Журнал прикладной химии. 2021. Т. 94. Вып. 7

ИЗМЕНЕНИЕ ФУНКЦИОНАЛЬНОГО СОСТАВА ПОВЕРХНОСТИ ДРЕВЕСНОГО УГЛЯ ПРИ АКТИВАЦИИ ВОДЯНЫМ ПАРОМ

© О. Ю. Деркачева^{1,*}, Д. А. Пономарев^{2,**}, А. А. Спицын², Чу Конг Нгьи²

¹ Высшая школа технологий и энергетики,

Санкт-Петербургский государственный университет промышленных технологий и дизайна, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 4 ² Санкт-Петербургский государственный лесотехнический университет, 194021, г. Санкт-Петербург, Институтский пер., д. 5 E-mail: *derkachevaou@rambler.ru; **dponomarev1@mail.ru

> Поступила в Редакцию 19 октября 2020 г. После доработки 9 июля 2021 г. Принята к публикации 9 июля 2021 г.

Для выявления слабых систематических изменений функционального состава поверхности активированного угля использован метод математической обработки ИК-спектров пропускания, заключающийся в оценке изменения доли поглощения тех или иных групп в процессе активации. Применение указанного метода анализа спектров образцов активированного угля, полученного из стеблей бамбука и древесины березы, показало, что активация сопровождается конденсацией ароматических ядер, которая приводит к образованию полиароматических структур. Для оценки размера ароматических фрагментов было рассчитано отношение интегральной интенсивности полосы валентных колебаний ароматических кластеров при 1560 см⁻¹ к интегральной интенсивности полосы колебаний С—H-связей при 870 см⁻¹. Показано, что увеличение степени обгара угля-сырца при активации сопровождается увеличением размеров полициклических ароматических структур.

Ключевые слова: активированный уголь; ИК-спектроскопия; ароматические структуры DOI: 10.31857/S0044461821070173

Активированные угли находят широкое применение в промышленности и в быту, прежде всего как сорбенты. Последнее время активированный уголь рассматривается также как основная часть энергозапасающих устройств в водородной энергетике и для создания электродов для суперконденсаторов [1].

Получение активированных углей включает два основных этапа, заключающиеся в карбонизации растительного материала, обычно древесины, с образованием угля-сырца и затем его последующей активации. В процессе активации происходит увеличение размера пор в массе угля и удаление из них смолистых веществ, в результате чего удельная поверхность полученного сорбента значительно возрастает. Карбонизация исходного растительного материала и превращение его в углеродный материал сопровождается изменением его химического состава и практически полным исчезновением всех функциональных групп, первоначально присутствующих в основных компонентах древесины — целлюлозе и лигнине. Наглядная схема, иллюстрирующая последовательные химические превращения, происходящие с биомассой при термической обработке, представлена в работе [2]. Для выявления изменений химического строения исходной древесины при термическом разложении используют различные методы, в том числе и метод ИК-спектроскопии, который дает вполне удовлетворительные результаты [3]. При карбонизации образцов древесины или какого-либо другого растительного материала наблюдаются значительные изменения интенсивности поглощения в ИК-спектрах, связанные с исчезновением одних и образованием других функциональных групп. Интерпретация полос поглощения как в исходном, так и карбонизированном растительном сырье представлена в ряде публикаций [3-5]. При температурах карбонизации растительного материала выше 600°С полосы поглощения уширяются и ИК-спектры становятся более размытыми [6].

При активации угля-сырца происходит формирование определенных функциональных групп в зависимости от типа активации. Так, например, при активации угля кислородом, пероксидом водорода и озоном наблюдалось увеличение интенсивности полосы поглощения валентных колебаний С—О-связей простых эфиров при 1130 см⁻¹. Уменьшение интенсивностей полос поглощения при 1270 и 1050 см⁻¹, связанных с колебанием С—О-связей сложных эфиров, выявлено при обработке кислородом и пероксидом водорода, в то время как активация озоном приводила к увеличению содержания сложных эфиров. В работе также отмечен рост интенсивности полосы 1600 см⁻¹ при обработке образца кислородом [7].

Таким образом, активация угля сопровождается изменением функционального состава материала, вызывая изменение ИК-спектров поглощения. Отметим, что ИК-спектры активированного угля остаются совокупностью широких полос поглощения. Анализ подобных спектров представляет достаточно сложную задачу в силу их диффузности.

