Журнал прикладной химии. 2021. Т. 94. Вып. 7

МЕДЬСОДЕРЖАЩИЕ НАНОМАТЕРАЛЫ НА ОСНОВЕ СТЕАРАТА МЕДИ(II) КАК АНТИФРИКЦИОННЫЕ ДОБАВКИ К СМАЗОЧНЫМ МАСЛАМ

© И. Е. Уфлянд¹, И. Н. Щербаков¹, Л. Д. Попов¹, Е. Г. Дроган², М. А. Таутиева², В. Э. Бурлакова²

 Южный федеральный университет, 344090, г. Ростов-на-Дону, ул. Зорге, д. 7
Донской государственный технический университет, 344000, г. Ростов-на-Дону, пл. Гагарина, д. 1 E-mail: ieuflyand@sfedu.ru

> Поступила в Редакцию 23 апреля 2021 г. После доработки 18 июня 2021 г. Принята к публикации 18 июня 2021 г.

Разработан простой и доступный метод получения медьсодержащих трибологических наноматериалов термолизом стеарата меди(II) при 300°С. Полученные материалы исследованы методами рентгеновской дифракции, атомно-силовой микроскопии и седиментационного анализа. Показано, что размер кристаллитов не зависит от времени термолиза. Изучены трибологические свойства смазочных материалов с добавками полученных медьсодержащих наноматериалов (0.025–0.2%) на торцевой машине трения. При оптимальной концентрации наноматериалов (0.05%) коэффициент трения является самым низким.

Ключевые слова: *стеарат меди(II); медьсодержащие наноматериалы; термолиз; антифрикционные добавки; смазочные масла* DOI: 10.31857/S0044461821070070

В последнее время значительно возросло внимание исследователей к использованию нанопорошков металлов в качестве добавок к смазочным материалам [1]. Основные преимущества таких смазочных материалов обусловлены их плакирующей способностью, заключающейся в идеальном заполнении микродефектов поверхности трения наночастицами металлов в составе смазочной среды, что приводит к значительному снижению шероховатости трущихся поверхностей и коэффициента трения. В настоящее время получен широкий спектр наноматериалов, используемых в качестве присадок к смазочным маслам. Среди них материалы, содержащие наночастицы металлов, их оксидов и сульфидов [2-4]. Особый интерес вызывают медьсодержащие наноматериалы благодаря своей способности образовывать обладающую уникальными свойствами медную пленку на поверхности трущихся металлов [5]. Свойства, возможность и эффективность направленного использования наноматериалов в трибологии определяются

их составом, структурой и морфологией [6], а также условиями получения [7].

Среди существующих методов получения термолиз соединений металлов является одним из самых простых и доступных методов получения наночастиц с небольшими дефектами кристаллической структуры, узким распределением по размерам и настраиваемыми формами [8, 9]. Среди несомненных преимуществ термолиза следует отметить экономичность и экологичность, возможность контроля условий синтеза, отсутствие необходимости в специальном оборудовании, обеспечение контроля состава, однородности, чистоты полученных наноматериалов [10, 11].

Прекурсоры получения наночастиц металлов должны характеризоваться высокой чистотой, простотой обращения, удобством хранения, нетоксичностью, разложением при низких температурах и т. д. Важным классом таких прекурсоров являются карбоксилаты металлов [12, 13]. Среди них наибольшее внимание привлекли соли металлов с длинноцепочечными карбоновыми кислотами, поскольку карбоксилат-ионы являются эффективными стабилизаторами образующихся наночастиц.

Цель работы — получение медьсодержащих наноматериалов термолизом стеарата меди и исследование возможности их использования в качестве металлоплакирующей добавки для снижения трения и износа при конструировании смазочных материалов.

Экспериментальная часть

Стеарат натрия ($C_{17}H_{35}COONa$) (х.ч., ООО «Химстаб» и ≥99%, Sigma-Aldrich, кат. номер 800673), CuSO₄·5H₂O (х.ч., ≥99.5%, ООО «ХимСоюз»), этанол (ч.д.а., ООО «Иреа 2000»), бензол и гексан (х.ч., ООО «Компонент-Реактив»), вазелиновое масло (ООО АО «РЕАХИМ») были использованы без дополнительной очистки.

