ПРОБЛЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ

Том 58 2022 Вып. 1

УДК 621.391.1:519.725:512.647.2

© 2022 г. С. Шарма¹, А. Шарма²

МУЛЬТИСКРУЧЕННЫЕ АДДИТИВНЫЕ КОДЫ С ДОПОЛНИТЕЛЬНЫМИ ДВОЙСТВЕННЫМИ НАД КОНЕЧНЫМИ ПОЛЯМИ

Мультискрученные (МС) аддитивные коды над конечными полями образуют важный класс аддитивных кодов, обобщающий констациклические аддитивные коды. Изучается специальный класс аддитивных МС-кодов над конечными полями, а именно аддитивные МС-коды с дополнительными двойственными кодами относительно обычной билинейной, эрмитовой и *-формы следа. Также выводится необходимое и достаточное условие, при котором аддитивный МС-код над конечным полем имеет дополнительный двойственный. Затем приводятся явные формулы для числа всех аддитивных МС-кодов с дополнительными двойственными над конечными полями относительно вышеупомянутых билинейных форм следа. Результаты проиллюстрированы несколькими примерами.

Ключевые слова: констациклические аддитивные коды, разложение Витта, инлекс Витта.

DOI: 10.31857/S055529232201003X

§ 1. Введение

Линейные коды над конечными полями – наиболее хорошо изученный класс кодов, исправляющих ошибки. Линейный код, имеющий тривиальное пересечение со своим двойственным кодом, называется линейным кодом с дополнительным двойственным (или LCD-кодом – linear complementary-dual code). LCD-коды над конечными полями были введены в [1], где была дана алгебраическая характеризация LCD-кодов над конечными полями и показано, что существуют асимптотически хорошие LCD-коды. Там же было показано, что LCD-коды дают оптимальное решение задачи линейного кодирования для двоичного суммирующего канала с двумя пользователями. Позже в [2] было получено необходимое и достаточное условие, при котором циклический код над конечным полем является LCD-кодом. В [3], используя спектры размерностей остовов (hulls) линейных кодов, было показано, что LCD-коды над конечными полями лежат на асимптотической границе Варшамова— Гилберта. В [4] были построены LCD-коды с помощью ортогональных матриц, комбинаторных дизайнов, самодвойственных кодов и отображений Грея из кодов над семейством колец $\mathbb{F}_2[u_1,u_2,\ldots,u_k]/\langle u_i^2,u_iu_i-u_iu_i\rangle$. Там же была получена граница линейного программирования на наибольший размер LCD-кода заданной длины с заданным минимальным расстоянием и представлена таблица нижних границ для этой комбинаторной функции для умеренных значений параметров. Помимо применения LCD-кодов в системах связи и хранения данных, LCD-коды недавно нашли

 $^{^{1}}$ Работа выполнена при финансовой поддержке Комиссии по университетским грантам (UGC) Индии.

 $^{^2}$ Работа выполнена при финансовой поддержке фонда iHub-Anubhuti-IIITD в рамках программы NM-ICPS Министерства науки и технологии Индии (номер гранта IHUB Anubhuti/Project Grant/12).

применение в криптографии. В [5] было показано, что LCD-коды могут быть полезны для защиты конфиденциальной информации от атак по сторонним каналам (SCA) и по привнесенным помехам (FIA). Также там было представлено несколько конструкций LCD-кодов над конечными полями, основанных на расширении кодов Рила—Соломона.

Как естественное обобщение линейных кодов в другом направлении в [6] были введены и изучены аддитивные коды над конечным полем \mathbb{F}_4 . Там же были рассмотрены их двойственные коды относительно скалярного произведения, заданного функцией следа, и предложен метод построения квантовых кодов, исправляющих ошибки, из самоортогональных аддитивных кодов над \mathbb{F}_4 . Затем в [7,8] изучались аддитивные коды над произвольными конечными полями. Позднее в [9, 10] были исследованы циклические аддитивные коды длины n над \mathbb{F}_4 и найдено каноническое разложение для таких кодов. Также в [9,10] изучались их двойственные коды относительно скалярного произведения с функцией следа на \mathbb{F}_4^n и было найдено число всех самоортогональных и самодвойственных циклических аддитивных кодов над \mathbb{F}_4 . Обобщением этой работы явилась работа [11], в которой изучались циклические аддитивные коды длины n над \mathbb{F}_{q^t} , где $t\geqslant 2$ — целое число, q — степень простого, \mathbb{F}_{q^t} — конечное поле порядка q^t , а n — положительное целое число, такое что HOД(n,q) = 1. Число всех таких кодов было найдено с помощью полученного канонического разложения для этих кодов. Там же были изучены их двойственные коды и найдено число всех самоортогональных и самодвойственных циклических аддитивных кодов над \mathbb{F}_{a^t} относительно обыкновенной и эрмитовой билинейных форм следа на $\mathbb{F}_{q^t}^n$. Позже в [12] была введена и изучена новая билинейная форма следа на $\mathbb{F}_{a^t}^n$, названная *-формой следа, а также исследованы двойственные коды циклических аддитивных кодов и найдено число всех самоортогональных и самодвойственных циклических аддитивных кодов над \mathbb{F}_{σ^t} относительно билинейной *-формы следа. В другой работе тех же авторов [13] были изучены циклические аддитивные коды длины n с дополнительными двойственными над \mathbb{F}_{a^t} относительно обычной билинейной, эрмитовой и *-формы следа и приведены явные формулы для числа кодов этих трех классов. В последующей работе [14] циклические аддитивные коды над \mathbb{F}_{q^t} были обобщены далее – изучались констациклические аддитивные коды длины n над \mathbb{F}_{q^t} , где t – простое число и HOД(n,q)=1. Были также изучены их двойственные коды относительно обычной билинейной формы следа на $\mathbb{F}_{a^t}^n.$ В той же работе были получены необходимые и достаточные условия для того, чтобы негациклический аддитивный код длины n над \mathbb{F}_{q^2} был самодвойственным или самоортогональным. Далее, для любого целого числа $t\geqslant 2$ (не обязательно степени простого) в [15] была тщательно исследована алгебраическая структура констациклических аддитивных кодов длины n над \mathbb{F}_{a^t} , и число всех таких кодов было найдено с помощью полученного там канонического разложения. Кроме того, были изучены их двойственные коды и даны явные формулы для числа всех констациклических аддитивных самоортогональных, самодвойственных кодов и кодов с дополнительными двойственными длины n над \mathbb{F}_{q^t} относительно обычной билинейной, эрмитовой и *-формы следа на $\mathbb{F}_{a^t}^n$. Как обобщение констациклических аддитивных кодов в недавней работе [16] были введены и исследованы аддитивные мультискрученные (multi-twisted) коды (MC-коды) над конечными полями. Были также изучены их двойственные коды и получены явные выражения для числа всех самоортогональных и самодвойственных аддитивных MC-кодов длины n над \mathbb{F}_{q^t} относительно обычной билинейной, эрмитовой и *-формы следа на $\mathbb{F}_{a^t}^n$.

Основной целью настоящей статьи является изучение аддитивных МС-кодов с дополнительными двойственными над конечными полями относительно следующих билинейных форм следа: обычной, эрмитовой и *-формы. Более точно, будет выведено необходимое и достаточное условие, при котором аддитивный МС-код над конечным полем имеет дополнительный двойственный. Будут также получены явные формулы для числа всех аддитивных MC-кодов над конечными полями с дополнительными двойственными относительно вышеуказанных билинейных форм следа.

Статья имеет следующую структуру. В $\S 2$ приведены некоторые предварительные сведения, необходимые для вывода основных результатов. В $\S 3$ выведено необходимое и достаточное условие, при котором аддитивный МС-код над конечным полем имеет дополнительный двойственный (теорема 3). В $\S 4$ получены явные формулы для числа всех аддитивных МС-кодов над конечными полями относительно обычной билинейной, эрмитовой и *-формы следа (теорема 4), а также приведены примеры, иллюстрирующие эти результаты. В $\S 5$ вкратце подведены итоги и сформулирован интересный открытый вопрос в данном направлении.

§ 2. Предварительные сведения

В этом параграфе вводятся обозначения и приводятся некоторые базовые определения и факты, необходимые для вывода основных результатов. Всюду далее $t\geqslant 2$ – целое число, q – степень простого числа p, а через \mathbb{F}_q и \mathbb{F}_{q^t} обозначаются конечные поля порядков q и q^t соответственно. Пусть m_1,m_2,\ldots,m_ℓ – натуральные числа, взаимно простые с q, и пусть $n=m_1+m_2+\ldots+m_\ell$. Зафиксируем множество $\Omega=(\omega_1,\omega_2,\ldots,\omega_\ell)$, где $\omega_1,\omega_2,\ldots,\omega_\ell$ – ненулевые элементы поля \mathbb{F}_q . Для каждого $1\leqslant i\leqslant \ell$ определим факторкольцо $\mathcal{V}_i=\mathbb{F}_{q^t}[x]/\langle x^{m_i}-\omega_i\rangle$.

Тогда множество $\mathcal{V}=\prod_{i=1}^\iota \mathcal{V}_i$ можно рассматривать как $\mathbb{F}_q[x]$ -модуль относительно операций покомпонентного сложения и покомпонентного умножения на скаляры, который будем называть Ω -мультискрученным модулем (Ω -МС-модулем). Тогда Ω -мультискрученный аддитивный код (аддитивный Ω -МС-код) \mathcal{C} длины n с длинами блоков (m_1,m_2,\ldots,m_ℓ) над \mathbb{F}_{q^t} определяется [16] как $\mathbb{F}_q[x]$ -подмодуль модуля \mathcal{V} .

Всюду далее в качестве элементов факторкольца $\mathbb{F}_{\mathfrak{Q}}[x]/\langle F(x)\rangle$ будут рассматриваться их представители в $\mathbb{F}_{\mathfrak{Q}}[x]$ степени строго меньшей, чем степень F(x), и их сложение и умножение будет выполняться по модулю F(x), где $\mathbb{F}_{\mathfrak{Q}}$ – конечное поле порядка \mathfrak{Q} , а F(x) – непостоянный многочлен из $\mathbb{F}_{\mathfrak{Q}}[x]$. При этом вектор $\alpha \in \mathbb{F}_q^n$ будем записывать в виде $(\alpha_{1,0},\alpha_{1,1},\ldots,\alpha_{1,m_1-1};\ldots;\alpha_{\ell,0},\alpha_{\ell,1},\ldots,\alpha_{\ell,m_\ell-1})$ и будем отождествлять его с элементом $\alpha(x)=(\alpha_1(x),\alpha_2(x),\ldots,\alpha_\ell(x))\in\mathcal{V}$, где $\alpha_i(x)=\alpha_{i,0}+\alpha_{i,1}x+\ldots+\alpha_{i,m_i-1}x^{m_i-1}\in\mathcal{V}_i$ для $1\leqslant i\leqslant \ell$. Это отображение из \mathbb{F}_q^n в \mathcal{V} является изоморфизмом векторных пространств. При таком отождествлении Ω -аддитивный МС-код \mathcal{C} можно рассматривать как \mathbb{F}_q -линейное подпространство пространства \mathbb{F}_q^n (или аддитивный код длины n над \mathbb{F}_{q^t}), удовлетворяющее следующему свойству: если $c=(c_{1,0},c_{1,1},\ldots,c_{1,m_1-1};c_{2,0},c_{2,1},\ldots,c_{2,m_2-1};\ldots;c_{\ell,0},c_{\ell,1},\ldots,c_{\ell,m_\ell-1})$ – кодовое слово кода \mathcal{C} , то его Ω -мультискрученный сдвиг (Ω -МС-сдвиг)

$$T_{\Omega}(c) = (\omega_1 c_{1,m_1-1}, c_{1,0}, \dots, c_{1,m_1-2}; \omega_2 c_{2,m_2-1}, c_{2,0}, \dots, c_{2,m_2-2}; \dots; \omega_\ell c_{\ell,m_\ell-1}, c_{\ell,0}, \dots, c_{\ell,m_\ell-2})$$

также является кодовым словом кода \mathcal{C} . Следует отметить, что аддитивные Ω -МС-коды над \mathbb{F}_{a^t} совпадают с

- ω_1 -констациклическими аддитивными кодами над \mathbb{F}_{q^t} при $\ell=1$ (см. [14,15]);
- циклическими аддитивными кодами над \mathbb{F}_{q^t} при $\ell=1$ и $\omega_1=1$ (см. [11–13]);
- негациклическими аддитивными кодами над \mathbb{F}_{q^t} при $\ell=1$ и $\omega_1=-1$ (см. [15]).

Для дальнейшего изучения алгебраической структуры аддитивных Ω -MC-кодов длины n над \mathbb{F}_{q^t} обозначим через $g_1(x),g_2(x),\ldots,g_r(x)$ все различные неприводимые множители многочленов $x^{m_1}-\omega_1,x^{m_2}-\omega_2,\ldots,x^{m_\ell}-\omega_\ell$ в кольце $\mathbb{F}_q[x]$. Для $1\leqslant u\leqslant r$

и $1\leqslant i\leqslant \ell$ положим

$$arepsilon_{u,i} = egin{cases} 1, & \text{если } g_u(x) \text{ делит } x^{m_i} - \omega_i \text{ в } \mathbb{F}_q[x], \\ 0 & \text{в противном случае.} \end{cases}$$

Из китайской теоремы об остатках получаем, что $\mathbb{F}_q[x]/\langle x^{m_i} - \omega_i \rangle \simeq \bigoplus_{u=1}^r \varepsilon_{u,i} \mathcal{F}_u$ для $1 \leqslant i \leqslant \ell$, где $\mathcal{F}_u = \mathbb{F}_q[x]/\langle g_u(x) \rangle \simeq \mathbb{F}_{q^{d_u}}, \ d_u = \deg g_u(x)$ для $1 \leqslant u \leqslant r$. Согласно [11, лемма 1] можно далее разложить многочлен $g_u(x)$ на неприводимые многочлены над \mathbb{F}_{q^t} в виде $g_u(x) = g_{u,0}(x)g_{u,1}(x)\dots g_{u,a_u-1}(x)$, где $a_u = \text{HOД}(t,d_u)$, а $g_{u,j}(x)$ – неприводимый многочлен над \mathbb{F}_{q^t} степени $\deg g_{u,j}(x) = d_u/a_u = D_u$ для $0 \leqslant j \leqslant a_u - 1$. Снова применяя китайскую теорему об остатках, получаем, что $\mathcal{V}_i \simeq \bigoplus_{u=1}^r \bigoplus_{j=0}^{a_u-1} \varepsilon_{u,i} \mathcal{F}_{u,j}$ для каждого i, где $\mathcal{F}_{u,j} = \mathbb{F}_{q^t}[x]/\langle g_{u,j}(x) \rangle \simeq \mathbb{F}_{q^{tD_u}}$ для $1 \leqslant u \leqslant r$ и $0 \leqslant j \leqslant a_u - 1$. В действительности для $1 \leqslant i \leqslant \ell$ соответствующий изоморфизм колец $\psi_i \colon \mathcal{V}_i \to \bigoplus_{u=1}^r \bigoplus_{j=0}^{a_u-1} \varepsilon_{u,i} \mathcal{F}_{u,j}$ задается как

$$\psi_i(\alpha_i(x)) = \left(\varepsilon_{1,i}\alpha_i(x) + \langle g_{1,0}(x)\rangle, \varepsilon_{1,i}\alpha_i(x) + \langle g_{1,1}(x)\rangle, \dots, \varepsilon_{1,i}\alpha_i(x) + \langle g_{1,a_1-1}(x)\rangle, \dots, \varepsilon_{r,i}\alpha_i(x) + \langle g_{r,0}(x)\rangle, \varepsilon_{r,i}\alpha_i(x) + \langle g_{r,1}(x)\rangle, \dots, \varepsilon_{r,i}\alpha_i(x) + \langle g_{r,a_r-1}(x)\rangle\right)$$
 для любого $\alpha_i(x) \in \mathcal{V}_i$.

Из этого следует, что

$$\mathcal{V} \simeq \bigoplus_{u=1}^{r} \bigoplus_{j=0}^{a_{u}-1} (\underbrace{\varepsilon_{u,1}\mathcal{F}_{u,j}, \varepsilon_{u,2}\mathcal{F}_{u,j}, \ldots, \varepsilon_{u,\ell}\mathcal{F}_{u,j}}_{\mathcal{G}_{u,j}}).$$

Положим $\mathcal{G} = \bigoplus_{u=1}^r \mathcal{G}_u$, где $\mathcal{G}_u = \bigoplus_{j=0}^{a_u-1} \mathcal{G}_{u,j}$ для $1 \leqslant u \leqslant r$. Тогда соответствующий изоморфизм колец $\psi \colon \mathcal{V} \to \mathcal{G}$ задается как

$$\psi(\alpha_1(x),\alpha_2(x),\ldots,\alpha_\ell(x))=\mathcal{A}=(\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_r)$$
 для любого $(\alpha_1(x),\alpha_2(x),\ldots,\alpha_\ell(x))\in\mathcal{V},$

где $\mathcal{A}_{u} = (\mathcal{A}_{u,0}, \mathcal{A}_{u,1}, \dots, \mathcal{A}_{u,a_{u}-1}) \in \mathcal{G}_{u}$, а $\mathcal{A}_{u,j} \in \mathcal{G}_{u,j}$ имеет вид $\mathcal{A}_{u,j} = (\mathcal{A}_{u,j}^{(1)}, \mathcal{A}_{u,j}^{(2)}, \dots, \mathcal{A}_{u,j}^{(\ell)})$, где $\mathcal{A}_{u,j}^{(i)} := \varepsilon_{u,i}\alpha_{i}(x) + \langle g_{u,j}(x) \rangle \in \varepsilon_{u,i}\mathcal{F}_{u,j}$ для любых i, u и j. Далее, для $1 \leq u \leq r$ положим $\varepsilon_{u} = \sum_{i=1}^{\ell} \varepsilon_{u,i}$. Заметим, что множество \mathcal{G}_{u} является $(\varepsilon_{u}t)$ -мерным векторным пространством над \mathcal{F}_{u} относительно покомпонентного сложения и покомпонентного умножения на скаляры. Теперь приведем теорему 2.2 из работы [16], описывающую каноническое разложение всякого Ω -аддитивного МС-кода длины n над \mathbb{F}_{a^t} .

Теорема 1 [16]. Справедливы следующие утверждения.

(a) Пусть $C - \Omega$ -аддитивный MC-код длины n над \mathbb{F}_{q^t} . Для $1 \leq u \leq r$ положим $C_u = C \cap G_u$. Тогда для каждого u множество C_u является \mathcal{F}_u -линейным подпространством пространства G_u , а код C имеет единственное разложение в прямую сумму $C = \bigoplus_{u=1}^r C_u$. (Подпространства C_1, C_2, \ldots, C_r называются компонентами кода C.)

(b) И наоборот, если \mathcal{D}_u – \mathcal{F}_u -линейное подпространство пространства \mathcal{G}_u для $1\leqslant \leqslant u\leqslant r$ и $\mathcal{D}=\sum\limits_{u=1}^r\mathcal{D}_u$, то $\mathcal{D}=\bigoplus\limits_{u=1}^r\mathcal{D}_u$ и множество \mathcal{D} является Ω -аддитивным МС-кодом длины n над \mathbb{F}_{q^t} .

В [16, §§ 2, 3] изучались двойственные коды аддитивных Ω -МС-кодов длины n над \mathbb{F}_{q^t} относительно следующих билинейных форм следа: обычной, эрмитовой и *-формы следа на $\mathbb{F}_{q^t}^n$, которые определяются следующим образом.

Обычная билинейная форма следа – это отображение $\langle \cdot\,,\cdot \rangle_0\colon \mathbb{F}_{q^t}^n\times \mathbb{F}_{q^t}^n \to \mathbb{F}_q,$ задаваемое формулой

$$\langle \alpha, \beta \rangle_0 = \sum_{i=1}^{\ell} \sum_{h=0}^{m_i-1} \operatorname{Tr}_{q^t, q}(\alpha_{i,h} \beta_{i,h})$$

для любых $\alpha, \beta \in \mathbb{F}_{q^t}^n$, где $\mathrm{Tr}_{q^t,q}$ – отображение следа из \mathbb{F}_{q^t} в \mathbb{F}_q . Как указано в [11, лемма 5], эта билинейная форма следа $\langle \cdot \, , \cdot \rangle_0$ является невырожденной симметрической билинейной формой на $\mathbb{F}_{q^t}^n$.