Цель работы — изучение изменения химического строения поверхности древесного угля в процессе его активации методом ИК-спектроскопии.

Экспериментальная часть

Уголь-сырец получали карбонизацией стеблей бамбука и древесины березы, нагревая растительное сырье до 700°С со скоростью 2 град мин⁻¹ в атмосфере образующихся при пиролизе газов. Для активации уголь-сырец помещали во вращающийся трубчатый реактор, в который подавались пары воды. Время активации при температуре 970°С составляло 15, 20 и 30 мин для березы и 5, 15, 20 и 25 мин для бамбука. После полного охлаждения реактора определяли потерю массы активированного угля при активации (степень обгара, %).

ИК-спектры пропускания были записаны на инфракрасном Фурье-спектрометре IRAffinity-1 (Shimadzu) в ИК-диапазоне 4000–400 см⁻¹ с разрешением 4 см⁻¹ и количеством накоплений сигнала 64. Образцы готовили в виде таблеток, содержащих 200–300 мг порошка КВг и 1–2 мг образца. В качестве спектра сравнения использовали спектр чистого порошка КВг. Для каждого образца спектры были зарегистрированы для 2–3 проб, рассчитанные данные усреднялись. Для получения информации об изменении химического строения поверхности угля до и после активации были использованы ИК-спектры поглощения образцов после предварительной обработки — учета базовой линии и нормирования. При обработке спектров и расчете интегральных интенсивностей была использована программа OPUS 7.0. (Bruker Optik GmbH 2011). Для учета рассеяния света была построена базовая линия в виде полинома, проходящая через пять точек минимального поглощения в области волновых чисел около 4000, 3700, 1660, 660 и 400 см⁻¹.

Все спектры были нормированы на интегральное поглощение в области 1660–660 см⁻¹, оцениваемое как площадь под спектральной кривой после проведения базовой линии. В этом интервале частот расположены наиболее интенсивные полосы поглощения исследованных образцов из-за образования при карбонизации и активации поглощающих на данных частотах групп и фрагментов. Полосы поглощения в области валентных колебаний СН- и ОН-групп (3800–2800 см⁻¹) являются слабыми. После нормировки значение интегрального поглощения в области 1660–660 см⁻¹ составляло 100 см⁻¹.

В работе были использованы два типа интегрирования. Интегрирование А-типа заключалось в оценке площади под спектральной кривой между указанными для этого параметра частотами и общей базовой линией, проведенной через точки спектра около 1660 и 660 см⁻¹. При оценке данных I_{950} , I_{1030} , I_{1115} , I_{1230} , I_{1380} и I_{1560} использовали данный тип интегрирования. При их вычислении были использованы следующие интервалы волновых чисел (см⁻¹): 988–908.7 (параметр I_{950}), 1072–988 см⁻¹ (параметр I_{1030}), 1190–1072 (параметр I_{1115}), 1304–1190 (параметр I_{1230}), 1485–1323 (параметр I_{1380}), 1664–1495 (параметр I_{1560}).

Интегрирование В-типа включало оценку площади между спектральной кривой и прямой линией, проведенной через точки спектра в указанных для этого параметра частотах. Характеристики I_{870} , I_{ch} и I_{oh} были рассчитаны с помощью интегрирования В-типа. Интегральные интенсивности вычислялись в следующих интервалах (см⁻¹): 907.6–845.8 см⁻¹ (параметр I_{870}), 3045–3670 см⁻¹ (параметр I_{oh}), 2831– 2956 (параметр I_{ch}).

Обсуждение результатов

ИК-спектры были зарегистрированы для семи образцов угля, полученных из бамбука, и четырех образцов угля, полученных из древесины березы. На фоне общего падения пропускания с увеличением частоты, связанного, по-видимому, с рассеянием на микропорах угля, наблюдается в определенных интервалах волновых чисел уменьшение пропускания в связи с поглощением ИК-излучения материалом (рис. 1). Можно видеть очень слабые полосы поглощения валентных колебаний ОН- и СН-групп в области 3670–3040 и 2950–2830 см⁻¹ соответственно и поглощение в диапазоне 1700–600 см⁻¹.

