ПРИМЕНЕНИЕ ЦЕОЛИТСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ ДЛЯ ПЛАЗМЕННО-КАТАЛИТИЧЕСКОГО УГЛЕКИСЛОТНОГО РИФОРМИНГА МЕТАНА

© О. В. Голубев, П. С. Ильчук, Д. Е. Цаплин, А. Л. Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29 E-mail: golubev@ips.ac.ru

> Поступила в Редакцию 24 ноября 2022 г. После доработки 25 декабря 2022 г. Принята к публикации 25 декабря 2022 г.

Исследован плазменно-каталитический процесс углекислотного риформинга метана в барьерном разряде с применением новых составов цеолитсодержащих катализаторов. Получены катализаторы на основе оксидов Ni, Fe, Co, промотированных CeO₂, и охарактеризованы методами низкотемпературной адсорбции–десорбции азота, рентгеновской флуоресцентной спектроскопии, рентгенофазового анализа и термопрограммируемой десорбции аммиака. Исследована каталитическая активность полученных образцов в реакции получения синтез-газа в газовом разряде без дополнительного нагрева реактора. Установлено, что введение катализатора в область разряда позволяет повысить конверсию CH₄ с 10 до 16%, однако практически не влияет на конверсию CO₂. В присутствии Fe-содержащих образцов выход CO и H₂ снижается.

Ключевые слова: углекислотный риформинг метана; катализ в плазме; синтез-газ; утилизация углекислого газа; барьерный разряд

DOI: 10.31857/S0044461822110032; EDN: GQIISY

Выбросы парниковых газов (водяной пар, СН₄, СО₂ и др.) являются причиной глобального изменения климата, поэтому поиск эффективных методов их утилизации становится приоритетной задачей. Перспективной является совместная переработка СО₂ и СН₄ в различные химические соединения, используемые как сырье в нефтехимической промышленности. Так, например, в результате реакции каталитического углекислотного риформинга метана можно получать синтез-газ, углеводороды ряда С2-С₄, а также оксигенаты (метанол, уксусная кислота) [1]. Данный процесс, однако, имеет ряд недостатков, связанных с высокой температурой проведения процесса (>700°С). Помимо значительных энергетических затрат, проведение реакции при высокой температуре приводит к дезактивации катализатора вследствие образования кокса на поверхности его частиц [2].

Исключить обозначенные явления становится возможным при проведении реакции в среде низ-

котемпературной плазмы. Высокоэнергетические электроны в плазме способствуют диссоциации прочных связей в молекулах CH₄ и CO₂, в то время как использование катализаторов позволяет повысить скорость реакции и селективность по отдельным продуктам (синтез-газ, углеводороды, оксигенаты). При этом плазменно-каталитический процесс протекает при относительно низких температурах (до 150°C в барьерном разряде), что предотвращает дезактивацию катализаторов.

Как и в традиционном термокаталитическом процессе, в плазменно-каталитическом углекислотном риформинге метана важную роль играют носитель и активные компоненты катализатора. Высокой активностью характеризуются катализаторы, содержащие благородные металлы (Pt, Pd, Ru, Rh), а также катализаторы на основе переходных металлов (Fe, Co, Ni) [3]. Свойства носителя (морфология, текстура пор) влияют на распределение активной фазы по поверхности, адсорбцию-десорбцию реагентов, а также на изменение характера разряда [4]. Например, при нанесении металлов на цеолиты или металлоорганические каркасы повышается селективность по углеводородам С₄ [5, 6].

Цель работы — повышение эффективности процесса углекислотного риформинга метана в среде низкотемпературной плазмы при введении катализаторов на основе цеолитов ZSM-5 и ZSM-12, а также исследование влияния состава и свойств катализатора на конверсию исходных газов и выход образующихся продуктов реакции.