Для определения эрмитовой билинейной форм следа пусть $t\geqslant 2$ – четное целое, и пусть $t=2^aU$, где $a\geqslant 1$, а U – нечетное целое. Нетрудно видеть, что существует ненулевой элемент $\gamma\in\mathbb{F}_{q^{2^a}}$, такой что $\gamma+\gamma^{q^{2^{a-1}}}=0$. Тогда эрмитова билинейная форма следа – это отображение $\langle\cdot\,,\cdot\,\rangle_{\gamma}\colon\mathbb{F}_{q^t}^n\times\mathbb{F}_{q^t}^n\to\mathbb{F}_q$, задаваемое формулой

$$\langle \alpha, \beta \rangle_{\gamma} = \sum_{i=1}^{\ell} \sum_{h=0}^{m_i-1} \operatorname{Tr}_{q^t, q}(\gamma \alpha_{i, h} \beta_{i, h}^{q^{t/2}})$$

для любых $\alpha, \beta \in \mathbb{F}_{q^t}^n$. Как указано в [11, лемма 5], эрмитова билинейная форма следа $\langle \cdot \, , \cdot \rangle_{\gamma}$ является невырожденной рефлексивной неопределенной билинейной формой на $\mathbb{F}_{q^t}^n$.

Наконец, для определения билинейной *-формы следа пусть $t\geqslant 2$ – целое число, такое что $t\not\equiv 1\pmod p$. Тогда отображение $\varphi\colon \mathbb{F}_{q^t}\to \mathbb{F}_{q^t}$, задаваемое формулой $\varphi(a)=\sum\limits_{\lambda=1}^{t-1}a^{q^\lambda}=\mathrm{Tr}_{q^t,q}(a)-a$ для всех $a\in \mathbb{F}_{q^t}$, является \mathbb{F}_q -линейным изоморфизмом векторных пространств. Билинейная *-форма следа — это отображение $\langle\cdot\,,\cdot\rangle_*:\mathbb{F}_{q^t}^n\times \mathbb{F}_{q^t}^n\to \mathbb{F}_q$, задаваемое формулой

$$\langle \alpha, \beta \rangle_* = \sum_{i=1}^{\ell} \sum_{h=0}^{m_i-1} \operatorname{Tr}_{q^t, q}(\alpha_{i,h} \varphi(\beta_{i,h}))$$

для любых $\alpha, \beta \in \mathbb{F}_{q^t}^n$. Согласно [12, лемма 3.2] билинейная *-форма следа $\langle \cdot \, , \cdot \rangle_*$ является невырожденной симметрической билинейной формой на $\mathbb{F}_{q^t}^n$, причем неопределенной в случае четного q.

Всюду далее будем использовать обозначение $\delta \in \{0,*,\gamma\}$ и определим \mathbb{T}_{δ} как множество (i) всех целых чисел $t \geqslant 2$, если $\delta = 0$, (ii) всех целых $t \geqslant 2$, таких что $t \not\equiv 1 \pmod{p}$, если $\delta = *$, и (iii) всех четных целых $t \geqslant 2$, если $\delta = \gamma$. Далее, если $\mathcal{C} \subseteq \mathbb{F}_{q^t}^n$ — Ω -аддитивный МС-код длины n над \mathbb{F}_{q^t} , то его δ -двойственный код $\mathcal{C}^{\perp_{\delta}}$ определяется как $\mathcal{C}^{\perp_{\delta}} = \{v \in \mathbb{F}_{q^t}^n : \langle v, c \rangle_{\delta} = 0$ для всех $c \in \mathcal{C}\}$. Можно показать, что δ -двойственный код $\mathcal{C}^{\perp_{\delta}}$ является Ω' -аддитивным МС-кодом длины n над \mathbb{F}_{q^t} , где $\Omega' = (\omega_1^{-1}, \omega_2^{-1}, \dots, \omega_\ell^{-1})$. При этом Ω -аддитивный МС-код \mathcal{C} называется кодом, имеющим дополнительный δ -двойственный, где $\delta \in \{0, *, \gamma\}$, если он удовлетворяет соотношению $\mathcal{C} \cap \mathcal{C}^{\perp_{\delta}} = \{0\}$. Рассуждая как и выше, нетрудно пока-

зать, что δ -двойственный код $\mathcal{C}^{\perp_{\delta}}$ можно также рассматривать как $\mathbb{F}_q[x]$ -подмодуль Ω' -МС-модуля $\mathcal{V}' = \prod_{i=1}^{\ell} \mathcal{V}'_i$, где $\mathcal{V}'_i = \mathbb{F}_{q^t}[x]/\langle x^{m_i} - \omega_i^{-1} \rangle$ для $1 \leqslant i \leqslant \ell$.

Для дальнейшего изучения алгебраической структуры δ -двойственных кодов для аддитивных Ω -МС-кодов над \mathbb{F}_{q^t} заметим, что число $m=\mathrm{HOK}[m_1O(\omega_1),m_2O(\omega_2),\ldots,m_\ell O(\omega_\ell)]$ является наименьшим натуральным числом, таким что $\mathrm{HOK}[x^{m_1}-\omega_1,x^{m_2}-\omega_2,\ldots,x^{m_\ell}-\omega_\ell]$ делит x^m-1 в $\mathbb{F}_q[x]$, где через $O(\omega_i)$ обозначается мультипликативный порядок элемента $\omega_i,\,1\leqslant i\leqslant \ell$. Отметим, что $T^m_\Omega=I$, где I – тождественный оператор на \mathbb{F}^n_q . Теперь пусть $\mathfrak{Q}=q^e$, где $e\geqslant 1,\,\pi\in\{1,-1\}$, и пусть θ – целое число, такое что $0\leqslant \theta\leqslant e-1$. Далее, пусть $F(x)=\sum_{h=0}^{d-1}a_hx^h+x^d$ – нормированный делитель многочлена x^m-1 в $\mathbb{F}_{\mathfrak{Q}}[x]$. Тогда многочлен, взаимный с F(x), определяется как $F^\dagger(x)=a_0^{-1}\sum_{h=0}^{d-1}a_hx^{d-h}+a_0^{-1}$. Кроме того, определим $\widehat{F}(x)=\sum_{h=0}^{d-1}a_h^\theta x^h+x^d$, если $\pi=1$, и $\widehat{F}(x)=a_0^{-q^\theta}\sum_{h=0}^{d-1}a_h^\theta x^{d-h}+a_0^{-q^\theta}$, если $\pi=-1$. Тогда отображение $\tau_{q^\theta,\pi}\colon \mathbb{F}_{\mathfrak{Q}}[x]/\langle F(x)\rangle \to \mathbb{F}_{\mathfrak{Q}}[x]/\langle \widehat{F}(x)\rangle$, определяемое как

$$au_{q^{ heta},\pi}\Biggl(\sum_{h=0}^{d-1}f_hx^h\Biggr)=\sum_{h=0}^{d-1}f_h^{q^{ heta}}x^{\pi h}$$
 для любого $\sum_{h=0}^{d-1}f_hx^h\in\mathbb{F}_{\mathfrak{Q}}[x]/\langle F(x)
angle,$

является изоморфизмом колец, где $x^{-1}=x^{m-1}$ в $\mathbb{F}_{\Omega}[x]/\langle \widehat{F}(x) \rangle$, если $\pi=-1$. Более того, изоморфизм $\tau_{q^{e-\theta},\pi}$ является обратным к $\tau_{q^{\theta},\pi}$. В частности, если $F(x)=x^{m_i}-\omega_i^{-1}\in\mathbb{F}_{q^t}[x]$, то $\widehat{F}(x)=x^{m_i}-\omega_i$, где $1\leqslant i\leqslant \ell$. Кроме того, для $1\leqslant i\leqslant \ell$ изоморфизм $\tau_{1,-1}\colon \mathcal{V}_i'\to\mathcal{V}_i$ задается равенством $\tau_{1,-1}(\beta_i(x))=\beta_i(x^{-1})$ для любого $\beta_i(x)\in\mathcal{V}_i'$, где $x^{-1}=\omega_i^{-1}x^{m_i-1}\in\mathcal{V}_i$. Отображение $\tau_{1,-1}$ можно далее продолжить до отображения $\tau_{1,-1}\colon \mathcal{V}'\to\mathcal{V}$ как $\tau_{1,-1}(\beta(x))=(\tau_{1,-1}(\beta_1(x)),\tau_{1,-1}(\beta_2(x)),\ldots,\tau_{1,-1}(\beta_\ell(x)))$ для любого $\beta(x)=(\beta_1(x),\beta_2(x),\ldots,\beta_\ell(x))\in\mathcal{V}'$. С другой стороны, если $F(x)=x^m-1$, то $\widehat{F}(x)=x^m-1$, и поэтому отображение $\tau_{1,-1}\colon\mathbb{F}_q[x]/\langle x^m-1\rangle\to\mathbb{F}_q[x]/\langle x^m-1\rangle$ задается как

$$au_{1,-1}\Biggl(\sum_{h=0}^{m-1}a_hx^h\Biggr)=\sum_{h=0}^{m-1}a_hx^{-h}$$
 для любого $\sum_{h=0}^{m-1}a_hx^h\in \mathbb{F}_q[x]/\langle x^m-1
angle,$

где $x^{-1} = x^{m-1}$ в $\mathbb{F}_q[x]/\langle x^m - 1 \rangle$. Теперь для $\delta \in \{0, *, \gamma\}$ определим отображение $(\cdot, \cdot)_{\delta} \colon \mathcal{V} \times \mathcal{V}' \to \mathbb{F}_q[x]/\langle x^m - 1 \rangle$ следующим образом.

Для $\alpha(x) \in \mathcal{V}$ и $\beta(x) \in \mathcal{V}'$ положим

$$(\alpha(x),\beta(x))_{\delta} = \begin{cases} \sum\limits_{i=1}^{\ell}\sum\limits_{\mu=0}^{t-1}\omega_{i}\Big(\frac{x^{m}-1}{x^{m_{i}}-\omega_{i}}\Big)\tau_{q^{\mu},1}\Big(\alpha_{i}(x)\tau_{1,-1}(\beta_{i}(x))\Big) & \text{для } \delta=0, \\ \sum\limits_{i=1}^{\ell}\sum\limits_{\mu=0}^{t-1}\omega_{i}\Big(\frac{x^{m}-1}{x^{m_{i}}-\omega_{i}}\Big)\tau_{q^{\mu},1}\Big(\alpha_{i}(x)\sum\limits_{\lambda=1}^{t-1}\tau_{q^{\lambda},-1}(\beta_{i}(x))\Big) & \text{для } \delta=*, \\ \sum\limits_{i=1}^{\ell}\sum\limits_{\mu=0}^{t-1}\omega_{i}\Big(\frac{x^{m}-1}{x^{m_{i}}-\omega_{i}}\Big)\tau_{q^{\mu},1}\Big(\gamma\alpha_{i}(x)\tau_{q^{t/2},-1}(\beta_{i}(x))\Big) & \text{для } \delta=\gamma. \end{cases}$$

Здесь факторкольцо $\mathbb{F}_q[x]/\langle x^m-1\rangle$ рассматривается как $\mathbb{F}_q[x]$ -модуль. Согласно [16, лемма 2.2] для $\delta\in\{0,*,\gamma\}$ имеем $(\alpha(x),\beta(x))_\delta=\sum\limits_{k=0}^{m-1}\langle\alpha,T_{\Omega'}^k(\beta)\rangle_\delta x^k$ для $\alpha(x)\in\mathcal{V}$ и

 $\beta(x) \in \mathcal{V}'$, где через $T^k_{\Omega'}(\beta)$ обозначен k-кратный Ω' -МС-сдвиг вектора $\beta \in \mathbb{F}^n_{q^t}$. При этом отображение $(\cdot\,,\cdot)_\delta$ является рефлексивной невырожденной $\tau_{1,-1}$ -полуторалинейной формой на $\mathcal{V} \times \mathcal{V}'$ для $\delta \in \{0,*,\gamma\}$. Отображение $(\cdot\,,\cdot)_\delta$ эрмитово, когда $\delta \in \{0,*\}$, и антиэрмитово, когда $\delta = \gamma$. Кроме того, согласно [16, теорема 2.4], если $\mathcal{C} \subseteq \mathcal{V} - \Omega$ -аддитивный МС-код длины n над \mathbb{F}_{q^t} , то для $\delta \in \{0,*,\gamma\}$ соответствующий δ -двойственный код $\mathcal{C}^{\perp_\delta} \subseteq \mathcal{V}'$) кода \mathcal{C} является $\mathbb{F}_q[x]$ -подмодулем \mathcal{V}' и имеет вид $\mathcal{C}^{\perp_\delta} = \{\beta(x) \in \mathcal{V}' : (\alpha(x),\beta(x))_\delta = 0$ для всех $\alpha(x) \in \mathcal{C}\}$.

Снова применяя китайскую теорему об остатках и рассуждая как выше, получаем, что $\mathcal{V}'\simeq\mathcal{G}'=\bigoplus_{u=1}^r\mathcal{G}'_u$, где $\mathcal{G}'_u=\bigoplus_{j=0}^{a_u-1}\mathcal{G}'_{u,j}$, а $\mathcal{G}'_{u,j}=\left(\varepsilon_{u,1}\mathcal{F}^{\dagger}_{u,j},\varepsilon_{u,2}\mathcal{F}^{\dagger}_{u,j},\ldots,\varepsilon_{u,\ell}\mathcal{F}^{\dagger}_{u,j}\right)$, где $\mathcal{F}^{\dagger}_{u,j}=\mathbb{F}_{q^t}[x]/\langle g^{\dagger}_{u,j}(x)\rangle$ для $1\leqslant u\leqslant r$ и $0\leqslant j\leqslant a_u-1$. Поэтому всякий элемент $(\beta_1(x),\beta_2(x),\ldots,\beta_\ell(x))\in\mathcal{V}'$ отождествляется с элементом $\mathcal{B}=(\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_r)\in\mathcal{G}'$, где $\mathcal{B}_u=(\mathcal{B}_{u,0},\mathcal{B}_{u,1},\ldots,\mathcal{B}_{u,a_u-1})\in\mathcal{G}'_u$, а элемент $\mathcal{B}_{u,j}\in\mathcal{G}'_{u,j}$ имеет вид $\mathcal{B}_{u,j}=(\mathcal{B}^{(1)}_{u,j},\mathcal{B}^{(2)}_{u,j},\ldots,\mathcal{B}^{(\ell)}_{u,j})$, где $\mathcal{B}^{(i)}_{u,j}:=\varepsilon_{u,i}\beta_i(x)+\langle g^{\dagger}_{u,j}(x)\rangle\in\varepsilon_{u,i}\mathcal{F}^{\dagger}_{u,j}$ для $1\leqslant i\leqslant \ell, 1\leqslant u\leqslant r$ и $0\leqslant j\leqslant a_u-1$. При таких отождествлениях \mathcal{V} с \mathcal{G} и \mathcal{V}' с \mathcal{G}' пусть $[\cdot,\cdot]_{\delta}\colon \mathcal{G}\times\mathcal{G}'\to \bigoplus_{u=1}^r\mathcal{F}_u$ - отображение, соответствующее $\tau_{1,-1}$ -полуторалинейной форме $(\cdot,\cdot)_{\delta}$ для $\delta\in\{0,\gamma,*\}$, имеющее в трех случаях следующий вид соответственно:

$$[\mathcal{A}, \mathcal{B}]_{0} = \left(\sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{1,i} \sum_{j=0}^{a_{1}-1} \sum_{\mu=0}^{(t/a_{1})-1} \tau_{q^{\mu a_{1}+j},1}(\mathcal{A}_{1,a_{1}-j}^{(i)} \tau_{1,-1}(\mathcal{B}_{1,a_{1}-j}^{(i)})), \dots \right)$$

$$\dots, \sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{r,i} \sum_{j=0}^{a_{r}-1} \sum_{\mu=0}^{(t/a_{r})-1} \tau_{q^{\mu a_{r}+j},1}(\mathcal{A}_{r,a_{r}-j}^{(i)} \tau_{1,-1}(\mathcal{B}_{r,a_{r}-j}^{(i)})) \right),$$

$$[\mathcal{A}, \mathcal{B}]_{\gamma} = \left(\sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{1,i} \sum_{j=0}^{a_{1}-1} \sum_{\mu=0}^{(t/a_{1})-1} \tau_{q^{\mu a_{1}+j},1}(\gamma \mathcal{A}_{1,a_{1}-j}^{(i)} \tau_{q^{\frac{t}{2}},-1}(\mathcal{B}_{1,\frac{t}{2}-j}^{(i)})), \dots \right)$$

$$\dots, \sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{r,i} \sum_{j=0}^{a_{r}-1} \sum_{\mu=0}^{(t/a_{r})-1} \tau_{q^{\mu a_{r}+j},1}(\gamma \mathcal{A}_{r,a_{r}-j}^{(i)} \tau_{q^{\frac{t}{2}},-1}(\mathcal{B}_{r,\frac{t}{2}-j}^{(i)})) \right)$$

И

$$\begin{split} &[\mathcal{A},\mathcal{B}]_{*} = -[\mathcal{A},\mathcal{B}]_{0} + \left(\sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{1,i} \left(\left(\sum_{j=0}^{a_{1}-1} \sum_{\mu=0}^{(t/a_{1})-1} \tau_{q^{\mu a_{1}+j},1}(\mathcal{A}_{1,a_{1}-j}^{(i)})\right) \times \\ &\times \left(\sum_{j=0}^{a_{1}-1} \sum_{\sigma=0}^{(t/a_{1})-1} \tau_{q^{\sigma a_{1}+j},1}(\tau_{1,-1}(\mathcal{B}_{1,a_{1}-j}^{(i)}))\right) \right), \dots \\ &\dots, \sum_{i=1}^{\ell} \frac{m}{m_{i}} \varepsilon_{r,i} \left(\left(\sum_{j=0}^{a_{r}-1} \sum_{\mu=0}^{(t/a_{r})-1} \tau_{q^{\mu a_{r}+j},1}(\mathcal{A}_{r,a_{r}-j}^{(i)})\right) \right) \times \\ &\times \left(\sum_{j=0}^{a_{r}-1} \sum_{\sigma=0}^{(t/a_{r})-1} \tau_{q^{\sigma a_{r}+j},1}(\tau_{1,-1}(\mathcal{B}_{r,a_{r}-j}^{(i)}))\right) \right) \end{split}$$

для любых $\mathcal{A} \in \mathcal{G}$ и $\mathcal{B} \in \mathcal{G}'$. Согласно [16, леммы 2.3, 2.4] отображение $[\cdot\,,\cdot]_{\delta}$ является рефлексивной невырожденной эрмитовой $\tau_{1,-1}$ -полуторалинейной формой на $\mathcal{G} \times \mathcal{G}'$ при $\delta \in \{0,*\}$, а отображение $[\cdot\,,\cdot]_{\gamma}$ — рефлексивной невырожденной антиэрмитовой

 $au_{1,-1}$ -полуторалинейной формой на $\mathcal{G} \times \mathcal{G}'$. Ввиду вышесказанного δ -двойственный код $\mathcal{C}^{\perp_{\delta}}$ для Ω -аддитивного MC-кода $\mathcal{C}(\subseteq \mathcal{G})$ длины n над \mathbb{F}_{q^t} задается как

$$\mathcal{C}^{\perp_{\delta}} = \{ \mathcal{B} \in \mathcal{G}' : [\mathcal{A}, \mathcal{B}]_{\delta} = 0 \text{ для всех } \mathcal{A} \in \mathcal{C} \}.$$

Теперь без ограничения общности пусть $g_{1,0}(x), g_{1,1}(x), \ldots, g_{1,a_1-1}(x), \ldots, g_{e_1,0}(x), g_{e_1,1}(x), \ldots, g_{e_1,a_{e_1}-1}(x)$ — все различные возвратные (взаимные самим себе) неприводимые множители многочленов $x^{m_1}-\omega_1, x^{m_2}-\omega_2, \ldots, x^{m_\ell}-\omega_\ell$ в кольце $\mathbb{F}_{q^t}[x], g_{e_1+1,0}(x), g_{e_1+1,0}^{\dagger}(x), g_{e_1+1,1}(x), g_{e_1+1,1}^{\dagger}(x), \ldots, g_{e_1+1,a_{e_1+1}-1}(x), g_{e_1+1,a_{e_1+1}-1}^{\dagger}(x), \ldots, g_{e_2,0}(x), g_{e_2,0}^{\dagger}(x), g_{e_2,1}^{\dagger}(x), \ldots, g_{e_2,a_{e_2}-1}(x), g_{e_2,a_{e_2}-1}^{\dagger}(x)$ — неприводимые множители, образующие взаимные пары, а $g_{e_2+1,0}(x), g_{e_2+1,1}(x), \ldots, g_{e_2+1,a_{e_2+1}-1}(x), \ldots, g_{e_3,0}(x), g_{e_3,1}(x), \ldots, g_{e_3,a_{e_3}-1}(x)$ — все остальные неприводимые множители этих многочленов. Заметим, что $r=e_2+e_3-e_1$.