Для получения информации о структуре угля до и после активации ИК-спектры образцов были пересчитаны в спектры поглощения, так как интенсивность поглощения пропорциональна концентрации определенных структурных групп.

Внимание уделялось областям поглощения полученных углей в диапазонах 3700-2800 и 1700-600 см⁻¹. При активации в диапазоне 1700-600 см⁻¹ происходит перераспределение интенсивностей наблюдается уменьшение поглощения в области 1600-1400 см⁻¹ и увеличение поглощения в более низкой области волновых чисел 1200-1000 см⁻¹ (рис. 2). Для получения количественной информации о происходящих структурных изменениях были рассчитаны интенсивности поглощения в определенных частотных диапазонах. Интегральные интенсивности вычислялись в следующих интервалах (см⁻¹): 907.6-845.8 (параметр І870), 988-908.7 (параметр І950), 1072–988 (параметр I₁₀₃₀), 1190–1072 (параметр I₁₁₁₅), 1304–1190 (параметр I₁₂₃₀), 1485–1323 (параметр *I*₁₃₈₀), 1664–1495 (параметр *I*₁₅₆₀), 3670–3045 (параметр *I*_{oh}), 2956–2831 (параметр *I*_{ch}) (рис. 2).

Заметное изменение интегральных интенсивностей поглощения во всех рассмотренных интервалах волновых чисел наблюдается для образцов со степе-

Рис. 1. ИК-спектры пропускания образцов активированного угля, полученного из бамбука, степени обгара 12.12 (1) и 37.43% (2).

Рис. 2. ИК-спектры поглощения образцов активированного угля, полученного из бамбука, степени обгара 12.12 (*I*) и 37.43% (*2*) в области 1760–640 см⁻¹ после проведения базовой линии и нормирования.

нью обгара до 20% (см. таблицу). Дальнейшая активация угля-сырца не приводит к сильным изменениям интенсивностей (см. таблицу, рис. 3).

С увеличением времени активации заметно падает интенсивность полосы поглощения при 870 см-1. Данная полоса практически полностью исчезает в спектрах образцов со степенью обгара выше 20%. Поглощение при 870 см⁻¹ связано с деформационными внеплоскостными колебаниями ароматических СН-групп [8, 9]. Увеличение времени активации вызывает незначительное увеличение интенсивности поглощения около 1115 см⁻¹ (параметр I_{1115}). Поглощение при 1115 см⁻¹ связано с валентным колебанием связей С—ОН и О—Н фенольных групп. По данным работы [7], изменение длины связи С-О простых эфиров происходит с частотой около 1130 см⁻¹. Следует отметить, что интенсивность полосы около 1230 см⁻¹, связанная с колебаниями ароматических простых эфиров и эпоксидной группы [10], уменьшается. Данные наблюдения говорят о том, что в процессе активации водяным паром происходит образование конденсированных ароматических структур в результате исчезновения связей Ar-H и Ar—O—Ar. Наблюдается уменьшение поглощения в области 1600-1400 с⁻¹.

В отличие от активации бамбука активация угля-сырца из березы не приводит к столь сильным изменениям интенсивностей полос поглощения (см. таблицу). Изменения поглощения наблюдаются в спектральных диапазонах 907.6–845.8 (параметр I_{870}) и 1304–1190 см⁻¹ (параметр I_{1230}) (см. табли-

Время активации водяным паром, мин	I _{oh}	I _{ch}	I ₁₅₆₀	I ₈₇₀	I ₉₅₀	I ₁₀₃₀	<i>I</i> ₁₁₁₅	I ₁₂₃₀	I ₁₃₈₀	I ₁₅₆₀ /I ₈₇₀	Степень обгара
Уголь-сырец из бамбука											
0	15	0.8	15.0	1.26	3.4	12.2	23.8	19.5	20.0	12	0.00
5	5	0.1	13.4	0.70	5.7	12.8	22.9	18.2	17.5	19	12.12
15	12	0.5	11.5	0.35	8.3	16.5	25.4	14.9	14.0	33	16.91
20	24	0.5	9.6	0.07	11.4	17.9	25.0	12.2	12.2	138	19.77
25	29	0.6	9.4	0.03	11.3	19.5	25.8	11.1	11.1	313	37.43
30	31	0.6	9.9	0.06	10.2	18.9	25.1	11.0	12.3	165	39.82
Уголь-сырец из древесины березы											
0	26	0.7	12.6	0.86	7.6	18.2	26.8	14.4	14.5	15	0.00
15	4	0.3	12.2	0.74	8.4	16.4	24.2	15.0	15.3	17	11.25
20	25	0.7	12.6	0.53	9.0	18.3	26.6	14.0	14.3	24	15.25
30	28	0.5	12.0	0.35	8.9	16.5	24.1	13.9	14.1	34	19.62

