение было доказано в [11, 14].

Предложение 8. Пусть даны число q, являющееся степенью простого числа p, целое число $m \geqslant 2$, а также целое положительное число s, s < q. Если $t \geqslant s^m$, то существует набор из базисов $\alpha_1, \ldots, \alpha_t \in \mathbb{F}_{q^m}^m$, находящийся в s-общем положении. Более того, такой набор может быть найден за время $\operatorname{poly}(q, m)$.

Пусть $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{F}_{q^m}^m$ является базисом. Определим биективное отображение $\gamma_{\alpha} \colon \mathbb{F}_{q^m} \to \mathbb{F}_q^m$ следующим образом:

$$\gamma_{\alpha}(x) := (\operatorname{Tr}(\alpha_1 x), \dots, \operatorname{Tr}(\alpha_m x)),$$

где функция $\mathrm{Tr}\colon \mathbb{F}_{q^m}\to \mathbb{F}_q$ является стандартным *следом* элементов расширенного поля \mathbb{F}_{q^m} в \mathbb{F}_q , т.е. $\mathrm{Tr}(y)=\sum\limits_{i=0}^{m-1}y^{q^i}$. Кроме того, будем использовать запись $\mathrm{Tr}(T)$

для обозначения многочлена $\sum_{i=0}^{m-1} T^{q^i}$. Следующее естественное утверждение было также доказано в [11,14].

Предложение 9. Пусть даны число q, являющееся степенью простого числа p, u целое число $m \geqslant 2$. Пусть также заданы многочлен $f(\boldsymbol{X}) \in \mathbb{F}_q[\boldsymbol{X}]$ u базис $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m) \in \mathbb{F}_{q^m}^m$. Определим

$$g(T) := f \circ \gamma_{\alpha}(T) \in \mathbb{F}_{q^m}[T].$$

Тогда для произвольной точки $x_0 \in \mathbb{F}_{q^m}$ и любого $i \in [0, q-1]$ выполнено следующее соотношение:

$$g^{(i)}(x_0) = \sum_{\substack{\mathbf{e} \in \mathbb{N}^m \\ \deg(\mathbf{e}) = i}} f^{(\mathbf{e})}(\gamma_{\alpha}(x_0)) \prod_{j=1}^m \alpha_j^{e_j}.$$

§ 2. Основные результаты

Главным результатом данной статьи является следующее утверждение.

Теорема 1. Пусть даны числа q u s, являющиеся степенями простого числа p, а также положительные числа $m \geqslant 2$ u d, для которых верно $d \leqslant sq-m-2(s-1)$ u $m+s \leqslant q$. Определим целое число

$$\widetilde{d} := q^{m-1} \left(s - 1 + \frac{q-1}{q} (m+d-1) \right)$$

и зададим некоторый целочисленный параметр $\varphi \geqslant 3$. Тогда существует алгоритм $\mathfrak{A}_q^s(d,m,\varphi)$, входом которого является произвольный вектор $\boldsymbol{r} \in \left(\mathbb{F}_q^{\binom{s+m-1}{m}}\right)_q^{q^m}$, а выходом – множество $\mathcal{L} \subseteq \mathcal{C}_q^s(m,d)$ всевозможных кодовых слов кода $\mathcal{C}_q^s(m,d)$, для которых расстояние Хэмминга $d_H(\boldsymbol{c},\boldsymbol{r})$ удовлетворяет неравенству

$$d_H(\boldsymbol{c}, \boldsymbol{r}) \leqslant q^m - (1 + 3/\varphi)\sqrt{q^m \widetilde{d}/s} - 1, \quad \boldsymbol{c} \in \mathcal{L}.$$

Более того, время работы этого алгоритма равно $\operatorname{poly}\left(q^m,\left(\varphi\sqrt{sq^m/\widetilde{d}}\right)^{s^m}\right)$, а размер списка можно оценить величиной $O\left(\left(\varphi\sqrt{sq^m/\widetilde{d}}\right)^{s^m}\right)$.

Замечание 3. Время работы данного алгоритма и размер списка равны $poly(q^m)$ в случае $q = p^c \to \infty$, s = O(1), m = O(1). Отметим, что используя некоторые идеи из [14], можно привести списочный алгоритм декодирования со сложностью

и размером списка $poly(q^m)$ без подобного ограничения на s и m. Однако радиус декодирования для подобного алгоритма будет уступать вышеуказанному.

Мы приведем алгоритм списочного декодирования в п. 2.1 и проанализируем его в п. 2.2. В процессе доказательства мы выведем утверждение, которое поможет (незначительно) улучшить оценку на минимальное расстояние кодов $\mathcal{C}_q^s(m,d)$, указанную ранее в предложении 6. Следующее утверждение будет доказано в п. 2.3.

Теорема 2. Пусть даны числа q и s, являющиеся степенями простого числа p, а также положительные числа $m \geqslant 2$ и d, такие что

$$d \leqslant sq - m - 2(s - 1)$$
 u $m + s \leqslant q$.

Тогда минимальное расстояние кода $\mathcal{C}_q^s(m,d)$ находится в интервале $[\underline{d},\overline{d}]$, где величины \underline{d} и \overline{d} заданы следующим образом:

$$\underline{d} := q^m - \left\lfloor \frac{s - 1 + \frac{q - 1}{q}(m + d - 1)}{s} q^{m - 1} \right\rfloor, \quad \overline{d} := q^m - \left\lfloor \frac{d - 1}{s} \right\rfloor q^{m - 1}.$$