Экспериментальная часть

Для синтеза цеолита ZSM-12 были использованы следующие реагенты: коллоидный раствор оксида кремния Ludox HS-40 (40 мас%, Sigma-Aldrich, кат. номер 420816), Al₂(SO₄)₃·18H₂O (х.ч., Sigma-Aldrich, кат. номер 368458), метилдиэтаноламин [CH₃N(C₂H₄OH)₂, 98%, Sigma-Aldrich, кат. номер 471828], бромэтан (C₂H₅Br, 99%, Sigma-Aldrich, кат. номер 239607), NaOH (х.ч., ООО ТД «Компонент-Реактив»), NH4Cl (98%, ООО ТД «Химмед»). Синтез цеолита ZSM-12 проводили по методике [7]. Для синтеза носителей и катализаторов были использованы следующие реактивы: бемит марки Pural SB [AlO(OH), 99%, Sasol], цеолит ZSM-5 (не менее 90%, ПАО «НЗХК»), синтезированный цеолит ZSM-12, HNO₃ (65 мас%, ООО «НеваРеактив»), Се(NO₃)₂·6H₂O (99%, ООО «Центр Технологий Лантан»), Ni(NO₃)₂·6H₂O (ч.д.а., AO «Вектон»), Fe(NO₃)₃·9H₂O (98%, AO «Ленреактив»), Со(СН₃СОО)₂·4H₂O (ч., АО «Вектон»).

Синтез носителя проводили по следующей схеме. К 25 г цеолита ZSM-5 (ZSM-12) добавляли 10.72 г мелкодисперсного бемита, после чего перетирали смесь в ступке до однородной массы. К порошку добавляли 21 см³ 1 М НNO₃ и перемешивали до образования пластичной массы. Массу экструдировали (диаметр фильеры 1.5 мм) и оставляли сушиться на воздухе. Далее экструдаты измельчали до размера гранул 0.8-1.5 мм, сушили в сушильном шкафу в течение 2 ч при 60°С, 2 ч при 80°С и 2 ч при 110°С и затем прокаливали в муфельной печи при температуре 550°С (нагрев 6 ч, выдержка 4 ч). Полученные экструдаты пропитывали растворами 0.33-0.54 М Се(NO₃)₂·6H₂O, 0.95-1.59 М Ni(NO₃)₂·6H₂O, 1.00–1.66 M Fe(NO₃)₃·9H2O, 0.99– 1.55 M Co(CH₃COO)₂·4H₂O. Расчетное количество наносимых CeO₂, Ni, Fe, Со составляло 5 мас%.

Площадь поверхности и характеристики пор были определены с использованием анализатора удель-

ной площади поверхности и распределения пор по размерам Belsorp miniX (Місгоtrас MRB). Стадия предварительной подготовки включала термическую дегазацию образцов при температуре 300°С и давлении 10 Па в течение 8 ч. Для расчета площади поверхности в интервале относительных давлений $P/P_0 = 0.05-0.2$ применяли метод Брунауэра–Эммета– Теллера. Суммарный объем пор определяли исходя из количества адсорбированного азота при относительном давлении $P/P_0 = 0.95$.

Рентгенофазовый анализ проводили с использованием дифрактометра Rigaku Rotaflex RU-200 (Си_{*K*_α-излучение) в диапазоне $2\theta = 1^{\circ}-100^{\circ}$ со скоростью вращения гониометра (Rigaku D/Max-RC) 1 град·мин⁻¹, шаг 0.04°. Идентификация рентгенограмм проводилась с помощью программного обеспечения MDI Jade 6.5 в сочетании с базой данных ICDD PDF-2.}

Элементный состав определяли методом рентгеновской флуоресцентной спектроскопии с использованием прибора ARL Perform'х Sequential XFR (Thermo Fisher Scientific) с рентгеновской трубкой мощностью 2500 Вт. Перед проведением анализа образцы измельчали и прессовали в таблетку с H₃BO₃.