Спектральные характеристики угля-сырца, полученного из бамбука и древесины березы, после активации водяным паром

Рис. 3. Изменение интенсивностей поглощения в диапазонах 907.6–845.8 (I_{870}), 1072–988 (I_{1030}), 3670–3045 (I_{oh}), 1664–1495 см⁻¹ (I_{1560}) в зависимости от степени обгара образцов активированного угля, полученного из бамбука.

цу). Эти изменения интенсивностей мы связываем со следующими изменениями в строении поверхности активированного угля. Уменьшение поглощения около 870 см⁻¹ вызвано уменьшением числа связей C_{Ar} —Н, так как полоса при 870 см⁻¹ связана с деформационными внеплоскостными колебаниями ароматических СН-групп. Изменение параметра I_{1230} отражает изменение количества простых эфирных связей Ar—O—C [v(C—O—C) 1230 см⁻¹]. Отметим также, что значения интенсивностей поглощения исходных (неактивированных) углей сильно различаются. Значения спектральных параметров угля-сырца из древесины березы близки к параметрам активированных образцов из бамбука со степенью обгара 12.12–16.91%.

Таким образом, данные ИК-спектроскопии показывают, что процесс активации угля-сырца, полученного из березы, так же как и в случае активации угля-сырца из бамбука, приводит к реакциям конденсации ароматических ядер структуры угля с образованием конденсированных многоядерных структур, что отражается в уменьшении количества связей С—Н и Аг—О—С. Необходимо отметить незначительное увеличение количества гидроксильных групп при активации, что проявляется в возрастании величины *I*_{oh} по мере увеличения степени обгара (см. таблицу).

Следует отметить, что соотношение интенсивностей полосы валентных колебаний углеродной плоскости при 1560 см-1 и полосы внеплоскостных колебаний С—Н-связей при 870 см⁻¹ может быть использовано для оценки размера полиароматических фрагментов [11]. При увеличении линейных размеров ароматических кластеров их площадь и соответственно интенсивность полосы валентных колебаний связей между атомами углерода (полоса при 1560 см⁻¹) будет увеличиваться и находится в квадратичной зависимости от размера фрагмента. В то же время интенсивность полосы внеплоскостных колебаний С—Н-связей (при 870 см⁻¹) зависит только линейно от размера фрагмента. Для оценки размера ароматических фрагментов по методике, приведенной в статье [11], было рассчитано отношение интегральной интенсивности полосы валентных колебаний ароматических кластеров при 1560 см⁻¹ к интегральной интенсивности полосы внеплоскостных колебаний С-Н-связей ароматических кластеров при 870 см⁻¹ (параметр I₁₅₆₀/I₈₇₀ в таблице). Можно отметить заметное увеличение этого параметра при увеличении степени обгара, что говорит об увеличении размеров ароматических кластеров при активации (рис. 3).

Выводы

На основе метода количественной обработки интенсивностей заданных областей волновых чисел ИК-спектров выявлены изменения в функциональном составе образцов активированного угля, полученного из бамбука и березы, которые состоят в уменьшении количества связей С—Н и Аг—О—С и образовании полиароматических структур. Обнаружено, что активация угля-сырца водяным паром сопровождается увеличением размеров ароматических кластеров.

Выполненное исследование демонстрирует возможность применения используемого метода математической обработки ИК-спектров для анализа материалов, обладающих очень слабым пропусканием в среднем инфракрасном диапазоне. В случае углеродных материалов из растительного сырья становится возможным качественно характеризовать изменения их химической структуры, происходящие при термической и (или) химической обработке.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация о вкладе авторов

О. Ю. Деркачева осуществляла регистрацию и математическую обработку ИК-спектров; Д. А. Пономарев готовил рукопись к публикации; А. А. Спицын выполнял карбонизацию исходного бамбука; Чу К. Н. проводил подготовку образцов исходного растительного материала и активацию угля-сырца.