Далее, для $e_1 + 1 \leqslant w \leqslant e_2$ и $1 \leqslant i \leqslant \ell$ положим

$$\varepsilon_{w,i}^\dagger = \begin{cases} 1, & \text{если } g_{w,j}^\dagger(x) \mid (x^{m_i} - \omega_i) \text{ в } \mathbb{F}_{q^t}[x] \text{ для некоторого } j, \\ 0 & \text{в противном случае.} \end{cases}$$

Пусть $\mathcal{I}_w = \{i: 1 \leqslant i \leqslant \ell, \ \varepsilon_{w,i} = \varepsilon_{w,i}^{\dagger} \}$ и $\mathcal{I}_w' = \{i: 1 \leqslant i \leqslant \ell, \ \varepsilon_{w,i} \neq \varepsilon_{w,i}^{\dagger} \}$. Заметим, что тогда $\{1,2,\ldots,\ell\} = \mathcal{I}_w \cup \mathcal{I}_w'$ (несвязное объединение). Положим $\eta_w = \sum_{i \in \mathcal{I}_w} \varepsilon_{w,i}$, $\varrho_w = \sum_{i \in \mathcal{I}_w} \varepsilon_{w,i}$ и $\tau_w = \sum_{i \in \mathcal{I}_w} \varepsilon_{w,i}^{\dagger}$ для $e_1 + 1 \leqslant w \leqslant e_2$. Тогда

$$\mathcal{G} = \left(igoplus_{
u=1}^{e_1} \mathcal{G}_
u
ight) \oplus \left(igoplus_{w=e_1+1}^{e_2} \left(\mathcal{G}_w \oplus \mathcal{G}_w^\dagger
ight)
ight) \oplus \left(igoplus_{s=e_2+1}^{e_3} \mathcal{G}_s
ight),$$

где \mathcal{G}_{ν} (соответственно, \mathcal{G}_{w} , $\mathcal{G}_{w}^{\dagger}$ и \mathcal{G}_{s}) – векторное пространство над \mathcal{F}_{ν} (соответственно, \mathcal{F}_{w} , $\mathcal{F}_{w}^{\dagger}$ и \mathcal{F}_{s}) для каждого ν (соответственно, w и s). Заметим также, что

$$\mathcal{G}' = \left(\bigoplus_{\nu=1}^{e_1} \mathcal{G}_{\nu}\right) \oplus \left(\bigoplus_{w=e_1+1}^{e_2} \left(\mathcal{H}_w \oplus \mathcal{H}_w^{\dagger}\right)\right) \oplus \left(\bigoplus_{s=e_2+1}^{e_3} \mathcal{G}_s^{\dagger}\right),$$

ветственно, $w \ u \ s$).

где \mathcal{G}_{ν} (соответственно, \mathcal{H}_{w} , $\mathcal{H}_{w}^{\dagger}$ и $\mathcal{G}_{s}^{\dagger}$) – векторное пространство над \mathcal{F}_{ν} (соответственно, \mathcal{F}_{w} , $\mathcal{F}_{w}^{\dagger}$ и $\mathcal{F}_{s}^{\dagger}$) для каждого ν (соответственно, w и s). Таким образом, справедлива следующая

Теорема 2 [16]. Пусть $C-\Omega$ -аддитивный MC-код длины n над \mathbb{F}_{q^t} . Тогда имеют место следующие разложения:

(a)
$$C = \left(\bigoplus_{\nu=1}^{e_1} C_{\nu}\right) \oplus \left(\bigoplus_{w=e_1+1}^{e_2} \left(C_w \oplus C_w^{\dagger}\right)\right) \oplus \left(\bigoplus_{s=e_2+1}^{e_3} C_s\right)$$
, где C_{ν} (соответственно, C_w , C_w^{\dagger} и C_s) – подпространство пространства \mathcal{G}_{ν} (соответственно, \mathcal{G}_w , \mathcal{G}_w^{\dagger} и \mathcal{G}_s) над \mathcal{F}_{ν} (соответственно, \mathcal{F}_w , \mathcal{F}_w^{\dagger} и \mathcal{F}_s) для каждого ν (соответственно, w и s);

(b) $\mathcal{C}^{\perp_{\delta}} = \left(\bigoplus_{\nu=1}^{e_1} \mathcal{C}_{\nu}^{\perp_{\delta}}\right) \oplus \left(\bigoplus_{w=e_1+1}^{e_2} \left(\mathcal{C}_{w}^{\dagger_{\perp_{\delta}}} \oplus \mathcal{C}_{w}^{\perp_{\delta}}\right)\right) \oplus \left(\bigoplus_{s=e_2+1}^{e_3} \mathcal{C}_{s}^{\perp_{\delta}}\right)$, где $\mathcal{C}_{\nu}^{\perp_{\delta}}$ (соответственно, $\mathcal{C}_{w}^{\perp_{\delta}}$, $\mathcal{C}_{w}^{\dagger_{\perp_{\delta}}}$ и $\mathcal{C}_{s}^{\perp_{\delta}}$) – ортогональное дополнение κ \mathcal{C}_{ν} (соответственно, \mathcal{C}_{w} , $\mathcal{C}_{w}^{\dagger}$ и \mathcal{C}_{s}) относительно полуторалинейной формы $[\cdot,\cdot]_{\delta}$, ограниченной на $\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}$ (соответственно, $\mathcal{H}_{w}^{\dagger} \times \mathcal{G}_{w}$, $\mathcal{H}_{w} \times \mathcal{G}_{w}^{\dagger}$ и $\mathcal{G}_{s}^{\dagger} \times \mathcal{G}_{s}$) для каждого ν (соот-

Подробнее об алгебраических структурах аддитивных Ω -МС-кодов над \mathbb{F}_{q^t} и их δ -двойственных кодов см. в [16, §§ 2, 3].

\S 3. Необходимое и достаточное условие, при котором Ω -аддитивный МС-код над \mathbb{F}_{σ^t} имеет дополнительный δ -двойственный

В следующей теореме выводится необходимое и достаточное условие, при котором Ω -аддитивный МС-код длины n над \mathbb{F}_{q^t} имеет дополнительный δ -двойственный, где $\delta \in \{0, *, \gamma\}$.

Теорема 3. Пусть $\Omega=(\omega_1,\omega_2,\ldots,\omega_\ell)$ фиксировано. Рассмотрим Ω -аддитивный MC-код

$$\mathcal{C} = \left(\bigoplus_{\nu=1}^{e_1} \mathcal{C}_{\nu}\right) \oplus \left(\bigoplus_{w=e_1+1}^{e_2} \left(\mathcal{C}_w \oplus \mathcal{C}_w^{\dagger}\right)\right) \oplus \left(\bigoplus_{s=e_2+1}^{e_3} \mathcal{C}_s\right)$$

длины n над \mathbb{F}_{q^t} . Для $\delta \in \{0, *, \gamma\}$ код \mathcal{C} имеет дополнительный δ -двойственный тогда и только тогда, когда выполнены следующие два условия:

- Для $1 \leqslant \nu \leqslant e_1$ пространство \mathcal{C}_{ν} является \mathcal{F}_{ν} -подпространством \mathcal{G}_{ν} , таким что $\mathcal{C}_{\nu} \cap \mathcal{C}_{\nu}^{\perp_{\delta}} = \{0\}$ (т.е. \mathcal{C}_{ν} невырожденное \mathcal{F}_{ν} -подпространство \mathcal{G}_{ν});
- Для $e_1 + 1 \leqslant w \leqslant e_2$ пространство \mathcal{C}_w является \mathcal{F}_w -подпространством \mathcal{G}_w , а \mathcal{C}_w^{\dagger} \mathcal{F}_w^{\dagger} -подпространством \mathcal{G}_w^{\dagger} , и при этом $\mathcal{C}_w \cap \mathcal{C}_w^{\dagger \perp \delta} = \{0\}$ и $\mathcal{C}_w^{\dagger} \cap \mathcal{C}_w^{\perp \delta} = \{0\}$.

Как следствие, общее число $\mathfrak D$ различных аддитивных Ω -MC-кодов длины n над $\mathbb F_{q^t}$, имеющих дополнительные δ -двойственные, равно

$$\mathfrak{D} = \prod_{\nu=1}^{e_1} \mathfrak{D}_{\nu} \prod_{w=e_1+1}^{e_2} \mathfrak{D}_{w} \prod_{s=e_2+1}^{e_3} \mathfrak{D}_{s}, \tag{1}$$

где \mathfrak{D}_{ν} , $1\leqslant \nu\leqslant e_1$, — число различных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , \mathfrak{D}_{w} , $e_1+1\leqslant w\leqslant e_2$, — число различных пар $(\mathcal{C}_{w},\mathcal{C}_{w}^{\dagger})$, где \mathcal{C}_{w} — \mathcal{F}_{w} -подпространство в \mathcal{G}_{w} , а $\mathcal{C}_{w}^{\dagger}$ — $\mathcal{F}_{w}^{\dagger}$ -подпространство в $\mathcal{G}_{w}^{\dagger}$, таких что \mathcal{C}_{w} — $\mathcal{C}_{w}^{\dagger}$ = $\{0\}$ и $\mathcal{C}_{w}^{\dagger}$ — $\mathcal{C}_{w}^{\dagger}$ = $\{0\}$, а \mathfrak{D}_{s} , $e_2+1\leqslant s\leqslant e_3$, — число различных \mathcal{F}_{s} -подпространств в \mathcal{G}_{s} .

Доказательство непосредственно вытекает из теорем 1 и 2.

Теперь применим эту теорему и теорию разложений Витта для подсчета количества всех аддитивных Ω -МС-кодов длины n над \mathbb{F}_{q^t} , имеющих дополнительные δ -двойственные, где $\delta \in \{0, *, \gamma\}$. Для этого вначале напомним некоторые определения из геометрии и теории групп. Если V – конечномерное векторное пространство над полем $\mathbb{F}_{\mathfrak{Q}}$, а B – полуторалинейная форма на V, то пара (V,B) называется полуторалинейным пространством (formed space) над $\mathbb{F}_{\mathfrak{I}}$. Размерностью полуторалинейного пространства (V, B) называется размерность V как векторного пространства над $\mathbb{F}_{\mathfrak{Q}}$ и обозначается через $\dim_{\mathbb{F}_{\mathfrak{Q}}}V$. Пусть теперь (V,B)-n-мерное рефлексивное невырожденное полуторалинейное пространство над $\mathbb{F}_{\mathfrak{Q}}$. Индексом Витта m пространства (V, B) называется размерность максимального самоортогонального (или, что то же самое, максимального вполне изотропного) подпространства V. Отметим, что $n \geqslant 2m$. Ненулевой вектор $v \in V$ называется изотропным, если B(v,v) = 0. Гиперболической парой называется пара (v, w) изотропных векторов $v, w \in V$, таких что B(v,w)=1. Всюду далее через $I_{m,n-2m}$ и $H_{m,n-2m}$ будем обозначать, соответственно, число изотропных векторов и гиперболических пар в n-мерном полуторалинейном пространстве (V, B) с индексом Витта m. Подробнее см. в [17, 18].

Напомним также следующий хорошо известный факт.

 \mathfrak{I} емма 1. Для любого числа \mathfrak{Q} , равного степени простого, и любых натуральных чисел B,K, таких что $B\leqslant K$, число различных B-мерных подпространств K-мерного векторного пространств над $\mathbb{F}_{\mathfrak{Q}}$ равно \mathfrak{Q} -ичному гауссовскому биномиальному коэффициенту $\begin{bmatrix} K \\ B \end{bmatrix}_{\mathfrak{Q}} = \prod_{b=0}^{B-1} \frac{(\mathfrak{Q}^{K-b}-1)}{(\mathfrak{Q}^{b+1}-1)}$ (напомним, что \mathfrak{Q} -ичный биноми-

альный коэффициент $\begin{bmatrix} K \\ 0 \end{bmatrix}_{\mathfrak{Q}}$ по определению равен 1). Как следствие, общее число различных подпространств K-мерного векторного пространства над $\mathbb{F}_{\mathfrak{Q}}$ равно

$$N(K, \mathfrak{Q}) = \sum_{B=0}^{K} \begin{bmatrix} K \\ B \end{bmatrix}_{\mathfrak{Q}} = 1 + \sum_{B=1}^{K} \begin{bmatrix} K \\ B \end{bmatrix}_{\mathfrak{Q}}.$$

Теперь приступим к подсчету количества всех аддитивных Ω -МС-кодов длины n с длинами блоков $(m_1, m_2, \ldots, m_\ell)$ над \mathbb{F}_{q^t} , имеющих дополнительные δ -двойственные, для $\delta \in \{0, *, \gamma\}$.

\S 4. Число аддитивных Ω -МС-кодов над \mathbb{F}_{q^t} , имеющих дополнительные δ -двойственные

В следующей теореме получены явные формулы для числа всех аддитивных Ω -МС-кодов длины n над \mathbb{F}_{q^t} , имеющих дополнительные δ -двойственные, для $\delta \in \{0,*,\gamma\}$.

Теорема 4. Пусть $\Omega = (\omega_1, \omega_2, \dots, \omega_\ell)$ фиксировано. Тогда для $\delta \in \{0, *, \gamma\}$ общее число $\mathfrak D$ различных аддитивных Ω -MC-кодов длины n над $\mathbb F_{q^t}$, имеющих до-полнительные δ -двойственные, равно

$$\mathfrak{D} = \prod_{\nu=1}^{e_1} \mathfrak{D}_{\nu} \prod_{w=e_1+1}^{e_2} \left(\sum_{k=0}^{\eta_w t} \sum_{k_1=0}^{\varrho_w t} \sum_{k_2=0}^{\tau_w t} q^{k d_w (\eta_w t - k)} \begin{bmatrix} \eta_w t \\ k \end{bmatrix}_{q^{d_w}} \begin{bmatrix} \varrho_w t \\ k_1 \end{bmatrix}_{q^{d_w}} \begin{bmatrix} \tau_w t \\ k_2 \end{bmatrix}_{q^{d_w}} \right) \times \prod_{s=e_2+1}^{e_3} \left(\sum_{a=0}^{\varepsilon_s t} \begin{bmatrix} \varepsilon_s t \\ a \end{bmatrix}_{q^{d_s}} \right),$$

где число \mathfrak{D}_{ν} , $1 \leqslant \nu \leqslant e_1$, равно следующему:

• $2 + \sum_{\substack{k=1 \ k \text{ четно}}}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} {\left[\begin{array}{c} \varepsilon_{\nu}t/2 \\ k/2 \end{array} \right]_{q^2}}, \ ecnu \ \nu \in \mathcal{J}_1 \ u \ \text{либо} \ \delta = \gamma \ u \ \varepsilon_{\nu}t \ \text{четно}, \ \text{либо} \ \delta = * \ u$

оба числа $\varepsilon_{\nu}t,q$ четны;

•
$$2+\sum_{k=1}^{\varepsilon_{\nu}t-1}q^{\frac{k(\varepsilon_{\nu}t-k+1)}{2}}\begin{bmatrix}(\varepsilon_{\nu}t-1)/2\\k/2\end{bmatrix}_{q^2}+\sum_{k=1}^{\varepsilon_{\nu}t-1}q^{\frac{(\varepsilon_{\nu}t-k)(k+1)}{2}}\begin{bmatrix}(\varepsilon_{\nu}t-1)/2\\(k-1)/2\end{bmatrix}_{q^2}, ecnu\ \nu\in\mathcal{J}_1,$$

 $\delta \in \{0,*\}$ и оба числа $arepsilon_{
u} t, q$ нечетны;

•
$$2 + \sum_{\substack{k=1 \ k \text{ четно}}}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2 \\ k/2 \end{bmatrix}_{q^2} + \sum_{\substack{k=1 \ k \text{ нечетно}}}^{\varepsilon_{\nu}t-1} q^{\frac{(k\varepsilon_{\nu}t-k^2-1)}{2}} (q^{\frac{\varepsilon_{\nu}t}{2}} + 1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}, ecnu$$

$$\nu \in \mathcal{J}_1, \ \delta \in \{0,*\} \ u \ \text{nufo} \ \varepsilon_{\nu}t \ \text{четно} \ u \ q \equiv 1 \ (\text{mod } 4), \ \text{nufo} \ \varepsilon_{\nu}t \equiv 0 \ (\text{mod } 4) \ u$$

 $\nu \in \mathcal{J}_1, \ \delta \in \{0,*\}$ и либо $\varepsilon_{\nu}t$ четно и $q \equiv 1 \pmod{4}$, либо $\varepsilon_{\nu}t \equiv 0 \pmod{4}$ и $q \equiv 3 \pmod{4}$;

•
$$2 + \sum_{\substack{k=1 \ k \text{ четно}}}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2 \\ k/2 \end{bmatrix}_{q^2} + \sum_{\substack{k=1 \ k \text{ нечетно}}}^{\varepsilon_{\nu}t-1} q^{\frac{(k\varepsilon_{\nu}t-k^2-1)}{2}} (q^{\frac{\varepsilon_{\nu}t}{2}} - 1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}, ecnu$$

$$\nu \in \mathcal{J}_1, \, \delta \in \{0, *\}, \, \varepsilon_{\nu}t \equiv 2 \pmod{4} \, u \, q \equiv 3 \pmod{4};$$

•
$$2 + \sum_{\substack{k=1 \ k \text{ четно}}}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k+1)}{2}} {\binom{(\varepsilon_{\nu}t-1)/2}{k/2}}_{q^2} + \sum_{\substack{k=1 \ k \text{ нечетно}}}^{\varepsilon_{\nu}t-1} q^{\frac{(\varepsilon_{\nu}t-k)(k+1)}{2}} {\binom{(\varepsilon_{\nu}t-1)/2}{(k-1)/2}}_{q^2}, ecnu$$

$$\nu \in \mathcal{J}_1, \ \delta = 0, \ q \text{ четно } u \ \varepsilon_{\nu}t \text{ нечетно};$$

•
$$2 + \sum_{\substack{k=1 \ k \text{ qetho}}}^{\varepsilon_{\nu}t-1} q^{\frac{(k\varepsilon_{\nu}t-k^2-2)}{2}} \left\{ (q^k + q - 1) {\varepsilon_{\nu}t-2/2 \brack k/2}_{q^2} + (q^{\varepsilon_{\nu}t-k+1} - q^{\varepsilon_{\nu}t-k} + 1) \times \left[{\varepsilon_{\nu}t-2/2 \brack (k-2)/2}_{q^2} \right\} + \sum_{\substack{k=1 \ k \text{ Heyetho}}}^{\varepsilon_{\nu}t-1} q^{\frac{(k+1)\varepsilon_{\nu}t-(k^2+1)}{2}} {\varepsilon_{\nu}t-(k^2+1) \brack (k-1)/2}_{q^2}, \ ecnu \ \nu \in \mathcal{J}_1, \ \delta = 0 \ u \ obs$$

•
$$2 + \sum_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)d_{\nu}}{2}} \prod_{a=0}^{k-1} \left(\frac{q^{\frac{(\varepsilon_{\nu}t-a)d_{\nu}}{2}} - (-1)^{\varepsilon_{\nu}t-a}}{q^{\frac{(k-a)d_{\nu}}{2}} - (-1)^{k-a}} \right), \ ecnu \ \nu \in \mathcal{J}_2.$$

Для доказательства теоремы напомним, что согласно (1) общее число $\mathfrak D$ различных аддитивных Ω -МС-кодов длины n над $\mathbb F_{q^t}$, имеющих дополнительные δ -двойственные, равно $\mathfrak D = \prod_{\nu=1}^{e_1} \mathfrak D_{\nu} \prod_{w=e_1+1}^{e_2} \mathfrak D_{w} \prod_{s=e_2+1}^{e_3} \mathfrak D_{s}$, где

- \mathfrak{D}_{ν} , $1 \leqslant \nu \leqslant e_1$, равно числу различных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} ;
- \mathfrak{D}_w , $e_1 + 1 \leqslant w \leqslant e_2$, равно числу различных пар $(\mathcal{C}_w, \mathcal{C}_w^{\dagger})$, где $\mathcal{C}_w \mathcal{F}_w$ -подпространство в \mathcal{G}_w , а $\mathcal{C}_w^{\dagger} \mathcal{F}_w^{\dagger}$ -подпространство в \mathcal{G}_w^{\dagger} , таких что $\mathcal{C}_w \cap \mathcal{C}_w^{\dagger \perp \delta} = \{0\}$ и $\mathcal{C}_w^{\dagger} \cap \mathcal{C}_w^{\perp \delta} = \{0\}$;
- $\mathfrak{D}_s, e_2 + 1 \leqslant s \leqslant e_3$, равно числу различных \mathcal{F}_s -подпространств в \mathcal{G}_s .