Кислотность катализаторов исследовали методом термопрограммируемой десорбции NH₃ с использованием прибора УСГА-101 (ООО «Унисит»). Исследуемый образец (фракция 0.25-1 мм) массой 0.15-0.2 г помещали в кварцевый реактор. Поверхность образца очищали от адсорбированных молекул воды и кислорода в токе Не (марка А, АО «Московский газоперерабатывающий завод») при 512°С в течение 40 мин и затем насыщали NH₃ (смесь 5 об% NH₃-95 об% Не, ООО «НИИ КМ») в течение 24 мин при температуре 60°С. Для удаления слабосвязанного NH₃ осуществляли продув Не со скоростью потока 30 мл·мин⁻¹ при 102°С в течение 60 мин. Анализ образца проводили в токе Не в температурном интервале 100-800°С со скоростью нагрева 7 град мин⁻¹. Регистрацию десорбированного NH₃ осуществляли детектором по теплопроводности.

Исследование каталитической активности полученных образцов проводили на экспериментальной установке с барьерным разрядом (рис. 1). Реактор представлял собой кварцевую трубку диаметром 16 мм с толщиной стенок 2 мм. В качестве внутреннего электрода реактора использовали стальной стержень диаметром 8 мм с винтовой нарезкой (марка C1008, ООО «РК ГРУПП»), в качестве внешнего заземленного электрода — мелкоячеистую сетку (размер ячейки 0.5 мм, нержавеющая сталь 12Х18Н9, ООО «Торговый Дом Сеток»), помещен-

Рис. 1. Схема экспериментальной установки плазменно-каталитического углекислотного риформинга метана.

ную на внешнюю поверхность трубки (длина электрода 8 см). Разрядный промежуток составлял 4 мм. Катализаторы помещали в область разряда и фиксировали минеральной ватой. В качестве образца сравнения использовали инертный заполнитель керамические шарики. Расход газов (СО2 чистоты 99.5%, АО «Московский газоперерабатывающий завод»; СН₄ чистоты 99.995%, АО «Московский газоперерабатывающий завод) регулировали массовыми тепловыми регуляторами расхода РРГ-20 (ООО «Элточприбор»). В качестве источника питания был использован источник синусоидального высокого напряжения с частотой 23 кГц. Электрический сигнал выводился на цифровой осциллограф TDS 2012В (Tekronix), мощность разряда была получена путем расчета площади фигур Лиссажу в реальном времени и составляла 8-11 Вт. Газообразные продукты реакции (СО₂, СН₄, СО, Н₂, С₂Н₆) определяли на портативном газовом хроматографе с обратной продувкой ПИА (ООО «НПФ МЭМС»), оснащенном детектором по теплопроводности, с двумя хроматографическими колонками: с адсорбентами Hayesep N (l = 2 м) и молекулярными ситами 13 Å (l = 2 м) (ООО «НПФ МЭМС»). В качестве газа-носителя использовали Ar высшего сорта (чистота 99.993%, АО «Московский газоперерабатывающий завод»).

Исходя из данных газохроматографического анализа, конверсию (X), селективность по продуктам (S) и выход продуктов (Y) рассчитывали по уравнениям

$$X_{\rm CO_2}(\%) = \frac{v_{\rm CO_2(BX)} - v_{\rm CO_2(BbIX)}}{v_{\rm CO_2(BX)}} \cdot 100\%,$$
(1)

$$X_{\rm CH_4}(\%) = \frac{\nu_{\rm CH_4(BX)} - \nu_{\rm CH_4(BbIX)}}{\nu_{\rm CH_4(BX)}} \cdot 100\%,$$
 (2)

$$S_{\rm CO}(\%) = \frac{\nu_{\rm CO(obp)}}{\nu_{\rm CO_2(pear)} + \nu_{\rm CH_4(pear)}} \cdot 100\%,$$
(3)

$$S_{\rm H_2}(\%) = \frac{\nu_{\rm H_2(o5p)}}{2\nu_{\rm CH_4(pear)}} \cdot 100\%, \tag{4}$$

$$S_{\rm C_2H_6}(\%) = \frac{v_{\rm C_2H_6(05p)}}{v_{\rm CO_2(pear)} + v_{\rm CH_4(pear)}} \cdot 100\%,$$
 (5)

$$Y_{\rm CO}(\%) = \frac{v_{\rm CO(o5p)}}{v_{\rm CO_{2}(BX)} + v_{\rm CH_{4}(BX)}} \cdot 100\%, \tag{6}$$

$$Y_{\rm H_2}(\%) = \frac{v_{\rm H_2(o5p)}}{2v_{\rm CH_4(BX)}} \cdot 100\%, \tag{7}$$