- **2.1.** Алгоритм списочного декодирования. Опишем алгоритм списочного декодирования, которым воспользуемся для доказательства теоремы 1. Пусть входом алгоритма является $\boldsymbol{r} \in \left(\mathbb{F}_q^{\binom{s+m-1}{m}}\right)^{q^m}$. Пусть $\boldsymbol{y}_0 \in \mathbb{F}_q^m$ и $\boldsymbol{e} \in \mathbb{N}^m$, $\deg(\boldsymbol{e}) < s$. Для удобства обозначений будем писать $r^{(\boldsymbol{e})}(\boldsymbol{y}_0)$ при обращении к элементу (из \mathbb{F}_q) вектора \boldsymbol{r} , который естественно индексировать парой $(\boldsymbol{y}_0, \boldsymbol{e})$.
- 1. Пусть $t=s^m$. Найдем набор базисов $\pmb{\alpha}_1,\dots,\pmb{\alpha}_t\in\mathbb{F}_{q^m}^m,$ находящийся в s-общем положении.
- 2. Для всякого $\ell \in [t]$ определим функцию (вектор) $\boldsymbol{h}_\ell \colon \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}^s$ по правилу

$$(h_{\ell}(x_0))_i = \sum_{\substack{e \in \mathbb{N}^m \\ \deg(e) = i}} r^{(e)}(\gamma_{\alpha_{\ell}}(x_0)) \prod_{j=1}^m \alpha_{\ell,j}^{e_j}, \quad \forall x_0 \in \mathbb{F}_{q^m}, \ i \in [0, s-1].$$

3. Для всякого $\ell \in [t]$ воспользуемся алгоритмом $\mathfrak{A}_q^s(\widetilde{d}+1,\varphi)$ из предложения 7 и восстановим множество \mathcal{L}_ℓ всевозможных кодовых слов $\mathbf{c} \in \mathcal{C}_{q^m}^s(1,\widetilde{d}+1)$, для которых выполнено

$$d_H(\boldsymbol{c}, \boldsymbol{h}_{\ell}) \leqslant q^m - (1 + 3/\varphi)\sqrt{q^m \tilde{d}/s} - 1.$$

4. Для всякого набора $(c_1,\ldots,c_t)\in\mathcal{L}_1\times\cdots\times\mathcal{L}_t$ найдем сначала соответствующий им набор $(\widetilde{g}_1(T),\ldots,\widetilde{g}_t(T))\in(\mathbb{F}_{q^m}[T])^t$ многочленов степени не выше \widetilde{d} , а затем множество всевозможных "согласованных" многочленов $\widetilde{f}(\boldsymbol{X})\in V_q^s(m,d)$, таких что

$$\widetilde{f} \circ \gamma_{\alpha_{\ell}}(T) \equiv_s \widetilde{g}_{\ell}(T), \quad \forall \ell \in [t].$$
 (2)

5. Выходом алгоритма будет список всевозможных многочленов $\widetilde{f}(\boldsymbol{X}) \in \mathbb{F}_q[\boldsymbol{X}]$, найденных на четвертом шаге, для которых выполнено

$$d_H(\operatorname{Ev}_{q,m}^s(\widetilde{f}(\boldsymbol{X})), \boldsymbol{r}) \leqslant q^m - (1 + 3/\varphi)\sqrt{q^m\widetilde{d}/s} - 1.$$

2.2. Анализ алгоритма. Сначала кратко рассмотрим каждый из шагов алгоритма, а затем проанализируем важные аспекты некоторых шагов более подробно.

<u>Первый шаг.</u> В силу предложения 8 такой набор существует и может быть найдет за время $\operatorname{poly}(q,m)$.

Второй шаг. В силу предложения 9 способ задания функции (вектора) h_{ℓ} соответствует заданию функции $h_{\ell}(T) = r \circ \gamma_{\alpha_{\ell}}(T)$, если интерпретировать вектор r как функцию r(X).

<u>Третий шаг.</u> Пусть $f(X) \in V_q^s(m,d)$. Тогда в силу леммы 3, которую мы докажем чуть позже, многочлен $g_\ell(T) := f \circ \gamma_{\alpha_\ell}(T)$ является s-эквивалентным многочлену степени не выше \tilde{d} . Таким образом, если расстояние Хэмминга между rи $\operatorname{Ev}_{q,m}^s(f(X))$ невелико, то одно из кодовых слов в множестве \mathcal{L}_ℓ будет соответствовать многочлену $g_\ell(T)$ (см. более подробно лемму 1).

Четвертый шаг. Каждый многочлен $\widetilde{f}(\boldsymbol{X}) \in V_q^s(m,d)$ можно задать с помощью $N_q^s(m,d)$ коэффициентов из \mathbb{F}_q , каждый из которых соответствует некоторому $(m,d)_q^s$ -хорошему моному (см. обозначения после определения 4). Многочлен, стоящий в правой части уравнения (2), уже определен, а в левой части стоит неопределенный многочлен с $N_q^s(m,d)$ неизвестными, для которого можно взять остаток при делении на $T^{sq^m}+(-T)^s$ (см. предложение 3). Отметим, что в силу леммы 3 степень многочлена, полученного как остаток, не превосходит \widetilde{d} . Таким образом, нужно решить систему линейных уравнений с $N_q^s(m,d)$ неизвестными и $t(\widetilde{d}+1)$ ограничениями. В силу леммы 2, которую мы докажем чуть позже, существует не более одного многочлена $\widetilde{f}(\boldsymbol{X}) \in V_q^s(m,d)$, удовлетворяющего системе уравнений (2) для данного набора $(\widetilde{g}_1(T),\ldots,\widetilde{g}_t(T))$. Таким образом, для поиска всевозможных $\widetilde{f}(\boldsymbol{X}) \in V_q^s(m,d)$ нужно потратить время роly $(q^m,t\widetilde{d},N_q^s(m,d))\prod_{\ell=1}^t |\mathcal{L}_\ell|$.

<u>Пятый шаг</u>. Перед выходом из алгоритма нужно будет отсеять те многочлены $f(X) \in V_q^s(m,d)$, для которых выполнено

$$d_H(\operatorname{Ev}_{q,m}^s(f(\boldsymbol{X})), \boldsymbol{r}) > q^m - (1 + 3/\varphi)\sqrt{q^m \tilde{d}/s} - 1.$$

Мы докажем корректность всего алгоритма в лемме 1.