Стеарат меди $(C_{17}H_{35}COO)_2$ Си получали по ранее описанной методике [14] взаимодействием водных растворов $C_{17}H_{35}COONa$ и CuSO₄·5H₂O. Более низкая чистота исходного отечественного реагента является причиной необходимости введения дополнительной стадии очистки продукта реакции из бензола.

Навеску (C₁₇H₃₅COO)₂Cu (0.6–0.8 г) в фарфоровом тигле помещали в муфельную печь на 20–270 мин. Печь нагревали со скоростью 50 град·мин⁻¹ до достижения температуры 300°С и выдерживали при этой температуре в течение 1 ч. Затем печь охлаждали до комнатной температуры, целевой продукт измельчали ультразвуковой обработкой в этаноле в течение 20 мин, полученный коллоидный раствор сушили на воздухе.

Термогравиметрию (ТГ) и дифференциальную сканирующую калориметрию (ДСК) проводили на дериватографе Perkin Elmer Diamond TG/DTA на воздухе со стандартом α-Al₂O₃ со скоростью 100 град мин⁻¹ в интервале 20–800°С.

Рентгенофазовый анализ (РФА) проводили на дифрактометре ARLTMX'TRA Powder (Thermo Fisher Scientific) с излучением $Cu_{K_{\alpha}}$ ($\lambda_{Cu} = 1.54184$ Å) в диапазоне 2 $\theta = 5-80^{\circ}$ со скоростью сканирования 50 град мин⁻¹ при температуре 25°С для определения фазового состава и размера кристаллитов.

Атомно-силовая микроскопия (ACM) выполнялась на PHYWE Compact AFM (тип зонда 190Al-G) в полуконтактном режиме с использованием зонда из монокристаллического кремния с алюминиевым покрытием со скоростью сканирования 0.3 мс/линия. Для анализа изображений использовалось программное обеспечение Gwyddion 2.10. Перед анализом ACM полученные наноматериалы подвергали ультразвуковой обработке в этаноле в течение 30 мин, затем коллоидный раствор наноматериалов наносили на покровное стекло и сушили на воздухе.

Для седиментационного анализа была использована центрифуга CPS Disk Centrifuge DC 24000 (CPS). Образцы анализировали, вводя 0.1 мл их водной дисперсии в градиентный раствор. Предварительно был получен образец дисперсии наночастиц меди в дистиллированной воде обработкой в ультразвуковой ванне в течение 30 мин.

В качестве смазочного состава для изучения трения пары сталь-сталь использовали вазелиновое масло, а также вазелиновое масло с добавлением наноматериалов. Вазелиновое масло использовали в качестве основы для смазочных композиций, так как оно практически не содержит примесей и является инактивной смазочной средой. Смазочные композиции готовили путем смешения вазелинового масла и полученных нанопорошков в определенной пропорции в стеклянном стакане и диспергировали в ультразвуковом шейкере PSB-Hals в течение 15 мин для обеспечения равномерного диспергирования и хорошей стабильности суспензии.

Трибологические испытания проводили на торцевой машине трения типа УМТ-200 (НПЦ «Конверсресурс»). Скорость вращения диска без нагрузки не превышала 2900 об мин⁻¹, нормальная сила испытуемых образцов находилась в пределах от 0 до 200 кг. Общий диаметр плоского образца составлял 50 мм, диаметр каждого подвижного стержня (3 шт.) — 10 мм, площадь трения на конце каждого стержня — 1.5 см². Перед трибологическим испытанием исходные поверхности стального диска и стальных пальцев были подготовлены шлифованием и полировкой наждачной бумагой зернистостью 600, промыты дистиллированной водой, затем гексаном и высушены на воздухе. Смазочный состав помещали в металлическую емкость, к которой прикрепляли резьбу с отверстием под стальной диск. Исследование изменения коэффициента трения проводили при заданной нагрузке и температуре окружающей среды 25°С в течение 60 мин. Скорость скольжения образцов составляла 0.35 м с⁻¹, длина пути скольжения – 2400 м. Каждый тест повторяли 3 раза.