где $v_{(BX)}$ — количество газа, поданного в реактор (моль); $v_{(BbX)}$ — количество газа в пробе (моль); $v_{(oбp)}$ — количество газа, образовавшегося в результате реакции (моль); $v_{(pear)}$ — количество газа, превращенного в продукты в результате реакции (моль).

Энергетическую эффективность реактора (η) рассчитывали как отношение количества газа (CH₄/CO₂), превращенного в результате реакции, к поглощенной мощности:

$$\eta$$
(ммоль·кДж⁻¹) = $\frac{v_{(pear)}}{P} \frac{1000}{60}$, (8)

где $v_{(pear)}$ — количество газа (CH₄/CO₂), превращенного в продукты в результате реакции (моль·мин⁻¹), *P* — мощность разряда (Вт).

Обсуждение результатов

Полученные катализаторы Me_xO_y -CeO₂/ ZSM-5-Al₂O₃ (далее — MeCe-5, где Me = Ni/Fe/Co, 5 — носитель ZSM-5-Al₂O₃) и Me_xO_y -CeO₂/ ZSM-12-Al₂O₃ (далее — MeCe-12, где Me = Ni/Fe/Co, 5 — носитель ZSM-12-Al₂O₃) были охарактеризованы физико-химическими методами анализа. Катализаторы на основе цеолита ZSM-5 характеризовались более высокой удельной поверхностью, а

	Текстурные характеристики			Состав, мас%			
Образец	удельная площадь поверхности S_{yg} , м ² ·г ⁻¹	объем пор <i>V</i> _{пор} , см ³ ·г ⁻¹	диаметр пор <i>d</i> _{пор} , нм	Al ₂ O ₃	SiO ₂	CeO ₂	$Me_xO_y^*$
ZSM-5-Al ₂ O ₃	287	0.21	7.1	29.7	70.7		_
NiCe-5	255	0.20	6.6	26.0	61.8	5.2	7.0
FeCe-5	274	0.21	5.9	25.1	62.0	5.2	7.7
CoCe-5	261	0.20	6.9	25.0	63.6	4.9	6.5
ZSM-12-Al ₂ O ₃	181	0.19	9.1	24.6	75.4		_
NiCe-12	159	0.15	8.4	20.4	68.4	4.9	6.3
FeCe-12	162	0.17	7.6	20.0	68.7	4.8	6.5
CoCe-12	165	0.17	9.0	19.6	67.4	4.9	8.1

Таблица 1 Физико-химические характеристики синтезированных образцов

* Ме_{*x*}О_{*y*} — оксид металла (Ni/Fe/Co), «—» — отсутствие.

также меньшим диаметром мезопор в сравнении с образцами на основе цеолита ZSM-12 (табл. 1).

После нанесения оксидов металлов на цеолитсодержащие носители не происходило изменения структуры цеолитов ZSM-5 и ZSM-12 (рис. 2). В области $2\theta = 5^{\circ}$ -30° не наблюдается существенного снижения интенсивности рефлексов, соответствующих фазам цеолитов. Следует отметить, что на дифрактограммах отсутствуют дифракционные максимумы, соответствующие фазам Fe₂O₃ и Co₃O₄. Это может свидетельствовать о равномерном нанесении указанных оксидов на поверхность носителя.

Образцы, нанесенные на носитель ZSM-5/Al₂O₃, содержали большее количество кислотных центров в сравнении с образцами, нанесенными на ZSM-12/Al₂O₃ (рис. 3). Общее количество кислотных центров снижалось при нанесении оксидов металлов на носитель. Следует отметить, что в случае образца на основе CoCe-12 общая кислотность увеличивалась

(табл. 2), что может быть связано с вкладом собственной кислотности Co₃O₄, нанесенного на цеолит [8].