Используя предложение 7, оценим суммарную сложность и время работы алгоритма. Сложность первого шага равна $\operatorname{poly}(q,m)$, второго — $\operatorname{poly}(q^m)$, третьего — $\operatorname{poly}(q^m,\varphi)$, четвертого и пятого шагов — $\operatorname{poly}\left(q^m,\left(\varphi\sqrt{sq^m/\widetilde{d}}\right)^{s^m}\right)$. Итоговый размер списка оценивается величиной $O\left(\left(\varphi\sqrt{sq^m/\widetilde{d}}\right)^{s^m}\right)$.

Наконец, докажем несколько оставшихся утверждений.

 Π е м м а 1. Предположим, что для некоторого многочлена $f(X) \in V_q^s(m,d)$ расстояние Хэмминга удовлетворяет неравенству

$$d_H(\operatorname{Ev}_{q,m}^s(f(\boldsymbol{X})), \boldsymbol{r}) \leqslant q^m - (1 + 3/\varphi)\sqrt{q^m \tilde{d}/s} - 1.$$

Тогда список многочленов на выходе предложенного списочного алгоритма будет содержать f(X).

Доказательство. Для всякого $\ell \in [t]$ рассмотрим базис

$$\boldsymbol{\alpha}_{\ell} = (\alpha_{\ell,1}, \dots, \alpha_{\ell,m}) \in \mathbb{F}_{q^m}^m$$

и многочлен

$$g_{\ell}(T) := f \circ \gamma_{\alpha_{\ell}}(T).$$

Используя предложение 9, имеем

$$g_{\ell}^{(i)}(x_0) = \sum_{\substack{\boldsymbol{e} \in \mathbb{N}^m \\ \deg(\boldsymbol{e}) = i}} f^{(\boldsymbol{e})}(\gamma_{\boldsymbol{\alpha}_{\ell}}(x_0)) \prod_{j=1}^m \alpha_{\ell,j}^{e_j}, \quad \forall x_0 \in \mathbb{F}_{q^m}, \ i \in [0, s-1].$$

Из условия утверждения существуют не менее $(1+3/\varphi)\sqrt{q^m\tilde{d}/s}+1$ точек $\boldsymbol{y}_0\in\mathbb{F}_q^m$, таких что $f^{(<s)}(\boldsymbol{y}_0)=r^{(<s)}(\boldsymbol{y}_0)$. Также отметим, что $\gamma_{\boldsymbol{\alpha}_\ell}$ является биекцией между \mathbb{F}_{q^m} и \mathbb{F}_q^m . Тогда на втором шаге алгоритма найдется не менее $(1+3/\varphi)\sqrt{q^m\tilde{d}/s}+1$ точек $x_0\in\mathbb{F}_{q^m}$, для которых выполнено $g_\ell^{(i)}(x_0)=(h_\ell(x_0))_i$ для всех $i\in[0,s-1]$. Заметим, что степень $\deg(g_\ell(T))\leqslant\tilde{d}$ в силу леммы 3. Следовательно, множество \mathcal{L}_ℓ , полученное на третьем шаге, будет содержать кодовое слово кода $\mathcal{C}_{q^m}^s(1,\tilde{d}+1)$, соответствующее многочлену $g_\ell(T)$. Таким образом, на четвертом шаге будет рассмотрен набор, соответствующий $(g_1(T),\ldots,g_t(T))$, и многочлен $f(\boldsymbol{X})\in V_q^s(m,d)$ будет найден при решении системы уравнений и включен в список на выходе алгоритма. \blacktriangle

 Π е м м а 2. Предположим, что существуют два многочлена $\widetilde{f}_1(\boldsymbol{X}), \widetilde{f}_2(\boldsymbol{X}) \in V_a^s(m,d),$ удовлетворяющие соотношению (2). Тогда $\widetilde{f}_1(\boldsymbol{X}) = \widetilde{f}_2(\boldsymbol{X})$.

Доказательство. Определим $h(\boldsymbol{X}) := \widetilde{f}_1(\boldsymbol{X}) - \widetilde{f}_2(\boldsymbol{X})$. Рассмотрим некоторое число $\ell \in [t]$ и базис $\boldsymbol{\alpha}_\ell = (\alpha_{\ell,1}, \dots, \alpha_{\ell,m}) \in \mathbb{F}_{q^m}^m$. Тогда выполнено соотношение

$$h \circ \gamma_{\alpha_{\ell}}(T) \equiv_s 0.$$

В силу предложения 9 выполнено

$$\sum_{\substack{\boldsymbol{e} \in \mathbb{N}^m \\ \deg(\boldsymbol{e}) = i}} h^{(\boldsymbol{e})}(\gamma_{\boldsymbol{\alpha}_{\ell}}(x_0)) \prod_{j=1}^m \alpha_{\ell,j}^{e_j} = 0, \quad \forall x_0 \in \mathbb{F}_{q^m}, \ i \in [0, s-1],$$

где $e=(e_1,\ldots,e_m)$. Поскольку отображение $\gamma_{\boldsymbol{\alpha}_\ell}$ задает биекцию между \mathbb{F}_{q^m} и \mathbb{F}_q^m , мы можем заключить, что для всякой точки $\boldsymbol{y}_0\in\mathbb{F}_q^m$ верно

$$\sum_{\substack{\boldsymbol{e} \in \mathbb{N}^m \\ \deg(\boldsymbol{e}) = i}} h^{(\boldsymbol{e})}(\boldsymbol{y}_0) \prod_{j=1}^m \alpha_{\ell,j}^{e_j} = 0.$$