Ввиду этого для доказательства теоремы 4 достаточно определить числа \mathfrak{D}_{ν} для $1\leqslant \nu\leqslant e_1$, \mathfrak{D}_w для $e_1+1\leqslant w\leqslant e_2$ и \mathfrak{D}_s для $e_2+1\leqslant s\leqslant e_3$. С этой целью введем множества $\mathcal{J}_1=\{\nu: 1\leqslant \nu\leqslant e_1,\ d_{\nu}=1\}$ и $\mathcal{J}_2=\{\nu: 1\leqslant \nu\leqslant e_1,\ d_{\nu}>1\}$. Отметим, что $\{1,2,\ldots,e_1\}=\mathcal{J}_1\cup\mathcal{J}_2$ (несвязное объединение). Теперь приведем лемму 3.4 из работы [16], полезную для определения чисел \mathfrak{D}_{ν} , $1\leqslant \nu\leqslant e_1$.

 Π е м м а 2 [16]. Зафиксируем $\nu \in \mathcal{J}_1 \cup \mathcal{J}_2 = \{1, 2, \dots, e_1\}$. Для $\delta \in \{0, *, \gamma\}$ обозначим через $[\cdot, \cdot]_{\delta}|_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ ограничение $\tau_{1,-1}$ -полуторалинейной формы $[\cdot, \cdot]_{\delta}$ на $\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}$. Тогда справедливы следующие утверждения:

- (a) Для $\delta \in \{0, *, \gamma\}$ ограничение $[\cdot, \cdot]_{\delta}|_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ является рефлексивной невырожденной $\tau_{1,-1}$ -полуторалинейной формой на \mathcal{G}_{ν} ;
- (b) Для $\nu \in \mathcal{J}_1$ форма $[\cdot\,,\cdot]_{\delta} \upharpoonright_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ является симметрической при $\delta \in \{0,*\},$ а форма $[\cdot\,,\cdot]_{\gamma} \upharpoonright_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ неопределенная;
- (c) Для $\nu \in \mathcal{J}_2$ форма $[\cdot\,,\cdot]_{\delta} \upharpoonright_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ является эрмитовой при $\delta \in \{0,*\}$, а форма $[\cdot\,,\cdot]_{\gamma} \upharpoonright_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ антиэрмитова.

Для доказательства теоремы 4 вначале найдем значения \mathfrak{D}_{ν} для $\nu \in \mathcal{J}_1 \cup \mathcal{J}_2 = \{1,2,\ldots,e_1\}$. Для этого сперва заметим, что если обозначить через $\mathcal{N}_{\nu,k}$ число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} для $0 \leqslant k \leqslant \varepsilon_{\nu} t$, то $\mathfrak{D}_{\nu} = \sum_{k=0}^{\varepsilon_{\nu} t} \mathcal{N}_{\nu,k}$. Так как $\tau_{1,-1}$ -полуторалинейная форма $[\cdot\,,\cdot]_{\delta} \! \mid_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}}$ рефлексивна и невырождена, то $\mathcal{N}_{\nu,0} = \mathcal{N}_{\nu,\varepsilon_{\nu} t} = 1$, откуда получаем

$$\mathfrak{D}_{\nu} = 2 + \sum_{k=1}^{\varepsilon_{\nu}t-1} \mathcal{N}_{\nu,k} \quad \text{для } \nu \in \mathcal{J}_1 \cup \mathcal{J}_2 = \{1, 2, \dots, e_1\}.$$
 (2)

4.1. Определение числа \mathfrak{D}_{ν} для $\nu \in \mathcal{J}_1$. В этом пункте рассмотрим случай $\nu \in \mathcal{J}_1$ и найдем значения \mathfrak{D}_{ν} для $\delta \in \{0,*,\gamma\}$. Здесь $d_{\nu}=1$, и поэтому $\mathcal{F}_{\nu} \simeq \mathbb{F}_q$. В следующем предложении вычисляются значения \mathfrak{D}_{ν} , когда либо $\delta = \gamma$, либо $\delta = *$ и q четно.

Предложение 1. Пусть $\nu \in \mathcal{J}_1$ фиксировано. Если либо $\delta = \gamma$, либо $\delta = *$ и q четно, то

$$\mathfrak{D}_{\nu} = 2 + \sum_{\substack{k=1\\k \text{ nembo}}}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2\\k/2 \end{bmatrix}_{q^2}.$$

 \mathcal{J}_0 к а з а т е л ь с т в о. Согласно формуле (2) для доказательства достаточно найти числа $\mathcal{N}_{\nu,k}$ для $1\leqslant k\leqslant \varepsilon_{\nu}t-1$. Для этого заметим, что по утверждениям (a), (b) леммы 2 (\mathcal{G}_{ν} , $[\cdot\,,\cdot]_{\delta}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}}$) является симплектическим пространством над \mathcal{F}_{ν} , когда $\delta=\gamma$. Кроме того, когда $\delta=*$ и q четно, $[\mathcal{A}_{\nu},\mathcal{A}_{\nu}]_{*}=0$ для всех $\mathcal{A}_{\nu}\in\mathcal{G}_{\nu}$. Отсюда по лемме 2(a) следует, что (\mathcal{G}_{ν} , $[\cdot\,,\cdot]_{*}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}}$) также является симплектическим пространством над \mathcal{F}_{ν} , когда q четно. Далее, любое k-мерное невырожденное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} также является симплектическим пространством. Согласно [18, с. 69] размерность k такого подпространства W должна быть четной. Значит, $\mathcal{N}_{\nu,k}=0$, если k нечетно.

Пусть k четно. В этом случае k-мерное подпространство W в \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \rangle$, где $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1 \leqslant h \leqslant \frac{k}{2}$; множество $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \}$ называется базисом Витта пространства W над \mathcal{F}_{ν} (см. [18, с. 69]). Применяя [17, предложение 2.9] и теорему Витта о сокращении, получаем, что число базисов Витта типа $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \}$ в \mathcal{G}_{ν} равно

$$U_{k,\varepsilon_{\nu}t} = H_{\frac{\varepsilon_{\nu}t}{2},0} H_{\frac{\varepsilon_{\nu}t-2}{2},0} \dots H_{\frac{\varepsilon_{\nu}t-k+2}{2},0}.$$

Аналогично выводится, что число базисов Витта k-мерного \mathcal{F}_{ν} -подпространства в \mathcal{G}_{ν} равно

$$U_k = H_{\frac{k}{2},0} H_{\frac{k-2}{2},0} \dots H_{1,0}.$$

Тогда согласно [18, с. 70] получаем

$$\mathcal{N}_{\nu,k} = \frac{U_{k,\varepsilon_{\nu}t}}{U_k} = q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2\\ k/2 \end{bmatrix}_{a^2}.$$

Из этого с учетом (2) немедленно вытекает требуемое. 🛦

В следующем предложении найдены числа \mathfrak{D}_{ν} в случае нечетного q и $\delta \in \{0,*\}$.

Предложение 2. Пусть $\nu \in \mathcal{J}_1$ фиксировано. Если $\delta \in \{0,*\}$, а нечетное q -степень простого числа, то

$$\mathfrak{D}_{\nu} = \begin{cases} 2 + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k+1)}{2}} {\left[\binom{\varepsilon_{\nu}t-1}/2}_{k/2}\right]_{q^2} + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(\varepsilon_{\nu}t-k)(k+1)}{2}} {\left[\binom{\varepsilon_{\nu}t-1}/2}_{(k-1)/2}\right]_{q^2}, \\ \text{ecan } \varepsilon_{\nu}t \text{ нечетно}, \\ 2 + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} {\left[\binom{\varepsilon_{\nu}t/2}{k/2}\right]_{q^2}} + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(\varepsilon_{\nu}tk-k^2-1)}{2}} {\left(q^{\frac{\varepsilon_{\nu}t}{2}}+1\right)} {\left[\binom{\varepsilon_{\nu}t-2}/2}_{(k-1)/2}\right]_{q^2}, \\ \text{ecan ando } \varepsilon_{\nu}t \text{ tempo } u \neq 1 \pmod{4}, \\ \text{ando } \varepsilon_{\nu}t \equiv 0 \pmod{4} u \neq 3 \pmod{4}, \\ 2 + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)}{2}} {\left[\binom{\varepsilon_{\nu}t/2}{k/2}\right]_{q^2}} + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(\varepsilon_{\nu}tk-k^2-1)}{2}} {\left(q^{\frac{\varepsilon_{\nu}t}{2}}-1\right)} {\left[\binom{\varepsilon_{\nu}t-2}/2}_{(k-1)/2}\right]_{q^2}, \\ \text{ecan } \varepsilon_{\nu}t \equiv 2 \pmod{4} u \neq 3 \pmod{4}. \end{cases}$$

 \mathcal{A} о к а з а т е л ь с т в о. В случае $\delta \in \{0,*\}$ согласно утверждениям (a), (b) леммы 2 $(\mathcal{G}_{\nu}, [\cdot,\cdot]_{\delta}|_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}})$ является $(\varepsilon_{\nu}t)$ -мерным ортогональным пространством над \mathcal{F}_{ν} . Далее, поскольку q нечетно, ортогональное пространство $(\mathcal{G}_{\nu}, [\cdot,\cdot]_{\delta}|_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}})$ может рассматриваться как невырожденное квадратичное пространство $(\mathcal{G}_{\nu}, \mathcal{Q}_{\nu})$ относительно квадратичной формы $\mathcal{Q}_{\nu} \colon \mathcal{G}_{\nu} \to \mathcal{F}_{\nu}$, определяемой как $\mathcal{Q}_{\nu}(\mathcal{A}_{\nu}) = \frac{1}{2}[\mathcal{A}_{\nu}, \mathcal{A}_{\nu}]_{\delta}$ для всех $\mathcal{A}_{\nu} \in \mathcal{G}_{\nu}$. Далее, индекс Витта θ для \mathcal{G}_{ν} (см. [11, с. 279]) имеет вид

$$\theta = \begin{cases} (\varepsilon_{\nu}t - 1)/2, & \text{если } \varepsilon_{\nu}t \text{ нечетно,} \\ \varepsilon_{\nu}t/2, & \text{если } \varepsilon_{\nu}t \equiv 2 \pmod{4} \text{ и } q \equiv 3 \pmod{4}, \\ (\varepsilon_{\nu}t - 2)/2, & \text{если либо } \varepsilon_{\nu}t \text{ четно и } q \equiv 1 \pmod{4}, \\ & \text{либо } \varepsilon_{\nu}t \equiv 0 \pmod{4} \text{ и } q \equiv 3 \pmod{4}. \end{cases}$$
 (3)

Для вычисления \mathfrak{D}_{ν} согласно (2) достаточно определить числа $\mathcal{N}_{\nu,k}$ для $1\leqslant k\leqslant \leqslant \varepsilon_{\nu}t-1$. Поэтому далее будем считать, что $1\leqslant k\leqslant \varepsilon_{\nu}t-1$ фиксировано. Из [18, с. 138] известно, что k-мерное невырожденное квадратичное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} имеет разложение Витта вида $W=\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\theta_k)}, \mathcal{B}_{\nu}^{(\theta_k)} \rangle \perp \mathcal{W}_k$, где θ_k – индекс Витта пространства W, $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1\leqslant h\leqslant \theta_k$, а \mathcal{W}_k – анизотропное \mathcal{F}_{ν} -подпространство в \mathcal{G}_{ν} , такое что $\dim_{\mathcal{F}_{\nu}}\mathcal{W}_k=k-2\theta_k\leqslant 2$. Рассмотрим отдельно следующие два случая: (i) k нечетно и (ii) k четно.

(i) Вначале пусть k нечетно. Тогда согласно [18, с. 138] имеем $\theta_k = (k-1)/2$, откуда $\dim_{\mathcal{F}_{\nu}} \mathcal{W}_k = 1$. Из этого, в свою очередь, следует, что k-мерное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \perp \langle \mathcal{A}_{\nu}^{(\frac{k-1}{2})}, \mathcal{B}_{\nu}^{(\frac{k-1}{2})} \rangle \perp \langle \mathcal{Z}_{\nu} \rangle$, где $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1 \leqslant h \leqslant \frac{k-1}{2}$, а Z_{ν} – несингулярный вектор в \mathcal{G}_{ν} ; множество $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k-1}{2})}, \mathcal{B}_{\nu}^{(\frac{k-1}{2})}, \mathcal{B}_{\nu}^{(\frac{k-1}{2})}, \mathcal{Z}_{\nu}\}$ называется базисом Витта пространства W над \mathcal{F}_{ν} . Применяя [17, предложение 2.9] и теорему Витта о сокращении, получаем, что число базисов Витта типа $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k-1}{2})}, \mathcal{B}_{\nu}^{(\frac{k-1}{2})}, \mathcal{Z}_{\nu}\}$ в \mathcal{G}_{ν} равно

$$U_{\frac{k-1}{2},\theta} = H_{\theta,\varepsilon_{\nu}t-2\theta}H_{\theta-1,\varepsilon_{\nu}t-2\theta}\dots H_{\theta-\frac{(k-3)}{2},\varepsilon_{\nu}t-2\theta}\Big(q^{\varepsilon_{\nu}t-k+1}-1-I_{\theta-\frac{(k-1)}{2},\varepsilon_{\nu}t-2\theta}\Big).$$

Аналогично выводится, что число базисов Витта для k-мерного \mathcal{F}_{ν} -подпространства в \mathcal{G}_{ν} равно

$$U_{\frac{k-1}{2}} = H_{\frac{k-1}{2},1} H_{\frac{k-3}{2},1} \dots H_{1,1}(q-1).$$

Тогда в силу [18, с. 140-141] имеем

$$\mathcal{N}_{\nu,k} = \frac{U_{\frac{k-1}{2},\theta}}{U_{\frac{k-1}{2}}} = \begin{cases} q^{\frac{(k\varepsilon_{\nu}t-k^2-1)}{2}} (q^{\frac{\varepsilon_{\nu}t}{2}}-1) {\binom{(\varepsilon_{\nu}t-2)/2}{(k-1)/2}}_{q^2}, & \text{если } \theta = \varepsilon_{\nu}t/2, \\ q^{\frac{(\varepsilon_{\nu}t-k)(k+1)}{2}} {\binom{(\varepsilon_{\nu}t-1)/2}{2}}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-1)/2, \\ q^{\frac{(k\varepsilon_{\nu}t-k^2-1)}{2}} (q^{\frac{\varepsilon_{\nu}t}{2}}+1) {\binom{(\varepsilon_{\nu}t-2)/2}{(k-1)/2}}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-2)/2. \end{cases}$$

(ii) Теперь пусть k четно. Согласно [18, с. 138] имеем либо $\theta_k = k/2$, либо $\theta_k = (k-2)/2$. Обозначим через $R_{\nu,k}$ и $S_{\nu,k}$ число k-мерных невырожденных квадратичных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих индексы Витта k/2 и (k-2)/2 соответственно. Отметим, что $\mathcal{N}_{\nu,k} = R_{\nu,k} + S_{\nu,k}$.

Если $\theta_k = k/2$, то $\dim_{\mathcal{F}_{\nu}} \mathcal{W}_k = 0$. Тогда k-мерное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \rangle$, где $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1 \leqslant h \leqslant \frac{k}{2}$; множество $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \}$ называется базисом Витта пространства W над \mathcal{F}_{ν} . Применяя [17, предложение 2.9] и теорему Витта о сокращении, получаем, что число базисов Витта типа $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \}$ в \mathcal{G}_{ν} равно

$$U_{\frac{k}{2},\theta} = H_{\theta,\varepsilon_{\nu}t-2\theta}H_{\theta-1,\varepsilon_{\nu}t-2\theta}\dots H_{\theta-\frac{k-2}{2},\varepsilon_{\nu}t-2\theta},$$

а число базисов Витта k-мерного \mathcal{F}_{ν} -подпространства в \mathcal{G}_{ν} , имеющего индекс Витта $\frac{k}{2}$, равно $U_{\frac{k}{2}}=H_{\frac{k}{2},0}H_{\frac{k-2}{2},0}\dots H_{1,0}$. Тогда из [18, с. 140–141] получаем

$$R_{\nu,k} = \frac{U_{\frac{k}{2},\theta}}{U_{\frac{k}{2}}} = \begin{cases} \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}+1)(q^{\frac{\varepsilon_{\nu}t-k}{2}}+1)}{2(q^{\frac{\varepsilon_{\nu}t}{2}}+1)} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = \varepsilon_{\nu}t/2, \\ \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}+1)}{2} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-1)/2, \\ \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}+1)(q^{\frac{\varepsilon_{\nu}t-k}{2}}-1)}{2(q^{\frac{\varepsilon_{\nu}t}{2}}-1)} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-2)/2. \end{cases}$$

Если $\theta_k = (k-2)/2$, то $\dim_{\mathcal{F}_{\nu}} \mathcal{W}_k = 2$. В этом случае, рассуждая так же, как и в [13, леммы 3.2, 3.3], получаем что каждое двумерное анизотропное \mathcal{F}_{ν} -подпространство в W имеет ортогональный базис и что число различных ортогональных базисов двумерного анизотропного \mathcal{F}_{ν} -подпространства в W равно

$$X_{k,\theta} = \begin{cases} \frac{q^{\varepsilon_{\nu}t-k}(q-1)^2(q^{\frac{\varepsilon_{\nu}t-k}{2}}-1)(q^{\frac{\varepsilon_{\nu}t-k+2}{2}}-1)}{2}, & \text{если } \theta = \varepsilon_{\nu}t/2, \\ \frac{q^{\varepsilon_{\nu}t-k}(q-1)^2(q^{\varepsilon_{\nu}t-k+1}-1)}{2}, & \text{если } \theta = (\varepsilon_{\nu}t-1)/2, \\ \frac{q^{\varepsilon_{\nu}t-k}(q-1)^2(q^{\frac{\varepsilon_{\nu}t-k}{2}}+1)(q^{\frac{\varepsilon_{\nu}t-k+2}{2}}+1)}{2}, & \text{если } \theta = (\varepsilon_{\nu}t-2)/2. \end{cases}$$

Таким образом, k-мерное \mathcal{F}_{ν} -подпространство W пространства \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\frac{k-2}{2})}, \mathcal{B}_{\nu}^{(\frac{k-2}{2})} \rangle \perp \langle \mathcal{Z}_{\nu}^{(1)}, \mathcal{Z}_{\nu}^{(2)} \rangle$, где $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1 \leqslant h \leqslant \frac{k-2}{2}$, а $\{\mathcal{Z}_{\nu}^{(1)}, \mathcal{Z}_{\nu}^{(2)}\}$ – ортогональный базис двумерного анизотропного \mathcal{F}_{ν} -подпространства \mathcal{W}_{k} пространства W; множество $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k-2}{2})}, \mathcal{B}_{\nu}^{(\frac{k-2}{2})}, \mathcal{Z}_{\nu}^{(1)}, \mathcal{Z}_{\nu}^{(2)}\}$ называется базисом Витта пространства W над \mathcal{F}_{ν} . Применяя [17, предложение 2.9] и теорему Витта о сокращении, получаем, что число базисов Витта типа $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(\frac{k-2}{2})}, \mathcal{B}_{\nu}^{(\frac{k-2}{2})}, \mathcal{Z}_{\nu}^{(1)}, \mathcal{Z}_{\nu}^{(2)}\}$ в \mathcal{G}_{ν} равно

$$U_{\frac{k-2}{2},\theta} = H_{\theta,\varepsilon_{\nu}t-2\theta}H_{\theta-1,\varepsilon_{\nu}t-2\theta}\dots H_{\theta-\frac{(k-4)}{2},\varepsilon_{\nu}t-2\theta}X_{k,\theta}.$$

Аналогично выводится, что число базисов Витта k-мерного \mathcal{F}_{ν} -подпространства в \mathcal{G}_{ν} , имеющих индекс Витта $\frac{k-2}{2}$, равно

$$U_{\frac{k-2}{2}} = H_{\frac{k-2}{2},2} H_{\frac{k-4}{2},2} \dots H_{1,2}(q^2-1)(q-1).$$

Тогда согласно [18, с. 140-141] получаем

$$S_{\nu,k} = \frac{U_{\frac{k-2}{2},\theta}}{U_{\frac{k-2}{2}}} = \begin{cases} \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}-1)(q^{\frac{\varepsilon_{\nu}t-k}{2}}-1)}{2(q^{\frac{\varepsilon_{\nu}t}{2}}+1)} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = \varepsilon_{\nu}t/2, \\ \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}-1)}{2} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-1)/2, \\ \frac{q^{\frac{k(\varepsilon_{\nu}t-k)}{2}}(q^{\frac{k}{2}}-1)(q^{\frac{\varepsilon_{\nu}t-k}{2}}+1)}{2(q^{\frac{\varepsilon_{\nu}t}{2}}-1)} {\varepsilon_{\nu}t/2 \choose k/2}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t-2)/2. \end{cases}$$

Отсюда следует, что

$$\mathcal{N}_{\nu,k} = R_{\nu,k} + S_{\nu,k} = \begin{cases}
q^{\frac{k(\varepsilon_{\nu}t - k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2 \\ k/2 \end{bmatrix}_{q^2}, & \text{если } \theta = \varepsilon_{\nu}t/2, \\
q^{\frac{k(\varepsilon_{\nu}t - k + 1)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t - 1)/2 \\ k/2 \end{bmatrix}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t - 1)/2, \\
q^{\frac{k(\varepsilon_{\nu}t - k)}{2}} \begin{bmatrix} \varepsilon_{\nu}t/2 \\ k/2 \end{bmatrix}_{q^2}, & \text{если } \theta = (\varepsilon_{\nu}t - 2)/2.
\end{cases} (5)$$

Наконец, подставляя значения $\mathcal{N}_{\nu,k}$ из (4), (5) в (2), получаем требуемый результат. \blacktriangle

В следующем предложении найдены числа \mathfrak{D}_{ν} в случае, когда q четно и $\delta=0$.