Информация об авторах

Деркачева Ольга Юрьевна, к.х.н., доцент, ORCID: https://orcid.org/0000-0003-2148-0464

- *Пономарев Дмитрий Андреевич*, д.х.н., проф., ORCID: https://orcid.org/0000-0002-1327-3687
- *Спицын Андрей Александрович*, к.т.н., доцент, ORCID: https://orcid.org/0000-0003-1654-1584

Чу Конг Нгьи,

ORCID: https://orcid.org/0000-0002-3237-2496

Список литературы

[1] Ruiz V., Blanco C., Santamaria R., Ramos-Fernandez J. M., Martinez-Escandell M., Sepulveda-Escrabano A., Rodriguez-Reinoso F. An activated carbon monolith as an electrode material for supercapacitors // Carbon. 2009. V. 47. N 1. P. 195–200. https://doi.org/10.1016/j.carbon.2008.09.048

[2] Yang H., Huan B., Chen Y., Gao Y., Li J., Chen H. Biomass-based pyrolytic polygeneration system for bamboo industry waste: Evolution of the char structure and the pyrolysis mechanism // Energ. Fuel. 2016. V. 30. N 8. P. 6430–6439.

https://doi.org/10.1021/acs.energyfuels.6b00732

- [3] Song-lin Z., Shang-yu G., Xi-gen Y., Bo-sen X. Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis // J. Forestry Res. 2003. V. 14. N 1. P. 75–79. https://doi.org/10.1007/BF02856768
- [4] Sanford J. R., Larson R. A., Runge T. Nitrate sorption to biochar following chemical oxidation // Sci. Total. Environ. 2019. V 669. P. 938–947. http://doi.org/10.1016/j.scitotenv.2019.03.061
- [5] Yahya M. A., Al-Qodah Z., Ngah C. W. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review // Renew. Sust. Energ. Rev. 2015. V. 46. P. 218–235. https://doi.org/10.1007/BF02856768
- [6] Zhang Y., Ma Z., Zhang Q., Wang J., Ma Q., Yang Y., Luo X., Zhang W. Comparison of the physicochemical characteristics of bio-char pyrolized from moso bamboo and rice husk with different pyrolysis temperatures // BioResources. 2017. V. 12. N 3. P. 4652–4669. https://doi.org/10.15376/biores.12.3.4652-4669

- [7] Беляева О. В., Краснова Т. А., Семенова С. А., Гладкова О. С. Взаимодействие О₂, О₃ и H₂O₂ с активированным углем // Химия тв. топлива. 2011. № 6. С. 61–64 [Belyaeva O. V., Krasnova T. A., Semenova S. A., Gladkova O. S. Interaction of O₂, O₃, and H₂O₂ with an activated carbon // Solid Fuel Chem. 2011. V. 45. N 6. P. 418–421. https://doi.org/10.3103/S0361521911060024].
- [8] El Marouani M., El Hrech N., El Jastimi J., El Hajji A., Rghioui L., Sebbahi S., El Hajjaji S., Kifani-Sahban F. Lignin and derivative charcoals: Functional groups involved in the adsorption phenomenon // J. Mater. Environ. Sci. 2017. V. 8. N 12. P. 4313–4322. https://doi.org/10.26872/jmes.2017.8.12.454
- [9] Sharma R. K., Wooten J. B., Baliga V. L., Lin X., Chan W. G., Hajaligol M. R. Characterization of chars from pyrolysis of lignin // Fuel. 2004. V. 83. N 11/12. P. 1469–1482.

https://doi.org/10.1016/j.fuel.2003.11.015

- [10] Acik G., Lee C., Mattevi C., Chhowalla M., Cho K., Chabal Y.J. Unusual infrared-absorption mechanism in thermally reduced graphene oxide // Nature Mater. 2010. V. 9. N 9. P. 840–845. https://doi.org/10.1038/nmat2858
- [11] Степаньян С. Г., Іванов А. Ю., Адамович Л., Карачевцев В. А. Влияние кислородсодержащих групп на колебательные спектры оксида графена // Наносистеми, наноматеріали, нанотехнології. 2016. Т. 14. № 4. С. 513–526. https://doi.org/10.15407/nnn