Мы можем думать о вышеуказанном выражении как о вычислении в точке $lpha_\ell$ значения многочлена

$$v(\boldsymbol{X}) := \sum_{\substack{\boldsymbol{e} \in \mathbb{N}^m \\ \deg(\boldsymbol{e}) = i}} h^{(\boldsymbol{e})}(\boldsymbol{y}_0) \boldsymbol{X}^{\boldsymbol{e}}.$$

Степень данного многочлена меньше s. Поскольку набор базисов был выбран в s-общем положении, в силу определения 6 можно заключить, что $v(\boldsymbol{X})$ тождественно равен нулю. Отсюда следует, что $h^{(e)}(\boldsymbol{y}_0) = 0$ для всех $\boldsymbol{y}_0 \in \mathbb{F}_q^m$ и $\boldsymbol{e} \in \mathbb{N}^m$, $\deg(\boldsymbol{e}) < s$. Поскольку $h(\boldsymbol{X}) \in V_q^s(m,d)$, из первого утверждения в предложении 6 следует, что $h(\boldsymbol{X}) = 0$. Таким образом, требуемое утверждение доказано. \blacktriangle

 Π емма 3. Пусть даны числа q u s, являющиеся степенями простого числа p, а также положительные числа $m\geqslant 2$ u d, такие что

$$d \leqslant sq - m - 2(s - 1)$$
 u $m + s \leqslant q$.

Пусть вектор $\boldsymbol{\alpha} \in \mathbb{F}_{q^m}^m$ является базисом, и пусть $f(\boldsymbol{X}) \in V_q^s(m,d)$. Определим $g(T) := f \circ \gamma_{\boldsymbol{\alpha}}(T)$. Тогда существует единственный многочлен $r(T) \in \mathbb{F}_{q^m}[T]$, для которого верно $r(T) \equiv_s g(T)$ и $\deg(r(T)) \leqslant \widetilde{d}$, где

$$\widetilde{d} = q^{m-1} \left(s - 1 + \frac{q-1}{q} (m+d-1) \right).$$

Доказательство. Пусть $\lambda \in \mathbb{F}_q$, а $z(\boldsymbol{X}) \in V_q^s(d,m)$. В силу линейности

$$(f+\lambda z)\circ\gamma_{\boldsymbol{\alpha}}(T)=f\circ\gamma_{\boldsymbol{\alpha}}(T)+\lambda(z\circ\gamma_{\boldsymbol{\alpha}}(T))$$

достаточно рассматривать лишь многочлен f(X), который является в точности $(m,d)_q^s$ -хорошим мономом X^v , $v=(v_1,\ldots,v_m)\in\mathbb{N}^m$. В дальнейшем будем использовать векторы $e_j=(e_{j,0},\ldots,e_{j,m-1}),\ j\in[m]$. Распишем получившийся многочлен g(T) от одной переменной в таком случае:

$$\begin{split} g(T) &= \prod_{j=1}^{m} \left(\text{Tr}(\alpha_{j}T) \right)^{v_{j}} = \prod_{j=1}^{m} \left(\sum_{i=0}^{m-1} (\alpha_{j}T)^{q^{i}} \right)^{v_{j}} = \\ &= \prod_{j=1}^{m} \left(\sum_{\substack{e_{j} \in \mathbb{N}^{m} \\ \deg(e_{j}) = v_{j}}} \binom{v_{j}}{e_{j,0}, \dots, e_{j,m-1}} (\alpha_{j}T)^{\sum\limits_{i=0}^{m-1} e_{j,i}q^{i}} \right) = \\ &= \sum_{\substack{e_{1} \in \mathbb{N}^{m}, \dots, e_{m} \in \mathbb{N}^{m} \\ \deg(e_{1}) = v_{1}, \dots, \deg(e_{m}) = v_{m}}} T^{\sum\limits_{j=1}^{m} \sum\limits_{i=0}^{m-1} e_{j,i}q^{i}} \prod_{j=1}^{m} \binom{v_{j}}{e_{j,0}, \dots, e_{j,m-1}} \alpha_{j}^{\sum\limits_{i=0}^{m-1} e_{j,i}q^{i}}. \end{split}$$

Далее воспользуемся следствием 1, чтобы упростить данное выражение. Из этого утверждения следует, что если хотя бы для одного $i \in [0, m-1]$ не выполнено отношение порядка $e_{j,i} \leq_p v_j$, то соответствующий мультиномиальный коэффициент $\begin{pmatrix} v_j \\ e_{j,0}, \dots, e_{j,m-1} \end{pmatrix}$ равен нулю в поле характеристики p. В дальнейшем анализе будем рассматривать лишь слагаемые вышеуказанной суммы, для которых выполнено условие $e_j \leq_p v_j$ для всех $j \in [m]$. В силу предложения 3 нас интересует многочлен r(T) степени не выше sq^m-1 , для которого выполнено

$$r(T) \equiv g(T) \pmod{T^{sq^m} + (-T)^{q^m}}.$$

Для произвольного набора векторов $e_1, \ldots, e_m \in \mathbb{N}^m$, для которых верно $e_j \leqslant_p v_j$, $\deg(e_j) = v_j, j \in [m]$, определим величину

$$\widetilde{e} := \sum_{j=1}^{m} \sum_{i=0}^{m-1} e_{j,i} q^{i}.$$

Таким образом, достаточно показать, что \widetilde{e} удовлетворяет условию $\operatorname{Mod}_{q^m}^s(\widetilde{e}) \leqslant d$. Напомним, что моном $\boldsymbol{X^v}$ является $(m,d)_q^s$ -хорошим. Следовательно, из определения 4 имеем, что для произвольного $\boldsymbol{a} \in \mathbb{N}^m$, $a_j \leqslant_p v_j$, $j \in [m]$, выполнено неравенство $\operatorname{Mod}_q^s(\deg(\boldsymbol{a})) < d$. Возьмем в качестве $\boldsymbol{a} = (a_1, \ldots, a_m)$ вектор, j-я компонента

которого равна $a_j=e_{j,m-1}.$ Тогда из определений хороших мономов и операции Mod_a^s получим, что

$$\sum_{j=1}^{m} e_{j,m-1} = \eta(qs - s) + \mu,$$

где целые числа удовлетворяют соотношениям $\eta \geqslant 0$ и $0 \leqslant \mu < d$. Более того, если $\eta > 0$, то $\mu \geqslant s$.