Предложение 3. Пусть $\nu \in \mathcal{J}_1$ фиксировано. Если $\delta = 0$, а четное q – степень простого числа, то

$$\mathfrak{D}_{\nu} = \begin{cases} 2 + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k+1)}{2}} {\left[\frac{(\varepsilon_{\nu}t-1)/2}{k/2}\right]_{q^2}} + \\ + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(\varepsilon_{\nu}t-k)(k+1)}{2}} {\left[\frac{(\varepsilon_{\nu}t-1)/2}{(k-1)/2}\right]_{q^2}}, & ecnu\ \varepsilon_{\nu}t\ neuemno\\ 2 + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(k\varepsilon_{\nu}t-k^2-2)}{2}} {\left(\frac{(q^k+q-1)\left[\frac{(\varepsilon_{\nu}t-2)/2}{k/2}\right]_{q^2}}{k/2}\right]_{q^2}} + \\ + \left(q^{\varepsilon_{\nu}t-k+1} - q^{\varepsilon_{\nu}t-k} + 1\right) {\left[\frac{(\varepsilon_{\nu}t-2)/2}{(k-2)/2}\right]_{q^2}} + \\ + \sum\limits_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{(k+1)\varepsilon_{\nu}t-(k^2+1)}{2}} {\left[\frac{(\varepsilon_{\nu}t-2)/2}{(k-1)/2}\right]_{q^2}}, & ecnu\ \varepsilon_{\nu}t\ vemho. \end{cases}$$

 $\mathcal{D}_{\nu,k}$ для $1\leqslant k\leqslant \varepsilon_{\nu}t-1$. Для этого зафиксируем $1\leqslant k\leqslant \varepsilon_{\nu}t-1$. Заметим, что поскольку q здесь четно, все m_i – нечетные целые числа. Следовательно, m нечетно, откуда, в свою очередь, вытекает, что $\frac{m}{m_i}=1$ в \mathcal{F}_{ν} . Так как $\nu\in\mathcal{J}_1$, то $d_{\nu}=1$, откуда $a_{\nu}=\mathrm{HOД}(t,d_{\nu})=1$. Поэтому каждый $\mathcal{A}_{\nu}\in\mathcal{G}_{\nu}$ можно представить в виде $\mathcal{A}_{\nu}=\mathcal{A}_{\nu,0}=(\mathcal{A}_{\nu,0}^{(1)},\mathcal{A}_{\nu,0}^{(2)},\ldots,\mathcal{A}_{\nu,0}^{(\ell)})$, где $\mathcal{A}_{\nu,0}^{(i)}\in\varepsilon_{\nu,i}\mathcal{F}_{\nu,0}$ для $1\leqslant i\leqslant \ell$. Теперь положим $\mathcal{M}_{\nu}=\left\{\left(\mathcal{A}_{\nu,0}^{(1)},\mathcal{A}_{\nu,0}^{(2)},\ldots,\mathcal{A}_{\nu,0}^{(\ell)}\right)\in\mathcal{G}_{\nu}:\sum_{i=1}^{\ell}\varepsilon_{\nu,i}\big(\mathcal{A}_{\nu,0}^{(i)}+\tau_{q,1}(\mathcal{A}_{\nu,0}^{(i)})+\ldots+\tau_{q^{t-1},1}(\mathcal{A}_{\nu,0}^{(i)})\big)=0\right\}$. Заметим, что множество \mathcal{M}_{ν} является $(\varepsilon_{\nu}t-1)$ -мерным \mathcal{F}_{ν} -подпространством в \mathcal{G}_{ν} . Положим также $\Theta_{\nu}=(\varepsilon_{\nu,1},\varepsilon_{\nu,2},\ldots,\varepsilon_{\nu,\ell})\in\mathcal{G}_{\nu}$. Легко видеть, что $\Theta_{\nu}\in\mathcal{M}_{\nu}$ тогда и только тогда, когда $\varepsilon_{\nu}t$ четно. Соответственно возникают следующие случаи: (i) $\varepsilon_{\nu}t$ нечетно и (ii) $\varepsilon_{\nu}t$ четно.

(i) Пусть $\varepsilon_{\nu}t$ нечетно. Тогда $\Theta_{\nu} \notin \mathcal{M}_{\nu}$ и $\dim_{\mathcal{F}_{\nu}} \langle \Theta_{\nu} \rangle = 1$. Кроме того, $[\mathcal{A}_{\nu}, \Theta_{\nu}]_{0} = 0$ для всех $\mathcal{A}_{\nu} \in \mathcal{M}_{\nu}$, и при этом $\mathcal{M}_{\nu} \cap \langle \Theta_{\nu} \rangle = \{0\}$. Отсюда следует, что пространство \mathcal{G}_{ν} является ортогональной прямой суммой своих \mathcal{F}_{ν} -подпространств \mathcal{M}_{ν} и $\langle \Theta_{\nu} \rangle$, т.е. $\mathcal{G}_{\nu} = \mathcal{M}_{\nu} \perp \langle \Theta_{\nu} \rangle$. Далее, $(\mathcal{M}_{\nu}, [\cdot, \cdot]_{0}|_{\mathcal{M}_{\nu} \times \mathcal{M}_{\nu}})$ – симплектическое пространство над \mathcal{F}_{ν} . При этом любое \mathcal{F}_{ν} -подпространство в \mathcal{G}_{ν} либо содержится в \mathcal{M}_{ν} , либо не содержится в \mathcal{M}_{ν} .

Для вычисления $\mathcal{N}_{\nu,k}$ вначале определим число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств пространства \mathcal{G}_{ν} , содержащихся в \mathcal{M}_{ν} . Для этого, рассуждая так же, как и в предложении 1, получаем, что для нечетного k в \mathcal{M}_{ν} не существует k-мерных невырожденных \mathcal{F}_{ν} -подпространств, а для четного k в \mathcal{M}_{ν} содержится ровно

$$\mathfrak{N}_{\nu,k}^{(e)} = q^{\frac{k(\varepsilon_{\nu}t - k - 1)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t - 1)/2 \\ k/2 \end{bmatrix}_{q^2}$$

различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств.

Далее, нетрудно видеть, что любое k-мерное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} , не содержащееся в \mathcal{M}_{ν} , имеет тип $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$, где $\mathcal{A}_{\nu}^{(h)} \in \mathcal{M}_{\nu} \setminus \{0\}$ для $1 \leq h \leq k-1$ и $\mathcal{A}_{\nu}^{(k)} \in \mathcal{M}_{\nu}$. Теперь отдельно рассмотрим следующие два случая: k нечетно и k четно.

Вначале пусть k нечетно. Тогда, применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ пространства \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle$ является (k-1)-мерным невырожденным \mathcal{F}_{ν} -подпространством в \mathcal{M}_{ν} . Далее заметим, что все $\mathcal{A}_{\nu}^{(k)} \in \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle^{\perp_0}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} и что есть ровно $q^{\varepsilon_{\nu}t-k}$ способов выбрать $\mathcal{A}_{\nu}^{(k)}$. Отсюда, рассуждая так же, как в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} равно

$$\mathfrak{M}_{\nu,k}^{(o)} = q^{\varepsilon_{\nu}t-k}q^{\frac{(k-1)(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t-1)/2\\ (k-1)/2 \end{bmatrix}_{q^2}.$$

Теперь пусть k четно. Если $\mathcal{A}_{\nu}^{(k)}=0$, то в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \Theta_{\nu} \rangle$ пространства \mathcal{G}_{ν} вырождено.

Если $\mathcal{A}_{\nu}^{(k)} \neq 0$, то снова применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], находим, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$ является k-мерным невырожденным \mathcal{F}_{ν} -подпространством в \mathcal{M}_{ν} . Далее, каждое k-мерное невырожденное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$ в \mathcal{M}_{ν} порождает ровно (q^k-1) различных \mathcal{F}_{ν} -подпространств $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} . Отсюда, рассуждая так же, как и в предложении 1, заключаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} , где $\mathcal{A}_{\nu}^{(h)} \in \mathcal{M}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k$, равно

$$\mathfrak{M}_{\nu,k}^{(e)} = q^{\frac{k(\varepsilon_{\nu}t - k - 1)}{2}} (q^k - 1) \begin{bmatrix} (\varepsilon_{\nu}t - 1)/2 \\ k/2 \end{bmatrix}_{q^2}.$$

Объединяя эти случаи, получаем

$$\mathcal{N}_{\nu,k}=\mathfrak{M}_{\nu,k}^{(o)}=q^{rac{(k+1)(arepsilon_{
u}t-k)}{2}}igg[rac{(arepsilon_{
u}t-1)/2}{(k-1)/2}igg]_{q^2},$$
 если k нечетно,

И

$$\mathcal{N}_{\nu,k} = \mathfrak{N}_{\nu,k}^{(e)} + \mathfrak{M}_{\nu,k}^{(e)} = q^{rac{k(arepsilon_{
u}t-k+1)}{2}} igg[(arepsilon_{
u}t-1)/2 igg]_{q^2}, \quad$$
если k четно.

(ii) Пусть $\varepsilon_{\nu}t$ четно. Тогда $\Theta_{\nu} \in \mathcal{M}_{\nu} \cap \mathcal{M}_{\nu}^{\perp_{0}}$. Пусть теперь $\widehat{\mathcal{M}}_{\nu} - (\varepsilon_{\nu}t - 2)$ -мерное \mathcal{F}_{ν} -подпространство в \mathcal{M}_{ν} , такое что $\Theta_{\nu} \notin \widehat{\mathcal{M}}_{\nu}$, так что $\mathcal{M}_{\nu} = \widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle$. Далее, заметим, что существует $y_{\nu} \in \widehat{\mathcal{M}}_{\nu}^{\perp_{0}} \setminus \mathcal{M}_{\nu}$, такой что $\mathcal{G}_{\nu} = \widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle \oplus \langle y_{\nu} \rangle$. При этом $(\widehat{\mathcal{M}}_{\nu}, [\cdot\,,\cdot]_{0}|_{\widehat{\mathcal{M}}_{\nu} \times \widehat{\mathcal{M}}_{\nu}})$ является $(\varepsilon_{\nu}t - 2)$ -мерным симплектическим \mathcal{F}_{ν} -подпространством в \mathcal{G}_{ν} . Далее заметим, что каждое k-мерное \mathcal{F}_{ν} -подпространство в \mathcal{G}_{ν} либо содержится в $\widehat{\mathcal{M}}_{\nu}$, либо содержится в $\widehat{\mathcal{M}}_{\nu} \oplus \langle y_{\nu} \rangle$, но не содержится ни в одном из подпространств $\widehat{\mathcal{M}}_{\nu}$, $\widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle$ и $\widehat{\mathcal{M}}_{\nu} \oplus \langle y_{\nu} \rangle$. В соответствии с этим рассмотрим следующие четыре случая по отдельности.

А. Вначале подсчитаем число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в $\widehat{\mathcal{M}}_{\nu}$. Для этого, рассуждая так же, как и в предложении 1, заметим, что для нечетного k в $\widehat{\mathcal{M}}_{\nu}$ не существует k-мерных невырожденных \mathcal{F}_{ν} -подпространств, а для четного k в $\widehat{\mathcal{M}}_{\nu}$ есть ровно

$$\mathfrak{R}_{\nu,k}^{(e)} = q^{\frac{k(\varepsilon_{\nu}t - k - 2)}{2} \left[\binom{(\varepsilon_{\nu}t - 2)/2}{k/2}\right]_{q^2}}$$

различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств.

В. Теперь подсчитаем все различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства пространства \mathcal{G}_{ν} , содержащиеся в $\widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle$, но не содержащиеся в $\widehat{\mathcal{M}}_{\nu}$. Рассуждая, как и в случае (i), получаем, что если k нечетно, то в \mathcal{G}_{ν} не существует таких k-мерных невырожденных \mathcal{F}_{ν} -подпространств, а если k четно, то в \mathcal{G}_{ν} есть ровно

$$\mathfrak{S}_{\nu,k}^{(e)} = (q^k - 1)q^{\frac{k(\varepsilon_{\nu}t - k - 2)}{2} \left[\frac{(\varepsilon_{\nu}t - 2)/2}{k/2}\right]_{q^2}}$$

таких k-мерных невырожденных \mathcal{F}_{ν} -подпространств.

С. Теперь подсчитаем все различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства пространства \mathcal{G}_{ν} , содержащиеся в $\widehat{\mathcal{M}}_{\nu} \oplus \langle y_{\nu} \rangle$, но не содержащиеся в $\widehat{\mathcal{M}}_{\nu}$. Снова рассуждая, как в случае (i), получаем, что если k нечетно, то в \mathcal{G}_{ν} есть ровно

$$\mathfrak{T}_{\nu,k}^{(o)} = q^{\frac{(k+1)(\varepsilon_{\nu}t-k-1)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}$$

таких k-мерных невырожденных \mathcal{F}_{ν} -подпространств, а если k четно, то ровно

$$\mathfrak{T}_{\nu,k}^{(e)} = (q^k - 1)q^{\frac{k(\varepsilon_{\nu}t - k - 2)}{2} {\left[{(\varepsilon_{\nu}t - 2)/2 \atop k/2} \right]_{q^2}}}$$

таких k-мерных невырожденных \mathcal{F}_{ν} -подпространств.

D. Теперь заметим, что любое k-мерное \mathcal{F}_{ν} -подпространство W пространства \mathcal{G}_{ν} , содержащееся в $\mathcal{G}_{\nu} = \widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle \oplus \langle y_{\nu} \rangle$, но не содержащееся ни в одном из его

подпространств $\widehat{\mathcal{M}}_{\nu}$, $\widehat{\mathcal{M}}_{\nu} \oplus \langle \Theta_{\nu} \rangle$ и $\widehat{\mathcal{M}}_{\nu} \oplus \langle y_{\nu} \rangle$, относится к одному из следующих двух типов:

I.
$$W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$$
, где $\lambda_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}, \mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k-1$ и $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$.

II.
$$W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$$
, где $k \geqslant 2$, $\mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k-2$ и $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$.

Чтобы вычислить $\mathcal{N}_{\nu,k}$, вначале определим число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$ в \mathcal{G}_{ν} , где $\lambda_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}, \mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leq h \leq k-1$ и $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$. Для этого рассмотрим следующие два случая: k четно и k нечетно.

Сперва пусть k четно. Если $\mathcal{A}_{\nu}^{(k)}=0$, то в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$ пространства \mathcal{G}_{ν} вырождено.

Если же $\mathcal{A}_{\nu}^{(k)} \neq 0$, то снова применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$ пространства \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$ является k-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Далее, каждое k-мерное невырожденное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ порождает ровно $(q^k-1)(q-1)$ различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$ пространства \mathcal{G}_{ν} .

Отсюда, рассуждая, как в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств пространства \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$, равно

$$\mathfrak{U}_{\nu,k}^{(e)} = q^{\frac{k(\varepsilon_{\nu}t - k - 2)}{2}} (q^k - 1)(q - 1) \begin{bmatrix} (\varepsilon_{\nu}t - 2)/2 \\ k/2 \end{bmatrix}_{e^2}.$$

Теперь предположим, что k нечетно. Тогда в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle$ является (k-1)-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Далее, заметим, что все элементы $\lambda_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$ и все элементы $\mathcal{A}_{\nu}^{(k)} \in \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle^{\perp_{0}}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle^{\perp_{0}}$ получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + \Theta_{\nu} + \lambda_{\nu} y_{\nu} \rangle$, где $\lambda_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$ и $\mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leq h \leq k-1$ и $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$, равно

$$\mathfrak{U}_{\nu,k}^{(o)}=q^{\frac{(k+1)(\varepsilon_{\nu}t-k-1)}{2}}(q-1){\left[(\varepsilon_{\nu}t-2)/2\atop (k-1)/2\right]_{q^2}}.$$

Теперь подсчитаем количество различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, где $k \geqslant 2$, $\mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k-2$ и $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$. Для этого снова отдельно рассмотрим два случая: k нечетно и k четно.

Сперва пусть k нечетно. Если $\mathcal{A}_{\nu}^{(k-1)} = 0$, то в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ пространства \mathcal{G}_{ν} вырождено.

Если $\mathcal{A}_{\nu}^{(k-1)} \neq 0$, а $\mathcal{A}_{\nu}^{(k)} = 0$, то в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, y_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} \rangle$ является (k-1)-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Тогда, рассуждая, как и в случае (i), получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, y_{\nu} \rangle$, равно

$$\mathfrak{W}_{\nu,k}^{(o_1)} = q^{\frac{(k-1)(\varepsilon_{\nu}t - k - 1)}{2}} (q^{k-1} - 1) \begin{bmatrix} (\varepsilon_{\nu}t - 2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}.$$

Теперь пусть оба вектора $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ ненулевые. Тогда отдельно рассмотрим следующие два случая: $\mathcal{A}_{\nu}^{(k-1)}$, $\mathcal{A}_{\nu}^{(k)}$ линейно зависимы или $\mathcal{A}_{\nu}^{(k-1)}$, $\mathcal{A}_{\nu}^{(k)}$ линейно независимы над \mathcal{F}_{ν} .