Активность синтезированных образцов исследовали в реакторе с барьерным разрядом. На осциллограмме тока (рис. 4, a) можно наблюдать большое количество пульсирующих токовых сигналов (микроразрядов). Форма фигуры Лиссажу (рис. 4, δ) близка к параллелограмму, что является типичным для барьерного разряда [9]. Отклонения от формы идеального параллелограмма могут быть связаны с несимметричностью электродов или нарушением центрирования электрода. Форма фигуры также незначительно изменялась в зависимости от наполнения реактора, что может объясняться различиями в диэлектрической проницаемости образцов.

Наивысшие значения конверсий достигались в присутствии образцов NiCe-12 и CoCe-12 (рис. 5, *a*). Следует отметить, что конверсия CO₂ в присутствии исследованных образцов изменялась незначитель-

Рис. 2. Дифрактограммы синтезированных цеолитсодержащих катализаторов.

Рис. 3. Термопрограммированная десорбция NH₃ синтезированных носителей и катализаторов на их основе.

Характеристики кислотных центров, определенные методом термопрограммированной десорбции NH ₃							
Ofnazeu	Количество кислотных центров,* мкмоль г-1						
Образец	слабые кислотные центры	сильные кислотные центры	всего				
ZSM-5/Al ₂ O ₃	292	239	531				
NiCe-5	294	230	524				
FeCe-5	291	196	487				
CoCe-5	482	_	482				
$ZSM-12/Al_2O_3$	71	42	113				
NiCe-12	105		105				
FeCe-12	78	30	108				
CoCe-12	158	_	158				

Таблица 2 Характеристики кислотных центров, определенные методом термопрограммированной десорбции NH₃

* «—» — отсутствие.

Рис. 4. Физические характеристики барьерного разряда в присутствии катализатора NiCe-12: осциллограммы тока и напряжения (*a*); фигура Лиссажу (б).

Рис. 5. Результаты каталитических экспериментов в присутствии синтезированных образцов: конверсия CH₄ и CO₂ (*a*), энергетическая эффективность процесса и поглощенная мощность (*б*), селективность по продуктам реакции (*в*), выход продуктов и отношение [H₂]/[CO] (*г*).

Условия проведения эксперимента: мощность разряда 8–11 Вт, объемное соотношение CO₂:CH₄ = 1:1, скорость подачи газовой смеси 45 мл мин⁻¹, масса катализатора 1 г.

но (относительно конверсии в присутствии образца сравнения), более существенное влияние вводимые катализаторы оказывали на конверсию СН₄, которая составляла 15.6–16.0%.

Основными продуктами реакции являлись Н₂, СО и C₂H₆, причем их соотношение варьировалось в зависимости от вводимого катализатора. В присутствии катализаторов с большим количеством кислотных центров (носитель ZSM-5/Al₂O₃) выход CO снижался. Это может быть объяснено тем, что на поверхности данных катализаторов степень адсорбции СО2 снижается вследствие кислотности последнего [10]. Наибольший выход H₂ (7.20–7.39%) и CO (6.28– 7.13%) фиксировался в присутствии Ni-содержащих катализаторов. При проведении процесса в присутствии Fe-содержащих катализаторов снижалась как конверсия по CH₄, так и выход H₂ и CO. Вероятной причиной этому может являться тот факт, что частицы Fe в катализаторе находятся в оксидной форме. Как следует из данных работы [11], в присутствии CO₂ частицы Fe₂O₃ не способны восстанавливаться до Fe⁰, что снижает способность к каталитическому превращению CH₄ до H₂. По всей видимости, для более эффективного проведения процесса плазменно-каталитического риформинга CO₂ и CH₄ необходимо предварительное восстановление образцов катализатора для перевода активной фазы из оксидной в металлическую форму.