В дальнейшем мы получим верхнюю и нижнюю оценки на величину \widetilde{e} , что поможет доказать необходимое неравенство $\mathrm{Mod}_{q^m}^s(\widetilde{e})\leqslant \widetilde{d}$. Начнем с верхней границы, при выводе которой воспользуемся соотношениями

$$v_j = \sum_{i=0}^{m-1} e_{j,i}, \quad j \in [m], \quad \mathbf{M} \quad \sum_{j=1}^m v_j \leqslant q(s-1) + m(q-1)$$

(эквивалентно условию $\deg_q(\boldsymbol{v})\leqslant s-1$ в определении 4). Имеем

$$\widetilde{e} = \sum_{j=1}^{m} \sum_{i=0}^{m-1} e_{j,i} q^{i} \leqslant q^{m-1} \sum_{j=1}^{m} e_{j,m-1} + q^{m-2} \sum_{j=1}^{m} (v_{j} - e_{j,m-1}) \leqslant$$

$$\leqslant (q^{m-1} - q^{m-2}) \sum_{j=1}^{m} e_{j,m-1} + q^{m-2} (q(s-1) + m(q-1)).$$

Напомним, что $\sum_{j=1}^m e_{j,m-1} = \eta(qs-s) + \mu$. Продолжим вывод верхней оценки:

$$\widetilde{e} \leqslant (q^{m-1} - q^{m-2})(\eta(qs - s) + \mu) + q^{m-2}(qs - q + m(q - 1)) =$$

$$= \eta(sq^m - s) + q^{m-1}(s - 1 + m + \mu - 2s\eta) + q^{m-2}(s\eta - \mu - m) + s\eta.$$

Теперь оценим \tilde{e} снизу:

$$\widetilde{e} = \sum_{j=1}^{m} \sum_{i=0}^{m-1} e_{j,i} q^{i} \geqslant \sum_{j=1}^{m} e_{j,m-1} q^{m-1} = q^{m-1} (\eta(qs-s) + \mu) \geqslant$$

$$\geqslant \eta(sq^{m} - s) + \eta s + (\mu - s\eta)q^{m-1}.$$

Заметим, что моном X^a с $a=(e_{1,m-1},\ldots,e_{m,m-1})$ является также $(m,d)_q^s$ -хорошим, поскольку $a\leqslant_p v$, и выполнено естественное свойство транзитивности для $(m,d)_q^s$ -хороших мономов. Напоследок воспользуемся оценкой $\mu\geqslant s\eta$, которая следует из предложения 10, поскольку верно $d\leqslant sq-m-2(s-1)$ по условию доказываемого утверждения. Таким образом, объединяя верхнюю и нижнюю границы для \widetilde{e} , получаем

$$\eta(sq^m - s) + \eta s \leqslant \widetilde{e} \leqslant \eta(sq^m - s) + d',$$

где

$$d' := q^{m-1}(s-1+m+\mu-2s\eta) + q^{m-2}(s\eta-\mu-m) + s\eta.$$

Очевидно, что d' достигает максимального значения

$$\tilde{d} = q^{m-1} \left(s - 1 + \frac{q-1}{q} (m+d-1) \right)$$

при $\eta=0,\ \mu=d-1.$ Если $\eta=0,$ то $\widetilde{e}\leqslant\widetilde{d}$ и $\mathrm{Mod}_{q^m}^s(\widetilde{e})\leqslant\widetilde{d}.$ Если $\eta>0,$ то $\widetilde{e}\geqslant\eta s$ и $\mathrm{Mod}_{q^m}^s(\widetilde{e})=b,$ где $b\in[\eta s,\widetilde{d}]$ и $b\equiv\widetilde{e}\ (\mathrm{mod}\ sq^m-s).$ Эти рассуждения завершают доказательство. \blacktriangle

Предложение 10. Пусть даны числа s u q, являющиеся степенями простого числа p, u положительное число $m\geqslant 2,\ m+s\leqslant q$. Предположим, что моном ${\boldsymbol X}^{{\boldsymbol v}}$ для некоторого вектора ${\boldsymbol v}=(v_1,\ldots,v_m)\in \mathbb{N}^m$ является $(m,sq-m-2(s-1))_q^s$ -хорошим. Тогда для целых чисел $\eta\geqslant 0$ u $0\leqslant \mu< sq-m-2(s-1)$ (причем $\mu\geqslant s$ при $\eta>0$), удовлетворяющих соотношению

$$\sum_{j=1}^{m} v_j = \eta s(q-1) + \mu,$$

выполнено неравенство $\eta s \leqslant \mu$.

Доказательство. Предположим противное, т.е. выполнено $\eta s>\mu$. Определим целые числа $h:=\eta s$ и $k:=p^\ell-h+\mu$, где $\ell\in\mathbb{N}$ – наименьшее число, при котором $p^\ell>h$. Заметим, что выполнено неравенство $q>h=\eta s$, так как

$$\deg(\boldsymbol{v}) = \eta s(q-1) + \mu \leqslant q(s-1) + m(q-1)$$

(из условия $\deg_q(\boldsymbol{v})\leqslant s-1$ в определении 4), и следовательно,

$$\eta s \leqslant m + \left\lfloor \frac{q}{q-1}(s-1) \right\rfloor = m + s - 1 < q. \tag{3}$$