Сперва пусть $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно зависимы над \mathcal{F}_{ν} . Тогда $\mathcal{A}_{\nu}^{(k)} = \alpha_{\nu}\mathcal{A}_{\nu}^{(k-1)}$ для некоторого $\alpha_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$. Нетрудно заметить, что $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}$, $\mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \lambda_{\nu}y_{\nu} + \Theta_{\nu} \rangle$, где $\lambda_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$ и $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leq h \leq k-1$. Применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \lambda_{\nu}y_{\nu} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда (k-1)-мерное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$ невырождено. Снова рассуждая, как в случае (i), получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, в случае, когда $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно зависимы над \mathcal{F}_{ν} , равно

$$\mathfrak{W}_{\nu,k}^{(o_2)} = q^{\frac{(k-1)(\varepsilon_{\nu}t-k-1)}{2}}(q^{k-1}-1)(q-1){\begin{bmatrix}(\varepsilon_{\nu}t-2)/2\\(k-1)/2\end{bmatrix}_{q^2}}.$$

Теперь предположим, что $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно независимы над \mathcal{F}_{ν} . Тогда, снова применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle$ является (k-1)-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Далее, заметим, что каждое (k-1)-мерное невырожденное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ порождает ровно $(q^{k-1}-1)$ различных (k-1)-мерных невырожденных \mathcal{F}_{ν} -подпространств $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} . Кроме того, в силу [17, предложение 2.9] можно представить $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$ в виде $\mathcal{A}_{\nu}^{(k)} = \sum_{h=1}^{k-1} \alpha_{\nu}^{(h)} \mathcal{A}_{\nu}^{(h)} + \widetilde{\mathcal{W}}_{\nu}^{(k)}$, где $\alpha_{\nu}^{(h)} \in \mathcal{F}_{\nu}$ для $1 \leqslant h \leqslant k-1$ и $\widetilde{\mathcal{W}}_{\nu}^{(k)} \in \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} \rangle^{\perp_{0}}$. Теперь заметим, что $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k-1)} + \mathcal{W}_{\nu}^{(k)}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} . Отсюда, рассуждая, как в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип

 $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, в случае, когда $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно независимы над \mathcal{F}_{ν} , равно

$$\mathfrak{W}_{\nu,k}^{(o_3)} = (q^{\varepsilon_{\nu}t-k} - q)(q^{k-1} - 1)q^{\frac{(k-1)(\varepsilon_{\nu}t-k-1)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t - 2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}.$$

Объединяя рассмотренные выше случаи, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, где $\mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k-2$ и $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$, равно

$$\mathfrak{W}_{\nu,k}^{(o)} = \mathfrak{W}_{\nu,k}^{(o_1)} + \mathfrak{W}_{\nu,k}^{(o_2)} + \mathfrak{W}_{\nu,k}^{(o_3)} = q^{\frac{k(\varepsilon_\nu t - k) + (\varepsilon_\nu t - 2k + 1)}{2}} (q^{k-1} - 1) \begin{bmatrix} (\varepsilon_\nu t - 2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2}.$$

Пусть теперь k четно. Если $\mathcal{A}_{\nu}^{(k-1)} = \mathcal{A}_{\nu}^{(k)} = 0$, то в силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)}, \Theta_{\nu}, y_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ является (k-2)-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Рассуждая, как и в предложении 1, получаем, что число таких подпространств равно

$$\mathfrak{W}_{\nu,k}^{(e_1)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t-2)/2\\ (k-2)/2 \end{bmatrix}_{a^2}.$$

Далее, если $\mathcal{A}_{\nu}^{(k-1)}=0$, а $\mathcal{A}_{\nu}^{(k)}\neq 0$, то снова применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)}+y_{\nu}\rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда (k-2)-мерное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}\rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$ невырождено. Заметим также, что все элементы $\mathcal{A}_{\nu}^{(k)}\in \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}\rangle^{\perp_{0}}\setminus\{0\}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)}+y_{\nu}\rangle$ в \mathcal{G}_{ν} и что есть ровно $(q^{\varepsilon_{\nu}t-k}-1)$ способов выбрать $\mathcal{A}_{\nu}^{(k)}$. Отсюда, рассуждая, как в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств пространства \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)}+y_{\nu}\rangle$, равно

$$\mathfrak{W}_{\nu,k}^{(e_2)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} (q^{\varepsilon_{\nu}t-k} - 1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-2)/2 \end{bmatrix}_{q^2}.$$

Далее, если $\mathcal{A}_{\nu}^{(k)}=0$, а $\mathcal{A}_{\nu}^{(k-1)}\neq 0$, то рассуждая, как и выше, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, y_{\nu})$, равно

$$\mathfrak{W}_{\nu,k}^{(e_3)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} (q^{\varepsilon_{\nu}t-k} - 1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-2)/2 \end{bmatrix}_{q^2}.$$

Наконец, пусть оба вектора $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ ненулевые. Тогда выделяются следующие случаи: $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)}$ линейно зависимы или $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)}$ линейно независимы над \mathcal{F}_{ν} .

Сперва пусть $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно зависимы над \mathcal{F}_{ν} . Тогда $\mathcal{A}_{\nu}^{(k)} = \beta_{\nu} \mathcal{A}_{\nu}^{(k-1)}$ для некоторого $\beta_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$. Нетрудно видеть, что $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \beta_{\nu} y_{\nu} + \Theta_{\nu} \rangle$, где $\beta_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$ и $\mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$

для $1 \leqslant h \leqslant k-1$. В силу [19, теорема 5.1.1] и [20, гл. 6, упражнение 21] получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \beta_{\nu} y_{\nu} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} невырождено тогда и только тогда, когда $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ является (k-2)-мерным невырожденным \mathcal{F}_{ν} -подпространством в $\widehat{\mathcal{M}}_{\nu}$. Далее, заметим, что все $\beta_{\nu} \in \mathcal{F}_{\nu} \setminus \{0\}$ и все $\mathcal{A}_{\nu}^{(k-1)} \in \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)} \rangle^{\perp_{0}}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \beta_{\nu} y_{\nu} + \Theta_{\nu} \rangle$ в \mathcal{G}_{ν} . Отсюда, рассуждая, как в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} , имеющих тип $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, в случае, когда $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно зависимы над \mathcal{F}_{ν} , равно

$$\mathfrak{W}_{\nu,k}^{(e_4)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} (q^{\varepsilon_{\nu}t-k} - 1)(q-1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-2)/2 \end{bmatrix}_{q^2}.$$

Пусть теперь $\mathcal{A}_{\nu}^{(k-1)}$ и $\mathcal{A}_{\nu}^{(k)}$ линейно независимы над \mathcal{F}_{ν} . Тогда, снова применяя [19, теорема 5.1.1] и [20, гл. 6, упражнение 21], получаем, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ пространства \mathcal{G}_{ν} невырождено тогда и только тогда, когда либо

- (\star) k-мерное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$ вырождено, а (k-2)-мерное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$ невырождено, либо
- (\$\displaystyle k\$-мерное $\mathcal{F}_{
 u}$ -подпространство $\langle \mathcal{A}_{
 u}^{(1)}, \mathcal{A}_{
 u}^{(2)}, \ldots, \mathcal{A}_{
 u}^{(k)} \rangle$ пространства $\widehat{\mathcal{M}}_{
 u}$ невырождено, а (k-2)-мерное $\mathcal{F}_{
 u}$ -подпространство $\langle \mathcal{A}_{
 u}^{(1)}, \mathcal{A}_{
 u}^{(2)}, \ldots, \mathcal{A}_{
 u}^{(k-2)} \rangle$ пространства $\widehat{\mathcal{M}}_{
 u}$ вырождено, либо
- (‡) оба \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \rangle$ и $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$ невырождены и det $\mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)}) \neq \det \mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)})$, где det $\mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)})$ и det $\mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)})$ определители матриц Грама \mathcal{F}_{ν} -подпространств $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \rangle$ и $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ относительно базисов $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \}$ и $\{\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \}$ соответственно.

Вначале найдем число k-мерных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} , удовлетворяющих условию (\star) . Для этого заметим, что $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ – невырожденное \mathcal{F}_{ν} -подпространство в $\widehat{\mathcal{M}}_{\nu}$. Следовательно, в силу [17, предложение 2.9] имеем $\widehat{\mathcal{M}}_{\nu} = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle \perp \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle^{\perp_{0}}$ пространство в $\widehat{\mathcal{M}}_{\nu}$. Далее, все пары $(\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)})$ линейно независимых векторов в $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle^{\perp_{0}}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle^{\perp_{0}}$ порождают различные k-мерные невырожденные \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} . Нетрудно видеть, что $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \rangle = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle \perp \langle \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$, откуда следует, что det $\mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \rangle = \det \mathfrak{G}(\mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)} \rangle$ det $\mathfrak{G}(\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$. Поэтому \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ вырождено тогда и только тогда, когда $\mathcal{A}_{\nu}^{(k)} \in \langle \mathcal{A}_{\nu}^{(k)}, \mathcal{A}_{\nu}^{(k)} \rangle - \mathcal{A}_{\nu}^{(k)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ вырождено тогда, когда $\mathcal{A}_{\nu}^{(k)} \in \langle \mathcal{A}_{\nu}^{(k)}, \mathcal{A}_{\nu}^{(k)} \rangle$. Поэтому \mathcal{F}_{ν} -подпространство можно выбрать ($\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \rangle$). Отсюда, рассуждая так же, как и в предложении 1, получаем, что число различных k-мерных

невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$, удовлетворяющих условию (\star) , равно

$$\mathfrak{W}_{\nu,k}^{(e_5)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} (q^{\varepsilon_{\nu}t-k} - 1)(q^{\varepsilon_{\nu}t-k-1} - q) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-2)/2 \end{bmatrix}_{a^2}.$$

Теперь подсчитаем количество k-мерных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} , удовлетворяющих условию (\diamond). Рассуждая, как в предложении 1, получаем, что число k-мерных невырожденных \mathcal{F}_{ν} -подпространств в $\widehat{\mathcal{M}}_{\nu}$ равно $q^{\frac{k(\varepsilon_{\nu}t-k-2)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ k/2 \end{bmatrix}_{q^2}$. Отметим, что каждое k-мерное невырожденное \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ имеет ровно $q^{k-2} \begin{bmatrix} k/2 \\ (k-2)/2 \end{bmatrix}_{q^2}$ различных (k-2)-мерных невырожденных \mathcal{F}_{ν} -подпространств. Отсюда с учетом леммы 1 получаем, что в $\widehat{\mathcal{M}}_{\nu}$ есть ровно $\begin{bmatrix} k \\ k-2 \end{bmatrix}_q - q^{k-2} \begin{bmatrix} k/2 \\ (k-2)/2 \end{bmatrix}_{q^2}$ различных (k-2)-мерных вырожденных \mathcal{F}_{ν} -подпространств $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$. Пусть $\langle \mathcal{B}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{B}_{\nu}^{(k-2)} \rangle$ – фиксированное (k-2)-мерное вырожденное \mathcal{F}_{ν} -подпространство в $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$. Выберем два линейно независимых вектора $\mathcal{B}_{\nu}^{(k-1)}, \mathcal{B}_{\nu}^{(k)}$, принадлежащих \mathcal{F}_{ν} -подпространству $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$ пространства $\widehat{\mathcal{M}}_{\nu}$, таких что $\langle \mathcal{B}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(2)}, \ldots, \mathcal{B}_{\nu}^{(k)} \rangle = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k)} \rangle$. Заметим, что пару $\langle \mathcal{B}_{\nu}^{(k-1)}, \mathcal{B}_{\nu}^{(k)} \rangle$ можно выбрать $\langle q^2 - 1 \rangle (q^2 - q)$ различными способами. Отсюда, рассуждая так же, как и в предложении 1, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \ldots, \mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} , удовлетворяющих условию $\langle \diamond \rangle$, равно

$$\begin{split} \mathfrak{W}_{\nu,k}^{(e_6)} &= q^{\frac{k(\varepsilon_\nu t - k - 2)}{2}} (q^2 - 1)(q^2 - q) \times \\ &\times \begin{bmatrix} (\varepsilon_\nu t - 2)/2 \\ k/2 \end{bmatrix}_{q^2} \left(\begin{bmatrix} k \\ k - 2 \end{bmatrix} q - q^{k-2} \begin{bmatrix} k/2 \\ (k-2)/2 \end{bmatrix}_{q^2} \right). \end{split}$$

Наконец, подсчитаем число k-мерных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu}, \mathcal{A}^{(k-1)}_{\nu} + \Theta_{\nu}, \mathcal{A}^{(k)}_{\nu} + y_{\nu} \rangle$ в \mathcal{G}_{ν} , удовлетворяющих условию (‡). Рассуждая, как и в предложении 1, получаем, что в $\widehat{\mathcal{M}}_{\nu}$ есть ровно $q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} \begin{bmatrix} (\varepsilon_{\nu}t-2)/2 \\ (k-2)/2 \end{bmatrix}_{q^2}$ различных (k-2)-мерных невырожденных \mathcal{F}_{ν} -подпространств. Применяя [17, предложение 2.9], получаем $\widehat{\mathcal{M}}_{\nu} = \langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle \perp \langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0}$, где $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0} - (\varepsilon_{\nu}t-k)$ -мерное невырожденное \mathcal{F}_{ν} -подпространство в $\widehat{\mathcal{M}}_{\nu}$. Отсюда получаем det $\mathfrak{G}(\mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k)}_{\nu}) = \det \mathfrak{G}(\mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu}) \times \det \mathfrak{G}(\mathcal{A}^{(k-1)}_{\nu}, \mathcal{A}^{(k)}_{\nu})$, откуда в свою очередь следует, что \mathcal{F}_{ν} -подпространство $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k)}_{\nu} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ невырождено тогда и только тогда, когда det $\mathfrak{G}(\mathcal{A}^{(k-1)}_{\nu}, \mathcal{A}^{(k)}_{\nu})$, $\mathcal{A}^{(k)}_{\nu}, \ldots, \mathcal{A}^{(k)}_{\nu} \rangle$ в $\widehat{\mathcal{M}}_{\nu}$ невырождено тогда и только тогда, когда det $\mathfrak{G}(\mathcal{A}^{(k-1)}_{\nu}, \mathcal{A}^{(k)}_{\nu})$ не является гиперболической парой в $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0}$ п $\langle \mathcal{A}^{(k-1)}_{\nu}, \mathcal{A}^{(k)}_{\nu} \rangle$ не является гиперболической парой в $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0}$. Таким образом, есть ровно \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle$ и $\langle \mathcal{A}^{(k-1)}_{\nu}, \mathcal{A}^{(k)}_{\nu} \rangle$ так, чтобы \mathcal{F}_{ν} -подпространства $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0}$ равен $(\varepsilon_{\nu}t-k)/2$, а число гиперболических пар в $\langle \mathcal{A}^{(1)}_{\nu}, \mathcal{A}^{(2)}_{\nu}, \ldots, \mathcal{A}^{(k-2)}_{\nu} \rangle^{\perp_0}$ равно \mathcal{F}_{ν} -подпространства сть ровно

 $q^{\varepsilon_{\nu}t-k-1}(q-1)(q^{\varepsilon_{\nu}t-k}-1)-q^{\varepsilon_{\nu}t-k-1}(q^{\varepsilon_{\nu}t-k}-1)=q^{\varepsilon_{\nu}t-k-1}(q-2)(q^{\varepsilon_{\nu}t-k}-1)$ способов выбрать пару $(\mathcal{A}_{\nu}^{(k-1)},\mathcal{A}_{\nu}^{(k)})$. Отсюда получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)},\mathcal{A}_{\nu}^{(2)},\dots,\mathcal{A}_{\nu}^{(k-2)},\mathcal{A}_{\nu}^{(k-1)}+\Theta_{\nu},\mathcal{A}_{\nu}^{(k)}+y_{\nu}\rangle$ в \mathcal{G}_{ν} , удовлетворяющих условию (\ddagger) , равно

$$\mathfrak{W}_{\nu,k}^{(e_7)} = q^{\frac{(k-2)(\varepsilon_{\nu}t-k)}{2}} q^{\varepsilon_{\nu}t-k-1} (q-2) (q^{\varepsilon_{\nu}t-k}-1) \begin{bmatrix} (\varepsilon_{\nu}t-2)/2\\ (k-2)/2 \end{bmatrix}_{q^2}.$$

Объединяя эти случаи, получаем, что число различных k-мерных невырожденных \mathcal{F}_{ν} -подпространств типа $\langle \mathcal{A}_{\nu}^{(1)}, \mathcal{A}_{\nu}^{(2)}, \dots, \mathcal{A}_{\nu}^{(k-2)}, \mathcal{A}_{\nu}^{(k-1)} + \Theta_{\nu}, \mathcal{A}_{\nu}^{(k)} + y_{\nu} \rangle$ в \mathcal{G}_{ν} в случае, когда $\mathcal{A}_{\nu}^{(h)} \in \widehat{\mathcal{M}}_{\nu} \setminus \{0\}$ для $1 \leqslant h \leqslant k-2$ и $\mathcal{A}_{\nu}^{(k-1)}, \mathcal{A}_{\nu}^{(k)} \in \widehat{\mathcal{M}}_{\nu}$, равно

$$\begin{split} & \mathfrak{W}_{\nu,k}^{(e)} = \mathfrak{W}_{\nu,k}^{(e_1)} + \mathfrak{W}_{\nu,k}^{(e_2)} + \mathfrak{W}_{\nu,k}^{(e_3)} + \mathfrak{W}_{\nu,k}^{(e_4)} + \mathfrak{W}_{\nu,k}^{(e_5)} + \mathfrak{W}_{\nu,k}^{(e_6)} + \mathfrak{W}_{\nu,k}^{(e_7)} = \\ & = q^{\frac{k\varepsilon_{\nu}t-k^2-2}{2}}(q^{\varepsilon_{\nu}t-k+1} - q^{\varepsilon_{\nu}t-k} + 1) {\left[(\varepsilon_{\nu}t-2)/2 \right]}_{(k-2)/2} + \\ & + q^{\frac{k(\varepsilon_{\nu}t-k-2)}{2}}(q^{k+1} - q)(q^{k-2} - 1) {\left[(\varepsilon_{\nu}t-2)/2 \right]}_{q^2}. \end{split}$$

Объединяя все рассмотренные случаи, получаем

$$\mathcal{N}_{\nu,k} = \mathfrak{T}_{\nu,k}^{(o)} + \mathfrak{U}_{\nu,k}^{(o)} + \mathfrak{W}_{\nu,k}^{(o)} = q^{\frac{(k+1)arepsilon_{\nu}t - (k^2+1)}{2}} \begin{bmatrix} (arepsilon_{\nu}t - 2)/2 \\ (k-1)/2 \end{bmatrix}_{q^2},$$
 если k нечетно,

И

$$\begin{split} \mathcal{N}_{\nu,k} &= \mathfrak{R}^{(e)}_{\nu,k} + \mathfrak{S}^{(e)}_{\nu,k} + \mathfrak{T}^{(e)}_{\nu,k} + \mathfrak{U}^{(e)}_{\nu,k} + \mathfrak{W}^{(e)}_{\nu,k} = q^{\frac{k\varepsilon_{\nu}t - k^2 - 2}{2}} \Bigg((q^k + q - 1) \times \\ &\times \left[\frac{(\varepsilon_{\nu}t - 2)/2}{k/2} \right]_{q^2} + (q^{\varepsilon_{\nu}t - k + 1} - q^{\varepsilon_{\nu}t - k} + 1) \left[\frac{(\varepsilon_{\nu}t - 2)/2}{(k - 2)/2} \right]_{q^2} \Bigg), \quad \text{если } k \text{ четно.} \end{split}$$

Наконец, подставляя найденные значения $\mathcal{N}_{\nu,k}$ в уравнение (2) в соответствующих случаях, получаем требуемый результат. \blacktriangle

4.2. Определение числа \mathfrak{D}_{ν} для $\nu \in \mathcal{J}_2$. В следующем предложении определяется число \mathfrak{D}_{ν} в случае, когда $\nu \in \mathcal{J}_2$ и $\delta \in \{0, *, \gamma\}$.

Предложение 4. Пусть $\nu \in \mathcal{J}_2$ фиксировано. Для $\delta \in \{0, *, \gamma\}$ имеем

$$\mathfrak{D}_{\nu} = 2 + \sum_{k=1}^{\varepsilon_{\nu}t-1} q^{\frac{k(\varepsilon_{\nu}t-k)d_{\nu}}{2}} \prod_{a=0}^{k-1} \left(\frac{q^{\frac{(\varepsilon_{\nu}t-a)d_{\nu}}{2}} - (-1)^{\varepsilon_{\nu}t-a}}{q^{\frac{(k-a)d_{\nu}}{2}} - (-1)^{k-a}} \right).$$

Доказательство. Чтобы вычислить \mathfrak{D}_{ν} , в силу (2) достаточно найти числа $\mathcal{N}_{\nu,k}$ для $1\leqslant k\leqslant \varepsilon_{\nu}t-1$. Для этого рассмотрим следующие два случая: І. $\delta\in\{0,*\}$ и ІІ. $\delta=\gamma$.