Обсуждение результатов

На кривой ДСК ($C_{17}H_{35}COO$)₂Cu (рис. 1) присутствует только один эндопик при 111°C, который соответствует температуре перехода от твердой фазы к жидкой. Это соединение термически стабильно до 260°C, а дальнейшее нагревание приводит к разложе-

Рис. 1. Кривые термогравиметрии и дифференциальной сканирующей калориметрии образца (C₁₇H₃₅COO)₂Cu.

нию комплекса. В интервале температур 260–430°C наблюдается потеря массы 74%. Поведение кривой в этом интервале свидетельствует об эндотермическом характере процесса. Масса твердого остатка 26%. С учетом данных ТГ дальнейшие исследования по получению медьсодержащих наноматериалов проводили при температурах выше 300°C.

В процессе термолиза (С17Н35СОО)2Си металлический порошок не образуется в течение 20 мин (рис. 2, a). Увеличение времени термолиза до 60 мин приводит к образованию металлической меди, что подтверждается наличием типичных пиков отражения в областях 42° и 50° (рис. 2, б). Последующее увеличение времени термолиза до 80 мин сопровождается увеличением интенсивности пиков, соответствующих металлической меди (рис. 2, в). На дифрактограммах продуктов (рис. 2, г, д), полученных термолизом (С17Н35СОО)2Си в течение 160 и 270 мин, появляется пик в области угла $2\theta = 38^{\circ}$, характеризующий оксид меди(I). В дальнейших исследованиях с использованием седиментационного анализа, АСМ и трибологических испытаний использовали порошок, полученный термолизом (C₁₇H₃₅COO)₂Cu в течение 80 мин.

Данные рентгенофазового анализа показывают, что размер кристаллитов не зависит от времени термолиза (см. таблицу).

Рис. 2. Рентгенограммы образцов, синтезированных термолизом (C₁₇H₃₅COO)₂Cu при температуре 300°C в течение 20 (*a*), 60 (*б*), 80 (*в*), 160 (*г*) и 270 мин (*d*).

Частицы меди имеют преимущественно овальную форму с размером до 50 нм (рис. 3). Кроме того, встречаются частицы с формой, близкой к сферической в основании, и значительно более крупными размерами до 100–200 нм. Необходимо отметить, что размер полученных наночастиц меди практически не зависит от производителя исходных реагентов, используемых при синтезе ($C_{17}H_{35}COO$)₂Cu (рис. 3, *a'*–*в'*). Распределение частиц меди по размерам полидисперсное (рис. 4): размеры 85% частиц находятся в диапазоне 0–100 нм, максимум дифференциальной кривой соответствует частицам размером 40 нм. Полученные данные согласуются с результатами ACM и РФА.

Нанопорошок меди, полученный термолизом (C₁₇H₃₅COO)₂Cu, использовали в трибологических

Межплоскостное расстояние и	размер кристаллитов	образцов меди,	синтезированных из	$(C_{17}H_{35})$;COO) ₂ (Cu
-----------------------------	---------------------	----------------	--------------------	------------------	----------------------	----

Время термолиза, мин	20, град	Межплоскостное расстояние d, нм	Размер кристаллитов <i>D</i> _{ср} , нм
60	43	0.214	9
80	44	0.218	10
160	44	0.218	9
270	43	0.216	11

Рис. 3. Топография поверхности пленки, образовавшейся на тигле после термолиза (C₁₇H₃₅COO)₂Cu, полученного из C₁₇H₃₅COONa отечественного (OOO «Химстаб») (*a*–*в*) и зарубежного производителя (Sigma-Aldrich, кат. номер 800673) (*a*'–*в*').

а, *a*' — двумерное изображение; *б*, *б*' — трехмерное изображение; *в*, *в*' — профиль сканирования.

исследованиях на торцевой машине трения в качестве металлоплакирующей добавки в вазелиновом масле в паре трения сталь–сталь (рис. 5). Оптимальная концентрация наночастиц меди в вазелиновом масле, максимально снижающая коэффициент трения, соответствует 0.05%. Повышение содержания наночастиц приводит к увеличению коэффициента трения. Снижение коэффициента трения пары сталь–сталь обусловлено образованием на трущихся поверхностях антифрикционной плакирующей медной пленки,

Рис. 4. Распределение размера частиц порошка меди по количеству (*a*) и массе (δ).