Также отметим, что при таком выборе чисел имеет место следующее (частичное) p-ичное разложение:

$$\deg(\mathbf{v}) = \sum_{j=1}^{m} v_j = \eta s(q-1) + \mu = hq - h + \mu =$$

$$= (h-1)p^{\log_p q} + (p-1)\sum_{i=\ell}^{\log_p q-1} p^i + k.$$

Тогда h,k,p и μ удовлетворяют условию предложения 12, так как $h=\eta s>\mu$ по предположению и $h< p^\ell, k=p^\ell-h+\mu$ по построению. Из этого утверждения следует, что существует число $\theta\in\mathbb{N}$, для которого верно $\theta\leqslant_p k$ и $\mu\leqslant\theta\leqslant h-1$. Определим $e:=\sum_{j=1}^m v_j-\theta$. Поскольку $\theta\leqslant_p k$ и выполнено вышеуказанное (частичное) p-ичное разложение для суммы $\sum\limits_{j=1}^m v_j$, имеем $e\leqslant_p \sum\limits_{j=1}^m v_j$. Из предложения 11 следует, что существуют $e_1,\ldots,e_m\in\mathbb{N}$, такие что $\sum\limits_{j=1}^m e_j=e$ и $e_j\leqslant_p v_j$ для всех $j\in[m]$. Наконец, для получения противоречия посчитаем величину $\operatorname{Mod}_a^s(e)$. Поскольку

$$e = \sum_{j=1}^{m} v_j - \theta = \eta s(q-1) + \mu - \theta$$

и $\mu \leqslant \theta \leqslant s\eta - 1$, получаем, что

$$\operatorname{Mod}_q^s(e) \geqslant sq - s + (\mu - \theta) \geqslant sq - s - \eta s + 1.$$

Воспользуемся неравенством (3) и получим $\mathrm{Mod}_q^s(e) \geq sq-m-2(s-1)$, что противоречит тому, что $\boldsymbol{X^v}$ является $(sq-m-2(s-1),m)_q^s$ -хорошим. \blacktriangle

Следующие два технических утверждения необходимы для доказательства предложения 10.

Предложение 11. Пусть даны числа $v_1, \ldots, v_m, h \in \mathbb{N}$ и простое число p. Предположим, что имеет место отношение порядка $e \leqslant_p \sum_{j=1}^m v_j$. Тогда существуют $e_1, \ldots, e_m \in \mathbb{N}$, такие что $\sum_{j=1}^m e_j = e$ и $e_j \leqslant_p v_j$ для всех $j \in [m]$.

Доказательство. Рассмотрим многочлен $(1+T)^{\sum\limits_{j=1}^{m}v_{j}}$. Коэффициент при мономе T^{e} равен $\binom{\sum\limits_{j=1}^{m}v_{j}}{e}$. Из предложения 4 следует, что этот коэффициент удовлетворяет условию

$$\binom{\sum\limits_{j=1}^{m}v_j}{e}\not\equiv 0\pmod{p},$$

так как справедливо отношение порядка $e\leqslant_p\sum\limits_{j=1}^m v_j$. С другой стороны, этот коэффициент при T^e равен

$$\sum_{\substack{e \in \mathbb{N}^m \\ \deg(e) = e}} \prod_{j=1}^m \binom{v_j}{e_j},$$

откуда получаем, что существуют хотя бы один выбор $e_1, \ldots, e_m \in \mathbb{N}$, такой что $\prod_{j=1}^m \binom{v_j}{e_j} \not\equiv 0 \pmod{p}$. Если воспользоваться предложением 4 для e_j и v_j , то получим требуемое утверждение. \blacktriangle

Предложение 12. Пусть даны числа $h, k, \ell, \mu \in \mathbb{N}$ и простое число p. Предположим, что выполнено $k = p^{\ell} - h + \mu$ и $\mu < h < p^{\ell}$. Тогда существует некоторое число $\theta \in \mathbb{N}$, для которого $\theta \leqslant_p k$ и $\mu \leqslant \theta \leqslant h - 1$.

Доказательство. Воспользуемся тождеством

$$\begin{pmatrix} p^{\ell} - 1 \\ \mu + p^{\ell} - k - 1 \end{pmatrix} = \sum_{\theta = \mu}^{\min\{h-1, k\}} \begin{pmatrix} k \\ \theta \end{pmatrix} \begin{pmatrix} p^{\ell} - k - 1 \\ \mu + p^{\ell} - k - 1 - \theta \end{pmatrix} =$$

$$= \sum_{\theta = \mu}^{\min\{h-1, k\}} \begin{pmatrix} k \\ \theta \end{pmatrix} \begin{pmatrix} p^{\ell} - k - 1 \\ \theta - \mu \end{pmatrix}.$$

Действительно, левая часть равна числу способов выбрать $\mu+p^\ell-k-1$ элементов из данного множества мощности $p^\ell-1$. В средней части мы сначала выбираем среди первых k элементов некоторое подмножество из θ элементов, а затем из оставшихся $p^\ell-k-1$ элементов некоторые $\mu+p^\ell-k-1-\theta$. Из предложения 4 следует, что левая часть по модулю p не равна нулю. Действительно, выполнено соотношение $a\leqslant_p p^\ell-1$ для всякого $a\leqslant p^{\ell-1}$. Следовательно, существует хотя бы один выбор θ , при котором одно из слагаемых в правой части не равно нулю по модулю p. Используя снова предложение 4, получаем что для такого θ верно отношение порядка $\theta\leqslant_p k$. Более того, из ограничений суммы имеем $\mu\leqslant\theta\leqslant h-1$. \blacktriangle

2.3. Доказательство теоремы **2.** Определим число $n_0 := \lfloor (d-1)/s \rfloor$ и произвольное подмножество $B \subseteq \mathbb{F}_q$ размера $|B| = n_0$. Для доказательства границы сверху на минимальное расстояние заметим, что ненулевой многочлен $f(X_1, \ldots, X_m) :=$

 $:=\prod_{\beta\in B}(X_1-\beta)^s$ степени $\deg(f(\boldsymbol{X}))\leqslant d-1$ является $(m,d)_q^s$ -хорошим. В силу предложения 2 и формулы для производной Хассе несложно видеть, что число позиций в кодовом слове $\mathrm{Ev}_{q,m}^s(f(\boldsymbol{X}))$, не равных 0, равно $\overline{d}=(q-n_0)q^{m-1}$.