- І. Пусть $\delta \in \{0, *\}$. Тогда в силу утверждений (a), (c) леммы 2 $(\mathcal{G}_{\nu}, [\cdot, \cdot]_{\delta}|_{\mathcal{G}_{\nu} \times \mathcal{G}_{\nu}})$ является унитарным пространством над \mathcal{F}_{ν} . Тогда всякое k-мерное невырожденное \mathcal{F}_{ν} -подпространство пространства \mathcal{G}_{ν} также является унитарным пространством. Рассмотрим отдельно следующие случаи: (i) k нечетно и (ii) k четно.
- (i) Вначале пусть k нечетно. Тогда k-мерное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\frac{k-1}{2})}, \mathcal{B}_{\nu}^{(\frac{k-1}{2})} \rangle \perp \langle Z_{\nu} \rangle$, где

 $(\mathcal{A}_{\nu}^{(h)},\mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1\leqslant h\leqslant \frac{k-1}{2}$, а Z_{ν} – анизотропный вектор в \mathcal{G}_{ν} ; множество $\{\mathcal{A}_{\nu}^{(1)},\mathcal{B}_{\nu}^{(1)},\mathcal{A}_{\nu}^{(2)},\mathcal{B}_{\nu}^{(2)},\dots,\mathcal{A}_{\nu}^{(\frac{k-1}{2})},\mathcal{B}_{\nu}^{(\frac{k-1}{2})},\mathcal{Z}_{\nu}\}$ называется базисом Витта пространства W над \mathcal{F}_{ν} (см. [18, с. 116]). Через ϑ_{h} обозначим индекс Витта пространства $(\mathcal{A}_{\nu}^{(1)},\mathcal{B}_{\nu}^{(1)},\mathcal{A}_{\nu}^{(2)},\mathcal{B}_{\nu}^{(2)},\dots,\mathcal{A}_{\nu}^{(h-1)},\mathcal{B}_{\nu}^{(h-1)})^{\perp_{\delta}}\subseteq\mathcal{G}_{\nu}$ для $1\leqslant h\leqslant \frac{k+1}{2}$. Применяя [17, предложение 2.9] и теорему Витта о сокращении, получаем, что число базисов Витта типа $\{\mathcal{A}_{\nu}^{(1)},\mathcal{B}_{\nu}^{(1)},\mathcal{A}_{\nu}^{(2)},\mathcal{B}_{\nu}^{(2)},\dots,\mathcal{A}_{\nu}^{(\frac{k-1}{2})},\mathcal{B}_{\nu}^{(\frac{k-1}{2})},\mathcal{B}_{\nu}$ в \mathcal{G}_{ν} равно

$$\begin{split} U_{k,\varepsilon_{\nu}t} &= H_{\vartheta_{1},\varepsilon_{\nu}t-2\vartheta_{1}}H_{\vartheta_{2},\varepsilon_{\nu}t-2-2\vartheta_{2}}\dots H_{\vartheta_{\frac{k-1}{2}},\varepsilon_{\nu}t-k+3-2\vartheta_{\frac{k-1}{2}}} \times \\ &\times \left(q^{(\varepsilon_{\nu}t-k+1)d_{\nu}} - 1 - I_{\vartheta_{\frac{k+1}{2}},\varepsilon_{\nu}t-k+1-2\vartheta_{\frac{k+1}{2}}}\right). \end{split}$$

Аналогичными рассуждениями получаем, что число базисов Витта k-мерного унитарного \mathcal{F}_{ν} -подпространства в \mathcal{G}_{ν} равно

$$U_k = H_{\frac{k-1}{2},1} H_{\frac{k-3}{2},1} \dots H_{1,1} (q^{d_{\nu}} - 1).$$

Применяя теперь [18, лемма 10.4 и следствие 10.6], получаем

$$\mathcal{N}_{\nu,k} = \frac{U_{k,\varepsilon_{\nu}t}}{U_{k}} = q^{\frac{k(\varepsilon_{\nu}t - k)d_{\nu}}{2}} \prod_{a=0}^{k-1} \left(\frac{q^{\frac{(\varepsilon_{\nu}t - a)d_{\nu}}{2}} - (-1)^{\varepsilon_{\nu}t - a}}{q^{\frac{(k-a)d_{\nu}}{2}} - (-1)^{k-a}} \right), \quad 1 \leqslant k \leqslant \varepsilon_{\nu}t - 1.$$

(ii) Пусть теперь k четно. Тогда получаем, что k-мерное \mathcal{F}_{ν} -подпространство W в \mathcal{G}_{ν} имеет разложение Витта $W = \langle \mathcal{A}_{\nu}^{(1)}, \mathcal{B}_{\nu}^{(1)} \rangle \perp \langle \mathcal{A}_{\nu}^{(2)}, \mathcal{B}_{\nu}^{(2)} \rangle \perp \ldots \perp \langle \mathcal{A}_{\nu}^{(\frac{k}{2})}, \mathcal{B}_{\nu}^{(\frac{k}{2})} \rangle$, где $(\mathcal{A}_{\nu}^{(h)}, \mathcal{B}_{\nu}^{(h)})$ – гиперболическая пара в \mathcal{G}_{ν} для $1 \leqslant h \leqslant \frac{k}{2}$. Рассуждая так же, как в случае (i), и снова применяя [18, лемма 10.4 и следствие 10.6], получаем

$$\mathcal{N}_{\nu,k} = q^{\frac{k(\varepsilon_{\nu}t - k)d_{\nu}}{2}} \prod_{a=0}^{k-1} \left(\frac{q^{\frac{(\varepsilon_{\nu}t - a)d_{\nu}}{2}} - (-1)^{\varepsilon_{\nu}t - a}}{q^{\frac{(k-a)d_{\nu}}{2}} - (-1)^{k-a}} \right), \quad 1 \leqslant k \leqslant \varepsilon_{\nu}t - 1.$$

II. Пусть $\delta = \gamma$. В этом случае согласно утверждениям (а) и (с) леммы 2 получаем, что $[\cdot,\cdot]_{\gamma}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}}$ является рефлексивной невырожденной антиэрмитовой $\tau_{1,-1}$ -полуторалинейной формой. Вначале приведем антиэрмитову форму $[\cdot,\cdot]_{\gamma}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}}$ к сохраняющей ортогональность эрмитовой $\tau_{1,-1}$ -полуторалинейной форме $[\cdot,\cdot]_{\gamma^{(H)}}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}}$. Для этого, применяя [16, лемма 3.1(b)], заметим, что $\tau_{1,-1}$ – автоморфизм \mathcal{F}_{ν} порядка два. Поэтому существует элемент $\xi_{\nu}\in\mathcal{F}_{\nu}$, такой что $\tau_{1,-1}(\xi_{\nu})\neq\xi_{\nu}$. Теперь возьмем $\zeta_{\nu}=\xi_{\nu}-\tau_{1,-1}(\xi_{\nu})(\neq0)\in\mathcal{F}_{\nu}$. Отметим, что $\tau_{1,-1}(\zeta_{\nu})=-\zeta_{\nu}$. Теперь определим отображение $[\cdot,\cdot]_{\gamma^{(H)}}:\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}\to\mathcal{F}_{\nu}$ как $[\mathcal{A}_{\nu},\mathcal{B}_{\nu}]_{\gamma^{(H)}}=\zeta_{\nu}[\mathcal{A}_{\nu},\mathcal{B}_{\nu}]_{\gamma}$ для всех $\mathcal{A}_{\nu},\mathcal{B}_{\nu}\in\mathcal{G}_{\nu}$. Заметим, что отображение $[\cdot,\cdot]_{\gamma^{(H)}}$ является невырожденной эрмитовой $\tau_{1,-1}$ -полуторалинейной формой на \mathcal{G}_{ν} , так что $(\mathcal{G}_{\nu},[\cdot,\cdot]_{\gamma^{(H)}}|_{\mathcal{G}_{\nu}\times\mathcal{G}_{\nu}})$ – унитарное пространство размерности $\varepsilon_{\nu}t$ над $\mathcal{F}_{\nu}\simeq\mathbb{F}_{q^{d_{\nu}}}$. Поскольку $\zeta_{\nu}\in\mathcal{F}_{\nu}\setminus\{0\}$, получаем, что число k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} относительно $[\cdot,\cdot]_{\gamma}$ равно числу k-мерных невырожденных \mathcal{F}_{ν} -подпространств в \mathcal{G}_{ν} относительно $[\cdot,\cdot]_{\gamma^{(H)}}$. Рассуждая далее, как в случае $[\cdot,\cdot]_{\gamma^{(H)}}$

$$\mathcal{N}_{\nu,k} = q^{\frac{k(\varepsilon_{\nu}t - k)d_{\nu}}{2}} \prod_{a=0}^{k-1} \left(\frac{q^{\frac{(\varepsilon_{\nu}t - a)d_{\nu}}{2}} - (-1)^{\varepsilon_{\nu}t - a}}{q^{\frac{(k-a)d_{\nu}}{2}} - (-1)^{k-a}} \right), \quad 1 \leqslant k \leqslant \varepsilon_{\nu}t - 1.$$

От сюда с учетом (2) немедленно вытекает требуемый результат. 🛦

4.3. Определение числа \mathfrak{D}_w для $e_1+1\leqslant w\leqslant e_2$. В этом пункте определим число \mathfrak{D}_w различных пар $(\mathcal{C}_w,\mathcal{C}_w^\dagger)$, где $\mathcal{C}_w-\mathcal{F}_w$ -подпространство в \mathcal{G}_w , а $\mathcal{C}_w^\dagger-\mathcal{F}_w^\dagger$ -подпространство в \mathcal{G}_w , такие что $\mathcal{C}_w\cap\mathcal{C}_w^{\dagger,\delta}=\{0\}$ и $\mathcal{C}_w^\dagger\cap\mathcal{C}_w^{\perp,\delta}=\{0\}$ для $e_1+1\leqslant w\leqslant e_2$, где $\delta\in\{0,*,\gamma\}$. С этой целью зафиксируем $e_1+1\leqslant w\leqslant e_2$. Напомним, что $\mathcal{I}_w=\{i:1\leqslant i\leqslant \ell,\ \varepsilon_{w,i}=\varepsilon_{w,i}^\dagger\}$ и $\mathcal{I}_w'=\{i:1\leqslant i\leqslant \ell,\ \varepsilon_{w,i}\neq \varepsilon_{w,i}^\dagger\}$, а также что $\{1,2,\ldots,\ell\}=\mathcal{I}_w\cup\mathcal{I}_w'$ (несвязное объединение). Кроме того, напомним, что $\eta_w=\sum_{i\in\mathcal{I}_w}\varepsilon_{w,i},\ \varrho_w=\sum_{i\in\mathcal{I}_w'}\varepsilon_{w,i}$ и $\tau_w=\sum_{i\in\mathcal{I}_w'}\varepsilon_{w,i}^\dagger$.

Без ограничения общности можно считать, что существует целое h, удовлетворяющее $1\leqslant h\leqslant \ell$, такое что $\varepsilon_{w,i}=\varepsilon_{w,i}^\dagger$ для $1\leqslant i\leqslant h$ и $\varepsilon_{w,i}\neq \varepsilon_{w,i}^\dagger$ для $h+1\leqslant i\leqslant \ell$, т.е. $\mathcal{I}_w=\{1,2,\ldots,h\}$ и $\mathcal{I}_w'=\{h+1,h+2,\ldots,\ell\}$. Тогда $\eta_w=\sum\limits_{i=1}^h\varepsilon_{w,i},\,\varrho_w=\sum\limits_{i=h+1}^\ell\varepsilon_{w,i}$ и $\tau_w=\sum\limits_{i=h+1}^\ell\varepsilon_{w,i}^\dagger$. Поэтому можно записать $\mathcal{G}_w=\mathcal{K}_w\oplus\mathcal{K}_w'$ и $\mathcal{G}_w^\dagger=\mathcal{K}_w^\dagger\oplus\mathcal{K}_w''$, где

$$\mathcal{K}_{w} = \bigoplus_{j=0}^{a_{w}-1} \left(\underbrace{\varepsilon_{w,1} \mathcal{F}_{w,j}, \varepsilon_{w,2} \mathcal{F}_{w,j}, \dots, \varepsilon_{w,h} \mathcal{F}_{w,j}, 0, \dots, 0}_{\mathcal{K}_{w,j}} \right),$$

$$\mathcal{K}'_{w} = \bigoplus_{j=0}^{a_{w}-1} \left(\underbrace{0, \dots, 0, \varepsilon_{w,h+1} \mathcal{F}_{w,j}, \varepsilon_{w,h+2} \mathcal{F}_{w,j}, \dots, \varepsilon_{w,\ell} \mathcal{F}_{w,j}}_{\mathcal{K}'_{w,j}} \right),$$

$$\mathcal{K}^{\dagger}_{w} = \bigoplus_{j=0}^{a_{w}-1} \left(\underbrace{\varepsilon_{w,1} \mathcal{F}^{\dagger}_{w,j}, \varepsilon_{w,2} \mathcal{F}^{\dagger}_{w,j}, \dots, \varepsilon_{w,h} \mathcal{F}^{\dagger}_{w,j}, 0, \dots, 0}_{\mathcal{K}^{\dagger}_{w,j}} \right),$$

$$\mathcal{K}^{\dagger}_{w} = \bigoplus_{j=0}^{a_{w}-1} \left(\underbrace{0, \dots, 0, \varepsilon^{\dagger}_{w,h+1} \mathcal{F}^{\dagger}_{w,j}, \varepsilon^{\dagger}_{w,h+2} \mathcal{F}^{\dagger}_{w,j}, \dots, \varepsilon^{\dagger}_{w,\ell} \mathcal{F}^{\dagger}_{w,j}}_{\mathcal{K}^{\dagger}_{w,j}} \right).$$

Тогда каждое \mathcal{F}_w -подпространство \mathcal{C}_w в \mathcal{G}_w и каждое \mathcal{F}_w^\dagger -подпространство \mathcal{C}_w^\dagger в \mathcal{G}_w^\dagger можно единственным образом представить в виде $\mathcal{C}_w = \mathcal{D}_w \oplus \mathcal{D}_w'$ и $\mathcal{C}_w^\dagger = \mathcal{D}_w^\dagger \oplus \mathcal{D}_w''$, где \mathcal{D}_w и \mathcal{D}_w' (соответственно, \mathcal{D}_w^\dagger и $\mathcal{D}_w^{\dagger\prime}$) – подпространства пространств \mathcal{K}_w и \mathcal{K}_w' (соответственно, \mathcal{K}_w^\dagger и \mathcal{K}_w'') над \mathcal{F}_w (соответственно, над \mathcal{F}_w^\dagger) соответственно. Теперь заметим, что \mathcal{K}_w (соответственно, \mathcal{K}_w^\dagger) – $(\eta_w t)$ -мерное векторное пространство над \mathcal{F}_w (соответственно, над \mathcal{F}_w^\dagger). Кроме того, заметим, что \mathcal{K}_w' и $\mathcal{K}_w^{\dagger\prime}$ – $(\varrho_w t)$ -мерное и $(\tau_w t)$ -мерное пространства над \mathcal{F}_w и \mathcal{F}_w^\dagger соответственно.

Всюду далее в этом пункте элементы прямой суммы $\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ будем представлять в виде $\mathcal{A}_w + \mathcal{A}_w^{\dagger}$, где $\mathcal{A}_w \in \mathcal{K}_w$, а $\mathcal{A}_w^{\dagger} \in \mathcal{K}_w^{\dagger}$. Аналогично будем представлять элементы прямой суммы $\mathcal{F}_w \oplus \mathcal{F}_w^{\dagger}$ в виде $\alpha_w + \alpha_w^{\dagger}$, где $\alpha_w \in \mathcal{F}_w$, а $\alpha_w^{\dagger} \in \mathcal{F}_w^{\dagger}$. При этом множество $\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ будем рассматривать как $(\mathcal{F}_w \oplus \mathcal{F}_w^{\dagger})$ -модуль относительно следующих операций:

$$(\mathcal{A}_w + \mathcal{A}_w^{\dagger}) + (\mathcal{B}_w + \mathcal{B}_w^{\dagger}) = (\mathcal{A}_w + \mathcal{B}_w) + (\mathcal{A}_w^{\dagger} + \mathcal{B}_w^{\dagger})$$
 (сложение) (6) $(\alpha_w + \alpha_w^{\dagger})(\mathcal{A}_w + \mathcal{A}_w^{\dagger}) = \alpha_w \mathcal{A}_w + \alpha_w^{\dagger} \mathcal{A}_w^{\dagger}$ (умножение на скаляры) (7)

для любых $\mathcal{A}_w + \mathcal{A}_w^{\dagger}$, $\mathcal{B}_w + \mathcal{B}_w^{\dagger} \in \mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ и $\alpha_w + \alpha_w^{\dagger} \in \mathcal{F}_w \oplus \mathcal{F}_w^{\dagger}$. Далее, для $\delta \in \{0, *, \gamma\}$ заметим, что $[\mathcal{A}_w + \mathcal{A}_w^{\dagger}, \mathcal{B}_w + \mathcal{B}_w^{\dagger}]_{\delta} = [\mathcal{A}_w, \mathcal{B}_w^{\dagger}]_{\delta} + [\mathcal{A}_w^{\dagger}, \mathcal{B}_w]_{\delta} \in \mathcal{F}_w \oplus \mathcal{F}_w^{\dagger}$ для любых $\mathcal{A}_w + \mathcal{A}_w^{\dagger}, \mathcal{B}_w + \mathcal{B}_w^{\dagger} \in \mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$. Теперь для $\delta \in \{0, *, \gamma\}$ обозначим через $[\cdot, \cdot]_{\delta}|_{(\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}) \times (\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger})}$ ограничение полуторалинейной формы $[\cdot, \cdot]_{\delta}$ на $(\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}) \times (\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger})$. Тогда имеет место следующая

 Π емма 3. Пусть $e_1 + 1 \leq w \leq e_2$ фиксировано. Для $\delta \in \{0, *, \gamma\}$ справедливы следующие утверждения:

- (a) $\mathcal{K}_w \oplus \mathcal{K}_w^\dagger$ является свободным $(\mathcal{F}_w \oplus \mathcal{F}_w^\dagger)$ -модулем ранга $\eta_w t;$
- (b) Форма $[\cdot\,,\cdot]_{\delta}$ $|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$ рефлексивна и невырождена;
- (c) Форма $[\cdot,\cdot]_{\delta}$ $|_{(\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}) \times (\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger})}$ эрмитова при $\delta \in \{0,*\}$ и антиэрмитова при $\delta = \gamma$.

Если $\mathcal{L}_w - \mathcal{F}_w$ -подпространство в \mathcal{K}_w , а $\mathcal{L}_w^{\dagger} - \mathcal{F}_w^{\dagger}$ -подпространство в \mathcal{K}_w^{\dagger} , то их прямая сумма $\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger}$ является $(\mathcal{F}_w \oplus \mathcal{F}_w^{\dagger})$ -подмодулем модуля $\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ относительно операций (6), (7). Для $\delta \in \{0, *, \gamma\}$ ортогональное дополнение к $\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger}$ относительно формы $[\cdot, \cdot]_{\delta}|_{(\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}) \times (\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger})}$ определяется как

$$(\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger})^{\perp_{\delta}} = \{\mathcal{A}_w + \mathcal{A}_w^{\dagger} \in \mathcal{K}_w \oplus \mathcal{K}_w^{\dagger} : [\mathcal{A}_w + \mathcal{A}_w^{\dagger}, \mathcal{B}_w + \mathcal{B}_w^{\dagger}]_{\delta} = 0$$
 для всех $\mathcal{B}_w + \mathcal{B}_w^{\dagger} \in \mathcal{L}_w \oplus \mathcal{L}_w^{\dagger} \}.$

Легко видеть, что $(\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger})^{\perp_{\delta}}$ является $(\mathcal{F}_w \oplus \mathcal{F}_w^{\dagger})$ -подмодулем $\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ и что $(\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger})^{\perp_{\delta}} = \mathcal{L}_w^{\dagger_{\perp_{\delta}}} \oplus \mathcal{L}_w^{\perp_{\delta}}$. Для $\delta \in \{0, *, \gamma\}$ говорят, что $(\mathcal{F}_w \oplus \mathcal{F}_w^{\dagger})$ -подмодуль $\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger}$ модуля $\mathcal{K}_w \oplus \mathcal{K}_w^{\dagger}$ невырожден, если он удовлетворяет условию $(\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger}) \cap (\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger})^{\perp_{\delta}} = \{0\}$, т.е. $(\mathcal{L}_w \oplus \mathcal{L}_w^{\dagger}) \cap (\mathcal{L}_w^{\dagger_{\perp_{\delta}}} \oplus \mathcal{L}_w^{\perp_{\delta}}) = \{0\}$.

Из леммы 3(c) получаем, что $[\cdot\,,\cdot]_{\gamma}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$ является антиэрмитовой формой. Вначале приведем ее к эрмитовой форме $[\cdot\,,\cdot]_{\gamma^{(H)}}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$. С этой целью заметим для $e_1+1\leqslant w\leqslant e_2$, что $\tau_{1,-1}$ является автоморфизмом \mathcal{F}_w порядка два, так что существует элемент $\varkappa_w(\neq 0)\in\mathcal{F}_w$, такой что $\varkappa_w\neq\tau_{1,-1}(\varkappa_w)$. Тогда $\zeta_w=\varkappa_w-\tau_{1,-1}(\varkappa_w)(\neq 0)\in\mathcal{F}_w\oplus\mathcal{F}_w^\dagger$ удовлетворяет соотношению $\tau_{1,-1}(\zeta_w)=-\zeta_w$. Теперь определим отображение $[\cdot\,,\cdot]_{\gamma^{(H)}}:(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\to\mathcal{F}_w\oplus\mathcal{F}_w^\dagger$ как $[\mathcal{A}_w+\mathcal{A}_w^\dagger,\mathcal{B}_w+\mathcal{B}_w^\dagger]_{\gamma^{(H)}}=\zeta_w[\mathcal{A}_w+\mathcal{A}_w^\dagger,\mathcal{B}_w+\mathcal{B}_w^\dagger]_{\gamma}$ для всех $\mathcal{A}_w+\mathcal{A}_w^\dagger,\mathcal{B}_w+\mathcal{B}_w^\dagger\in\mathcal{K}_w\oplus\mathcal{K}_w^\dagger$. Легко видеть, что отображение $[\cdot\,,\cdot]_{\gamma^{(H)}}$ является невырожденной эрмитовой формой на $(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)$. Далее, заметим, что $(\mathcal{F}_w\oplus\mathcal{F}_w^\dagger)$ -подмодуль модуля $\mathcal{K}_w\oplus\mathcal{K}_w^\dagger$ невырожден относительно формы $[\cdot\,,\cdot]_{\gamma^{(H)}}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$. Поэтому всюду далее вместо антиэрмитовой невырожденной формы $[\cdot\,,\cdot]_{\gamma}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$. Поэтому всюду далее вместо антиэрмитовой невырожденной формы $[\cdot\,,\cdot]_{\gamma}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$ будем рассматривать эрмитову невырожденную форму $[\cdot\,,\cdot]_{\gamma^{(H)}}|_{(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)\times(\mathcal{K}_w\oplus\mathcal{K}_w^\dagger)}$.