Рис. 5. Зависимость коэффициента трения от концентрации наночастиц меди в смазке при нагрузке 49 (*a*), 98 H (*б*). *1* — 0.025%, *2* — 0.05%, *3* — 0.1%, *4* — 0.2%; *5* — вазелиновое масло.

которая значительно снижает контактные напряжения в зоне трения и тем самым предотвращает износ трибопары [12, 13].

Трибологическое поведение смазочных материалов непосредственным образом связано с шероховатостью трущихся поверхностей, которая определяется дефектами поверхности и наличием крупных кристаллических агломератов в композитных покрытиях [15, 16]. Исследование топографии стальной поверхности до и после трения (рис. 6) показывает, что максимальный разброс топографических высот вдоль оси Z для стальной поверхности до трения составляет 130 нм (рис. 6, a). На поверхности присутствуют царапины и неровности, что является результатом механической подготовки образцов перед трением. Кроме того, на поверхности стали после трения (рис. 6, δ) наблюдается множество наноразмерных частиц, которые в результате сдвиговых напряжений образуют антифрикционную защитную пленку на поверхности стали. Разброс топографических высот по

Рис. 6. Результаты атомно-силовой микроскопии поверхности стали до трения (*a*) и после трения (*б*) в вазелиновом масле с добавкой нанопорошка меди.

оси *Z* значительно уменьшается и составляет 40 нм. Профиль сканирования поверхности после трения свидетельствует о сглаживании поверхности образца в результате образования медной пленки.

Выводы

Разработанный метод получения медьсодержащих наноматериалов путем термолиза стеарата меди(II) при 300°С является простым и экономичным, что предопределяет возможность его использования для крупномасштабного производства. Основным параметром, влияющим на фазовый состав и размер кристаллитов меди, является время термолиза, что позволяет управлять процессами синтеза и получать наноматериалы определенного фазового состава в зависимости от требований к условиям эксплуатации. Исследование трибологических параметров пары трения сталь-сталь на торцевой машине трения позволило выбрать оптимальную концентрацию медьсодержащих наноматериалов в смазках. Экспериментально доказано снижение коэффициента трения на 48% при добавлении в состав вазелинового масла синтезированных наночастиц меди в сравнении с тем же показателем при трении пары сталь-сталь в чистом вазелиновом масле, что обусловлено формированием на стальной поверхности антифрикционной плакирующей медной пленки и уменьшением параметров шероховатости поверхности.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация о вкладе авторов

И. Е. Уфлянд, И. Н. Щербаков и Л. Д. Попов синтезировали стеарат меди, провели исследование его физико-химических свойств, получили медьсодержащие наноматериалы, изучили их состав, размеры и морфологию; Е. Г. Дроган, М. А. Таутиева и В. Э. Бурлакова получили смазочные материалы на основе вазелинового масла и медьсодержащих наноматериалов, провели исследование их трибологических характеристик.

Информация об авторах

Уфлянд Игорь Ефимович, д.х.н., проф., ORCID: https://orcid.org/0000-0002-7164-8168 Щербаков Игорь Николаевич, д.х.н., проф.,

ORCID: https://orcid.org/0000-0001-7799-5075

Попов Леонид Дмитриевич, к.х.н.,

- ORCID: https://orcid.org/0000-0001-9565-8005 Дроган Екатерина Геннадьевна, к.т.н.,
- ORCID: https://orcid.org/0000-0002-4002-2082 Таутиева Марина Анатольевна, к.х.н.,
- ORCID: https://orcid.org/0000-0001-5605-7709 Бурлакова Виктория Эдуардовна, д.т.н., проф.,
- ORCID: https://orcid.org/0000-0003-3779-7079