Теперь докажем оценку снизу на минимальное расстояние. Пусть даны два различных многочлена $f_1(\boldsymbol{X}), f_2(\boldsymbol{X}) \in V_q^s(m,d)$. Определим $\widehat{f}(\boldsymbol{X}) := f_1(\boldsymbol{X}) - f_2(\boldsymbol{X}) \neq 0$. Для базиса $\boldsymbol{\alpha} \in \mathbb{F}_{q^m}^m$ определим $g(T) := \widehat{f} \circ \gamma_{\boldsymbol{\alpha}}(T)$. В силу леммы 3 можно заключить, что g(T) является s-эквивалентным многочлену r(T) степени не выше $\widetilde{d} = q^{m-1} \left(s-1+\frac{q-1}{q}(m+d-1)\right)$. Более того, используя формулу для подсчета производных из предложения 9, можно найти базис $\boldsymbol{\alpha} \in \mathbb{F}_{q^m}^m$, такой что соответствующий многочлен $r(T) \neq 0$. Действительно, для $x_0 \in \mathbb{F}_{q^m}$ и $i \in [0,s-1]$ верно соотношение

$$r^{(i)}(x_0) = \sum_{\substack{e \in \mathbb{N}^m \\ \deg(e) = i}} \widehat{f}^{(e)}(\gamma_{\alpha}(x_0)) \prod_{j=1}^m \alpha_j^{e_j}.$$

Так как многочлен $\widehat{f}(\boldsymbol{X}) \in V_q^s(m,d)$ ненулевой, а отображение $\gamma_{\boldsymbol{\alpha}}$ задает биекцию между \mathbb{F}_{q^m} и \mathbb{F}_q^m , то найдутся $y_0 \in \mathbb{F}_{q^m}$ и $\boldsymbol{w} \in \mathbb{N}^m$, $\deg(\boldsymbol{w}) < s$, такие что $\widehat{f}^{(\boldsymbol{w})}(\gamma_{\boldsymbol{\alpha}}(y_0)) \neq 0$. Из предложения 8 следует, что существует базис $\boldsymbol{\alpha}$, для которого $r^{(\deg(\boldsymbol{w}))}(y_0) \neq 0$. Значит, для этого же $\boldsymbol{\alpha}$ верно $r(T) \neq 0$. Тогда число точек $x_0 \in \mathbb{F}_{q^m}$, для которых выполнено $r^{(i)}(x_0) = 0$ для всех $i \in [0, s-1]$, не превосходит величины $\lfloor \frac{\widetilde{d}}{s} \rfloor$. Следовательно, число точек $x_0 \in \mathbb{F}_{q^m}$, для которых $r^{(< s)}(x_0) \neq \mathbf{0}$, не меньше $\underline{d} = q^m - \lfloor \frac{\widetilde{d}}{s} \rfloor$. Снова воспользовавшись формулой для подсчета производной $r^{(i)}(x_0)$, заключаем, что число точек $\boldsymbol{z}_0 \in \mathbb{F}_q^m$, для которых $\widehat{f}^{(< s)}(\boldsymbol{z}_0) \neq \mathbf{0}$, не меньше \underline{d} .

§ 3. Доказательства вспомогательных утверждений

Доказательство предложения 3. Сначала докажем существование такого многочлена. Рассмотрим многочлен g(T), полученный из f(T) в качестве остатка при делении на $(T^q - T)^s$. Его степень очевидно меньше sq. Отметим, что

$$g(T) = f(T) + h(T)(T^q - T)^s$$

для некоторого $h(T) \in \mathbb{F}_q[T]$. Из свойств производных Хассе (предложения 1 и 2) следует, что вычисление $g^{(i)}(t_0)$ в точке $t_0 \in \mathbb{F}_q$ для всякого $i \in [0,s-1]$ эквивалентно вычислению $f^{(i)}(t_0)$, поскольку $t_0^q = t_0$ для всех $t_0 \in \mathbb{F}_q$.

Предположим, что существует другой многочлен $\widehat{g}(t)$ степени не выше sq-1, такой что $\widehat{g}(T)\equiv_s f(T)$. Тогда рассмотрим многочлен $r(T):=\widehat{g}(T)-g(T)$, степень которого не выше sq-1. Из определения производной Хассе (см. определение 1) для всякого $t_0\in\mathbb{F}_q$ имеем

$$r(T) = r(t_0 + (T - t_0)) = \sum_{i \in \mathbb{N}} r^{(i)}(t_0)(T - t_0)^i.$$

С другой стороны, из линейности производной Хассе (предложение 1) следует, что

$$r^{(i)}(t_0) = \widehat{g}^{(i)}(t_0) - g^{(i)}(t_0) = 0$$
 для $i \in [0, s-1]$.