В следующем предложении определяется число \mathfrak{D}_w в случае, когда $e_1+1\leqslant w\leqslant \leqslant e_2$, а $\delta\in\{0,*,\gamma^{(H)}\}$, и тем самым, $\delta\in\{0,*,\gamma\}$.

Предложение 5. Пусть $e_1+1\leqslant w\leqslant e_2$ фиксировано. Для $\delta\in\{0,*,\gamma^{(H)}\}$ имеем

$$\mathfrak{D}_{w} = \sum_{k=0}^{\eta_{w}t} \sum_{k_{1}=0}^{\varrho_{w}t} \sum_{k_{2}=0}^{\tau_{w}t} q^{kd_{w}(\eta_{w}t-k)} \begin{bmatrix} \eta_{w}t \\ k \end{bmatrix}_{q^{d_{w}}} \begin{bmatrix} \varrho_{w}t \\ k_{1} \end{bmatrix}_{q^{d_{w}}} \begin{bmatrix} \tau_{w}t \\ k_{2} \end{bmatrix}_{q^{d_{w}}}.$$

 \mathcal{J}_0 к а з а т е л ь с т в о. Заметим, что согласно теореме 3 число \mathfrak{D}_w равно числу различных пар $(\mathcal{C}_w,\mathcal{C}_w^\dagger)$, где $\mathcal{C}_w-\mathcal{F}_w$ -подпространство в \mathcal{G}_w , а $\mathcal{C}_w^\dagger-\mathcal{F}_w^\dagger$ -подпространство в \mathcal{G}_w^\dagger , такие что $\mathcal{C}_w\cap\mathcal{C}_w^{\dagger \perp_\delta}=\{0\}$ и $\mathcal{C}_w^\dagger\cap\mathcal{C}_w^{\perp_\delta}=\{0\}$. Далее, заметим, что каждое \mathcal{F}_w -подпространство \mathcal{C}_w в \mathcal{G}_w и каждое \mathcal{F}_w^\dagger -подпространство \mathcal{C}_w^\dagger в \mathcal{G}_w^\dagger можно единственным образом представить в виде $\mathcal{C}_w=\mathcal{D}_w\oplus\mathcal{D}_w'$ и $\mathcal{C}_w^\dagger=\mathcal{D}_w^\dagger\oplus\mathcal{D}_w'$, где \mathcal{D}_w и \mathcal{D}_w' (соответственно, \mathcal{D}_w^\dagger и \mathcal{D}_w^\dagger) – подпространства пространств \mathcal{K}_w и \mathcal{K}_w' (соответственно, к $_w^\dagger$ и \mathcal{K}_w^\dagger) над \mathcal{F}_w (соответственно, над \mathcal{F}_w^\dagger) соответственно. Теперь для каждой пары $(\mathcal{D}_w',\mathcal{D}_w^{\dagger})$ заметим, что $(\mathcal{C}_w\oplus\mathcal{C}_w^\dagger)\cap(\mathcal{C}_w^{\dagger \perp_\delta}\oplus\mathcal{C}_w^{\perp_\delta})=\{0\}$ тогда и только тогда, когда $(\mathcal{D}_w\oplus\mathcal{D}_w^\dagger)\cap(\mathcal{D}_w^{\dagger \perp_\delta}\oplus\mathcal{D}_w^{\perp_\delta})=\{0\}$. Кроме того, заметим, что $(\mathcal{D}_w\oplus\mathcal{D}_w^\dagger)\cap(\mathcal{D}_w^{\dagger \perp_\delta}\oplus\mathcal{D}_w^{\perp_\delta})=\{0\}$

= $\{0\}$ тогда и только тогда, когда $\mathcal{D}_w \cap \mathcal{D}_w^{\dagger \perp_{\delta}} = \{0\}$ и $\mathcal{D}_w^{\dagger} \cap \mathcal{D}_w^{\perp_{\delta}} = \{0\}$. Из леммы 1 получаем, что есть ровно

$$\mathfrak{E}_{w} = \sum_{k_{1}=0}^{\varrho_{w}t} \sum_{k_{2}=0}^{\tau_{w}t} \begin{bmatrix} \varrho_{w}t \\ k_{1} \end{bmatrix}_{q^{d_{w}}} \begin{bmatrix} \tau_{w}t \\ k_{2} \end{bmatrix}_{q^{d_{w}}}$$

различных способов выбрать пару $(\mathcal{D}'_w, \mathcal{D}^{\dagger}_w)$. Таким образом, чтобы вычислить \mathfrak{D}_w , достаточно определить число \mathfrak{F}_w различных способов выбрать пару $(\mathcal{D}_w, \mathcal{D}^{\dagger}_w)$, где $\mathcal{D}_w - \mathcal{F}_w$ -подпространство в \mathcal{K}_w , а $\mathcal{D}^{\dagger}_w - \mathcal{F}^{\dagger}_w$ -подпространство в \mathcal{K}^{\dagger}_w , такие что $\mathcal{D}_w \cap \mathcal{D}^{\dagger}_w$ = $\{0\}$ и $\mathcal{D}^{\dagger}_w \cap \mathcal{D}^{\dagger}_w$ = $\{0\}$. Из этих рассуждений заключаем, что \mathfrak{F}_w равно числу различных невырожденных $(\mathcal{F}_w \oplus \mathcal{F}^{\dagger}_w)$ -подмодулей $\mathcal{D}_w \oplus \mathcal{D}^{\dagger}_w$ модуля $\mathcal{K}_w \oplus \mathcal{K}^{\dagger}_w$, где $\mathcal{D}_w - \mathcal{F}_w$ -подпространство в \mathcal{K}_w , а $\mathcal{D}^{\dagger}_w - \mathcal{F}^{\dagger}_w$ -подпространство в \mathcal{K}^{\dagger}_w . Тогда, рассуждая, как в [13, предложение 3.5], получаем

$$\mathfrak{F}_w = 2 + \sum_{k=1}^{\eta_w t - 1} q^{k(\eta_w t - k)d_w} \begin{bmatrix} \eta_w t \\ k \end{bmatrix}_{q^{d_w}}.$$

Отсюда

$$\mathfrak{D}_w = \mathfrak{E}_w \mathfrak{F}_w = \sum_{k=0}^{\eta_w t} \sum_{k_1=0}^{\varrho_w t} \sum_{k_2=0}^{\tau_w t} q^{k d_w (\eta_w t - k)} \begin{bmatrix} \eta_w t \\ k \end{bmatrix}_{q^{d_w}} \begin{bmatrix} \varrho_w t \\ k_1 \end{bmatrix}_{q^{d_w}} \begin{bmatrix} \tau_w t \\ k_2 \end{bmatrix}_{q^{d_w}}. \quad \blacktriangle$$

4.4. Определение числа \mathfrak{D}_s для $e_2 + 1 \leq s \leq e_3$. В следующем предложении определяется число \mathfrak{D}_s в случае $e_2 + 1 \leq s \leq e_3$ и $\delta \in \{0, *, \gamma\}$.

Предложение 6. Пусть $e_2+1\leqslant s\leqslant e_3$ фиксировано. Для $\delta\in\{0,*,\gamma\}$ имеем

$$\mathfrak{D}_s = \sum_{a=0}^{\varepsilon_s t} \begin{bmatrix} \varepsilon_s t \\ a \end{bmatrix}_{q^{d_s}}.$$

 \mathcal{J}_0 к а з а т е л ь с т в о. Из теоремы 3 получаем, что число \mathfrak{D}_s равно числу различных \mathcal{F}_s -подпространств в \mathcal{G}_s для $e_2+1\leqslant s\leqslant e_3$. Так как $\dim_{\mathcal{F}_s}\mathcal{G}_s=\varepsilon_s t$, то применяя лемму 1, получаем $\mathfrak{D}_s=\sum_{s=0}^{\varepsilon_s t} \begin{bmatrix} \varepsilon_s t \\ a \end{bmatrix}_{a^{d_s}}$.

Доказательство теоремы 4. Подставляя значения \mathfrak{D}_{ν} $(1\leqslant \nu\leqslant e_1)$ из предложений 1–4, значения \mathfrak{D}_{w} $(e_1+1\leqslant w\leqslant e_2)$ из предложения 5 и значения \mathfrak{D}_{s} $(e_2+1\leqslant s\leqslant e_3)$ из предложения 6 в формулу (1), получаем требуемый результат. \blacktriangle

Следующие примеры иллюстрируют теорему 4.

Пример 1. Пусть $q=5,\ t=2,\ m_1=m_2=3,\ \omega_1=1$ и $\omega_2=2,$ так что $n=m_1+m_2=6$ и $\Omega=(\omega_1,\omega_2)=(1,2).$ Тогда $x^{m_1}-\omega_1=x^3-1=(x+4)(x^2+x+1)$ и $x^{m_2}-\omega_2=x^3-2=(x+2)(x^2+3x+4)$ – неприводимые разложения многочленов $x^{m_1}-\omega_1$ и $x^{m_2}-\omega_2$ над \mathbb{F}_5 соответственно. Возьмем $g_1(x)=x+4,\ g_2(x)=x^2+x+1,\ g_3(x)=x+2$ и $g_4(x)=x^2+3x+4.$ Тогда получаем, что $g_u^\dagger(x)=g_u(x)$ для $1\leqslant u\leqslant 2,\ g_3^\dagger(x)\neq g_3(x),\ g_4^\dagger(x)\neq g_4(x)$ и $g_3^\dagger(x)\neq g_4(x),$ откуда $d_1=d_3=1,\ d_2=d_4=2,\ \varepsilon_{1,1}=\varepsilon_{2,1}=\varepsilon_{3,2}=\varepsilon_{4,2}=1$ и $\varepsilon_{1,2}=\varepsilon_{2,2}=\varepsilon_{3,1}=\varepsilon_{4,1}=0.$ Отсюда вытекает, что $\varepsilon_1=\varepsilon_2=\varepsilon_3=\varepsilon_3=\varepsilon_4=1.$ Вычисления с помощью системы компьютерной алгебры Мадта показывают, что существует ровно 39424 различных аддитивных Ω -МС-кодов длины 6 над $\mathbb{F}_{5^2},$ имеющих дополнительные 0-двойственные, что согласуется с теоремой 4.

Пример 2. Пусть $q=5,\ t=2,\ m_1=2,\ m_2=4,\ \omega_1=3$ и $\omega_2=4,$ так что $n=m_1+m_2=6$ и $\Omega=(\omega_1,\omega_2)=(3,4).$ Тогда $x^{m_1}-\omega_1=x^2-3=x^2+2$ и $x^{m_2}-\omega_2=4$

 $=x^4-4=(x^2+2)(x^2+3)$ – неприводимые разложения многочленов $x^{m_1}-\omega_1$ и $x^{m_2}-\omega_2$ над \mathbb{F}_5 соответственно. Возьмем $g_1(x)=x^2+2$ и $g_2(x)=x^2+3$. Тогда получаем, что $g_1^\dagger(x)=g_2(x)$, откуда $d_1=d_2=2$, $\varepsilon_{1,1}=\varepsilon_{1,2}=\varepsilon_{1,2}^\dagger=1$, $\varepsilon_{1,1}^\dagger=0$, $\mathcal{I}_1=\{2\}$ и $\mathcal{I}_1'=\{1\}$. Отсюда вытекает, что $\eta_1=\varrho_1=1$ и $\tau_1=0$. Вычисления с помощью системы компьютерной алгебры Мадта показывают, что существует ровно 18256 различных аддитивных Ω -МС-кодов длины 6 над \mathbb{F}_{5^2} , имеющих дополнительные *-двойственные, что согласуется с теоремой 4.

Пример 3. Пусть $q=7,\ t=2,\ m_1=2,\ m_2=4,\ m_3=6,\ \omega_1=5,\ \omega_2=2$ и $\omega_3=6$, так что $n=m_1+m_2+m_3=12$ и $\Omega=(\omega_1,\omega_2,\omega_3)=(5,2,6)$. Тогда $x^{m_1}-\omega_1=x^2-5=x^2+2,\ x^{m_2}-\omega_2=x^4-2=(x+2)(x+5)(x^2+4)$ и $x^{m_3}-\omega_3=x^6-6=(x^2+1)(x^2+2)(x^2+4)$ — неприводимые разложения многочленов $x^{m_1}-\omega_1,\ x^{m_2}-\omega_2$ и $x^{m_3}-\omega_3$ над \mathbb{F}_7 соответственно. Возьмем $g_1(x)=x^2+1,\ g_2(x)=x^2+2,\ g_3(x)=x^2+4,\ g_4(x)=x+2$ и $g_5(x)=x+5$. Тогда получаем, что $g_1^\dagger(x)=g_1(x),\ g_2^\dagger(x)=g_3(x),\ g_4^\dagger(x)\neq g_4(x),\ g_5^\dagger(x)\neq g_5(x)$ и $g_4^\dagger(x)\neq g_5(x),$ откуда $d_1=d_2=d_3=2,\ d_4=d_5=1,\ \varepsilon_{1,3}=\varepsilon_{2,1}=\varepsilon_{2,3}=\varepsilon_{4,2}=\varepsilon_{5,2}=\varepsilon_{2,2}^\dagger=\varepsilon_{2,3}^\dagger=1,$ $\varepsilon_{1,1}=\varepsilon_{1,2}=\varepsilon_{2,2}=\varepsilon_{4,1}=\varepsilon_{4,3}=\varepsilon_{5,1}=\varepsilon_{5,3}=\varepsilon_{2,1}^\dagger=0,\ \mathcal{I}_2=\{3\}$ и $\mathcal{I}_2'=\{1,2\}$. Отсюда вытекает, что $\varepsilon_1=\varepsilon_4=\varepsilon_5=\eta_2=\varrho_2=\tau_2=1$ и $\varepsilon_2=2$.

Вычисления с помощью системы компьютерной алгебры Magma показывают, что существует ровно 29172915200 различных аддитивных Ω -MC-кодов длины 12 над \mathbb{F}_{7^2} , имеющих дополнительные γ -двойственные, что согласуется с теоремой 4.

Замечание 1. Заметим, что теорема 3.1 работы [13] вытекает из теоремы 4 при выборе $\ell=1$ и $\omega_1=1$, а теорема 5.6 работы [15] – при выборе $\ell=1$ и $\omega_1=-1$.

§ 5. Заключение и направления дальнейшей работы

В статье исследованы аддитивные МС-коды с дополнительными двойственными над конечными полями относительно обычной билинейной, эрмитовой и *-формы следа. Выведено необходимое и достаточное условие, при котором аддитивный МС-код имеет дополнительный двойственный. Также получены явные формулы для числа аддитивных МС-кодов с дополнительными двойственными. Эти формулы полезны для классификации аддитивных МС-кодов с дополнительными двойственными над конечными полями с точностью до эквивалентности. Результаты, полученные в [13, 15], вытекают из наших результатов как частные случаи (см. замечание 1). В последующей работе мы покажем, что класс аддитивных МС-кодов с дополнительными двойственными над конечными полями является асимптотически хорошим. Было бы интересно получить классификацию аддитивных МС-кодов с дополнительными двойственными над конечными полями с точностью до эквивалентности с помощью полученных формул.

Авторы заявляют об отсутствии конфликта интересов в отношении содержания настоящей статьи.

СПИСОК ЛИТЕРАТУРЫ

- Massey, J.L. Linear Codes with Complementary Duals // Discrete Math. 1992. V. 106–107.
 P. 337–342. https://doi.org/10.1016/0012-365X(92)90563-U
- Yang X., Massey J.L. The Condition for a Cyclic Code to Have a Complementary Dual // Discrete Math. 1994. V. 126. № 1-3. P. 391-393. https://doi.org/10.1016/0012-365X(94) 90283-6
- 3. Sendrier N. Linear Codes with Complementary Duals Meet the Gilbert-Varshamov Bound // Discrete Math. 2004. V. 285. № 1-3. P. 345-347. https://doi.org/10.1016/j.disc.2004.05.005

- 4. Dougherty S.T., Kim J.L., Özkaya B., Sok L., Solé P. The Combinatorics of LCD Codes: Linear Programming Bound and Orthogonal Matrices // Int. J. Inform. Coding Theory. 2017. V. 4. № 2–3. P. 116–128. https://doi.org/10.1504/IJICOT.2017.083827
- 5. Carlet C., Guilley S. Complementary Dual Codes for Counter-measures to Side-Channel Attacks // Adv. Math. Commun. 2016. V. 10. № 1. P. 131-150. http://dx.doi.org/10.3934/amc.2016.10.131
- Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A. Quantum Error Correction via Codes over GF(4) // IEEE Trans. Inform. Theory. 1998. V. 44. № 4. P. 1369–1387. https: //doi.org/10.1109/18.681315
- 7. Bierbrauer J., Edel Y. Quantum Twisted Codes // J. Combin. Des. 2000. V. 8. № 3. P. 174-188. https://doi.org/10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0. CO;2-T
- 8. Rains E.M. Nonbinary Quantum Codes // IEEE Trans. Inform. Theory. 1999. V. 45. № 6. P. 1827–1832. https://doi.org/10.1109/18.782103
- 9. Huffman W.C. Additive Cyclic Codes over \mathbb{F}_4 // Adv. Math. Commun. 2007. V. 1. Nº 4. P. 427–459. http://doi.org/10.3934/amc.2007.1.427
- 10. Huffman W.C. Additive Cyclic Codes over \mathbb{F}_4 of Even Length // Adv. Math. Commun. 2008. V. 2. Nº 3. P. 309-343. http://doi.org/10.3934/amc.2008.2.309
- 11. Huffman W.C. Cyclic \mathbb{F}_q -Linear \mathbb{F}_{q^t} -Codes // Int. J. Inf. Coding Theory. 2010. V. 1. \mathbb{N}^2 3. P. 249–284. http://doi.org/10.1504/IJICOT.2010.032543
- 12. Sharma A., Kaur T. On Cyclic \mathbb{F}_q -Linear \mathbb{F}_{q^t} -Codes // Int. J. Inform. Coding Theory. 2017. V. 4. Nº 1. P. 19-46. https://doi.org/10.1504/IJICOT.2017.081457
- 13. Sharma A., Kaur T. Enumeration of Complementary-Dual Cyclic \mathbb{F}_q -Linear \mathbb{F}_{q^t} -Codes // Discrete Math. 2018. V. 341. Nº 4. P. 965–980. https://doi.org/10.1016/j.disc.2017. 12.006
- 14. Cao Y., Chang X., Cao Y. Constacyclic \mathbb{F}_q -Linear $\mathbb{F}_{q\ell}$ -Codes // Appl. Algebra Engrg. Comm. Comput. 2015. V. 26. No 4. P. 369–388. https://doi.org/10.1007/s00200-015-0257-4
- 15. Kaur T., Sharma A. Constacyclic Additive Codes over Finite Fields // Discrete Math. Algorithms Appl. 2017. V. 9. № 3. Article no. 1750037 (35 pp.). https://doi.org/10.1142/S1793830917500379
- 16. Sharma S., Sharma A. Multi-twisted Additive Codes over Finite Fields // Beitr. Algebra Geom. 2021. Online First article (34 pp.). https://doi.org/10.1007/s13366-021-00576-1
- 17. Grove L.C. Classical Groups and Geometric Algebra. Providence, RI: Amer. Math. Soc., 2002.
- 18. Taylor D.E. The Geometry of the Classical Groups. Berlin: Heldermann, 1992.
- 19. Szymiczek K. Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms. Amsterdam: Gordon & Breach, 1997.
- 20. BrualdiR.A. Introductory Combinatorics. Upper Saddle River, NJ: Pearson/Prentice Hall, 2010.

Шарма Сандип Шарма Анурадха[™] Отделение математики, Институт информационных технологий Индрапрастха (IIIT-Delhi), Нью-Дели, Индия ™anuradha@iiitd.ac.in

Поступила в редакцию 05.08.2021 После доработки 05.08.2021 Принята к публикации 23.01.2022