Список литературы

- Uflyand I. E., Zhinzhilo V. A., Burlakova V. E. Metalcontaining nanomaterials as lubricant additives: Stateof-the-art and future development // Friction. 2019.
 V. 7. N 2. P. 93–116.
 - https://doi.org/10.1007/s40544-019-0261-y
- [2] Thakre A. A., Thakur A. Study of behaviour of aluminium oxide nanoparticles suspended in SAE20W40 oil under extreme pressure lubrication // Ind. Lubr. Tribol. 2015. V. 67. N 4. P. 328–335. https://doi.org/10.1108/ILT-06-2014-0057
- [3] Ilie F., Covaliu C. Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive // Lubricants. 2016. V. 4. N 2. P. 12. https://doi:10.3390/lubricants4020012
- [4] Jatti V. S., Singh T. P. Copper oxide nano-particles as friction reduction and anti-wear additives in lubricating oil // J. Mech. Sci. Technol. 2015. V. 29. N 2. P. 793–798. https://doi.org/10.1007/s12206-015-0141-y
- [5] Dai W., Kheireddin B., Gao H., Liang H. Roles of nanoparticles in oil lubrication // Tribol. Int. 2016.
 V. 102. P. 88–98. https://doi.org/10.1016/j.triboint.2016.05.020
- [6] Noh T. H., Jung O.-S. Recent advances in various metal-organic channels for photochemistry beyond confined spaces // Acc. Chem. Res. 2016. V. 49. N 9. P. 1835–1843.

https://doi.org/10.1021/acs.accounts.6b00291

- [7] Goesmann H., Feldmann C. Nanoparticulate functional materials // Angew. Chem. Int. Ed. 2010.
 V. 49. N 8. P. 1362–1395. https://doi.org/10.1002/anie.200903053
- [8] Reverberi A. P., Kuznetsov N. T., Meshalkin V. P., Salerno M., Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis // Theor. Found. Chem. Eng. 2016. V. 50. N 1. P. 59–66. https://doi.org/10.1134/S0040579516010127
- [9] Eom Y, Abbas M., Noh H. Y. Morphology-controlled synthesis of highly crystalline Fe₃O₄ and CoFe₂O₄ nanoparticles using a facile thermal decomposition method // RSC Adv. 2016. V. 6. N 19. P. 15861–15867. https://doi.org/10.1039/C5RA27649G
- [10] Effenberger F. B., Couto R. A., Kiyohara P. K., Machado G., Masunaga S. H., Jardim R. F.,

Rossi L. M. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate // Nanotechnology. 2017. V. 28. N 11. ID 115603.

https://doi.org/10.1088/1361-6528/aa5ab0 [11] *Fereshteh Z., Salavati-Niasari M.* Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds // Adv. Colloid Interface Sci. 2017. N 243. P. 86–104. https://doi.org/10.1016/j.cis.2017.03.001

- [12] Kharissova O. V., Irkha V. A., Drogan E. G., Burlakova V. E., Zhinzhilo V. A., Uflyand I. E. Nanomaterials derived from a copper cinnamate complex with 4'-phenyl-2,2':6',2"-terpyridine as antifriction and anti-wear additives for oil lubricants // Tribol. Lett. 2021. V. 69. N 1. ID 16. https://doi.org/10.1007/s11249-020-01394-7
- [13] Kharissova O. V., Irkha V. A., Drogan E. G., Zagrebelnaya A. I., Burlakova V. E., Shcherbakov I. N., Popov L. D., Uflyand I. E. Copper-containing

nanomaterials derived from copper(II) laurate as antifriction additives for oil lubricants // J. Inorg. Organomet. Polym. Mater. 2021. V. 31. N 3. P. 934– 944. https://doi.org/10.1007/s10904-020-01855-5

- [14] Gönen M., Egbuchunam T. O., Balköse D., İnal F., Ülkü S. Preparation and characterization of magnesium stearate, cobalt stearate, and copper stearate and their effects on poly(vinyl chloride) dehydrochlorination // J. Vinyl Addit. Technol. 2015. V. 21. N 4. P. 235– 244. https://doi.org/10.1002/vnl.21384
- [15] Magonov S. N., Whangbo M.-H. Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis. Weinheim: Wiley, 2008. P. 47–63.
- [16] Janus J., Fauxpoint G., Arntz Y., Pelletier H., Etienne O. Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach // Dent. Mater. 2010. V. 26. N 5. P. 416–425. https://doi.org/10.1016/j.dental.2009.09.014