Следовательно, $(T-t_0)^s \mid r(T)$ для всякого $t_0 \in \mathbb{F}_q$, откуда $(T^q-T)^s \mid r(X)$, поскольку

$$\prod_{t_0 \in \mathbb{F}_q} (T - t_0) = T^q - T.$$

Наконец, пусть число s равно степени числа p. Тогда

$$(T^q - T)^s = \sum_{i=0}^s (-1)^{s-j} \binom{s}{j} T^{qj+(s-j)}.$$

В силу предложения 4 имеем, что $\binom{s}{j}\equiv 0\pmod{p}$ для $j\in[1,s-1].$ Это означает, что $(T^q-T)^s=T^{qs}+(-T)^s$. \blacktriangle

Доказательство предложения 5. Пусть $\lambda \in \mathbb{F}_q$, а $z(\boldsymbol{X}) \in V_q^s(d,m)$. В силу линейности

$$(f + \lambda z) \circ \gamma(T) = f \circ \gamma(T) + \lambda(z \circ \gamma(T))$$

достаточно рассматривать лишь многочлен $f(\boldsymbol{X})$, который является в точности $(m,d)_q^s$ -хорошим мономом $\boldsymbol{X}^{\boldsymbol{v}},\ \boldsymbol{v}\in\mathbb{N}^m$. Распишем получившийся многочлен g(T) от одной переменной в таком случае:

$$\begin{split} g(T) &= \prod_{j=1}^m (a_j T + b_j)^{v_j} = \prod_{j=1}^m \sum_{e_j=0}^{v_j} \binom{v_j}{e_j} a_j^{e_j} b_j^{v_j - e_j} T^{e_j} = \\ &= \sum_{e_1 \in [0, v_1], \dots, e_m \in [0, v_m]} T^{\sum\limits_{j=1}^m e_j} \prod_{j=1}^m \binom{v_j}{e_j} \alpha_j^{e_j} b_j^{v_j - e_j}. \end{split}$$

Далее воспользуемся предложением 4, из которого следует, что коэффициент при $T^{\sum\limits_{j=1}^m e_j}$ может быть отличен от нуля только в том случае, когда для вектора $e=(e_1,\ldots,e_m)$ выполнено отношение порядка $e\leqslant_p v$. Поскольку моном X^v является $(m,d)_q^s$ -хорошим, то выполнено неравенство $\operatorname{Mod}_q^s(\operatorname{deg}(e)) < d$ для интересующих нас векторов e. Наконец, воспользуемся наблюдением (1). Получаем, что многочлен h(T), s-эквивалентный g(T), имеет степень не выше $\operatorname{Mod}_q^s(\operatorname{deg}(e))$, где $e\leqslant_p v$. \blacktriangle

СПИСОК ЛИТЕРАТУРЫ

- 1. Hirschfeld J.W.P., Korchmáros G., Torres F. Algebraic Curves over a Finite Field. Princeton: Princeton Univ. Press, 2008.
- 2. Лидл Р., Нидеррайтер Г. Конечные поля. Т. 1. М.: Мир, 1988.
- 3. Lucas E. Théorie des fonctions numériques simplement périodiques // Amer. J. Math. 1878. V. 1. Nº 4. P. 289-321. https://doi.org/10.2307/2369373
- Guo A., Kopparty S., Sudan M. New Affine-Invariant Codes from Lifting // Proc. 4th Conf. on Innovations in Theoretical Computer Science (ITCS'13). Berkeley, CA, USA. Jan. 9–12, 2013. P. 529–540. https://doi.org/10.1145/2422436.2422494
- 5. *Розенблюм М.Ю., Цфасман М.А.* Коды для *m*-метрики // Пробл. передачи информ. 1997. Т. 33. № 1. С. 55–63. http://mi.mathnet.ru/ppi359
- Kopparty S., Saraf S., Yekhanin S. High-Rate Codes with Sublinear-Time Decoding // J. ACM. 2014. V. 61. № 5. Art. 28. P. 1–20. https://doi.org/10.1145/2629416
- 7. Holzbaur L., Polyanskaya R., Polyanskii N., Vorobyev I., Yaakobi E. Lifted Reed-Solomon Codes and Lifted Multiplicity Codes // IEEE Trans. Inform. Theory. 2021. V. 67. № 12. P. 8051-8069. https://doi.org/10.1109/TIT.2021.3116520

- Wu L. Revisiting the Multiplicity Codes: A New Class of High-Rate Locally Correctable Codes // Proc. 53rd Annu. Allerton Conf. on Communication, Control, and Computing. Monticello, IL, USA. Sept. 29 – Oct. 2, 2015. P. 509–513. https://doi.org/10.1109/ ALLERTON.2015.7447047
- 9. Li R., Wootters M. Lifted Multiplicity Codes and the Disjoint Repair Group Property // IEEE Trans. Inform. Theory. 2021. V. 67. № 2. P. 716–725. https://doi.org/10.1109/ TIT.2020.3034962
- 10. Nielsen R.R. List Decoding of Linear Block Codes. Ph.D. Thesis. Dept. Math., Tech. Univ. Denmark, Lyngby, Denmark, Sept. 2001. Available from https://orbit.dtu.dk/en/publications/list-decoding-of-linear-block-codes.
- 11. Kopparty S. List-Decoding Multiplicity Codes // Theory Comput. 2015. V. 11. Art. 5. P. 149-182. https://doi.org/10.4086/toc.2015.v011a005
- 12. Guruswami V., Wang C. Optimal Rate List Decoding via Derivative Codes // Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Proc. 14th Int. Workshop, APPROX'2011, and 15th Int. Workshop, RANDOM'2011. Princeton, NJ, USA. Aug. 17–19, 2011). Lect. Notes Comput. Sci. V. 6845. Berlin: Springer, 2011. P. 593–604. https://doi.org/10.1007/978-3-642-22935-0_50
- 13. Guo A., Kopparty S. List-Decoding Algorithms for Lifted Codes // IEEE Trans. Inform. Theory. 2016. V. 62. № 5. P. 2719–2725. https://doi.org/10.1109/TIT.2016.2538766
- Kopparty S. Some Remarks on Multiplicity Codes // Discrete Geometry and Algebraic Combinatorics (AMS Special Session on Discrete Geometry and Algebraic Combinatorics. San Diego, CA, USA. Jan. 11, 2013). Providence, RI: Amer. Math. Soc., 2014. P. 155–176.

Полянский Никита Андреевич Сколковский институт науки и технологий (Сколтех) nikita.polyansky@gmail.com Поступила в редакцию 05.03.2021 После доработки 17.11.2021 Принята к публикации 23.11.2021