Энергетическая эффективность процесса по CH₄ увеличивалась в присутствии синтезированных катализаторов, достигая максимума 0.3 ммоль $\kappa Д ж^{-1}$ в присутствии образца CoCe-12 (рис. 5, δ). Таким образом, среди всех исследованных катализаторов наиболее оптимальными являлись NiCe-12 и CoCe-12 как по конверсии CH₄/CO₂ и выходу H₂ и CO, так и по энергетической эффективности процесса.

Выводы

Введение Ni-, Fe-, Со-цеолитсодержащих катализаторов на основе ZSM-5 и ZSM-12 в область барьерного разряда позволяет повысить конверсию СН₄ и энергетическую эффективность процесса углекислотного риформинга метана. Установлено, что наиболее оптимальным типом носителя является цеолит с меньшей кислотностью (ZSM-12). Наименее эффективными образцами с точки зрения конверсии исходных газов и выхода H_2 и CO являются Feсодержащие катализаторы, что может быть связано с нахождением активных частиц Fe в оксидной форме. Установленные закономерности могут лечь в основу дальнейших исследований по разработке катализаторов углекислотной конверсии метана, в том числе катализаторов тандемного превращения CO₂ и CH₄ в углеводороды C₂—C₄ и оксигенаты (CH₃OH, C₂H₅OH, CH₃COOH) в среде низкотемпературной плазмы.

Благодарности

Авторы выражают благодарность д.ф.-м.н. Ю. А. Лебедеву за помощь при подготовке публикации.

Работа выполнена с использованием оборудования ЦКП «Аналитический центр проблем глубокой переработки нефти и нефтехимии» ИНХС РАН.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-79-00259 https://rscf.ru/project/22-79-00259/

Конфликт интересов

А. Л. Максимов является главным редактором Журнала прикладной химии. Остальные авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Голубев Олег Владимирович, к.х.н.

ORCID: https://orcid.org/0000-0002-8558-3094 Ильчук Павел Сергеевич

- ORCID: https://orcid.org/0009-0008-9459-8934 Цаплин Дмитрий Евгеньевич, к.х.н.
- ORCID: https://orcid.org/0000-0002-6100-2451

Максимов Антон Львович, д.х.н., чл.-корр. РАН ORCID: https://orcid.org/0000-0001-9297-4950

Список литературы

- Liu S., Winter L. R., Chen J. G. Review of plasmaassisted catalysis for selective generation of oxygenates from CO₂ and CH₄ // ACS Catal. 2020. V. 10. N 4. P. 2855–2871. https://doi.org/10.1021/acscatal.9b04811
- [2] Hussien A. G. S., Polychronopoulou K. A. Review on the different aspects and challenges of the dry

reforming of methane (DRM) reaction // Nanomaterials. 2022. V. 12. ID 3400. https://doi.org/10.3390/nano12193400

- [3] Aramounia N. A. K., Toumab J. G., Tarbousha B. A., Zeaitera J., Ahmada M. N. Catalyst design for dry reforming of methane: Analysis review // Renew. Sust. Energ. Rev. 2018. V. 82. P. 2570–2585. https://doi.org/10.1016/j.rser.2017.09.076
- [4] Xu S., Chen H., Hardacre C., Fan X. Non-thermal plasma catalysis for CO₂ conversion and catalyst design for the process // J. Phys. D: Appl. Phys. 2021. V. 54. ID 233001. https://doi.org/10.1088/1361-6463/abe9e1
- [5] Eliasson B., Liu C., Kogelschatz U. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites // Ind. Eng. Chem. Res. 2000. V. 39. P. 1221– 1227. https://doi.org/10.1021/ie990804r
- [6] Vakili R., Gholami R., Stere C. E., Chansai S., Chen H., Holmes S. M., Jiao Y., Hardacre C., Fan X. Plasma-assisted catalytic dry reforming of methane (DRM) over metal–organic frameworks (MOFs)-based catalysts // Appl. Catal. B. 2020. V. 260. ID 118195. https://doi.org/10.1016/j.apcatb.2019.118195
- [7] Цаплин Д. Е., Макеева Д. А., Куликов Л. А., Максимов А. Л., Караханов Э. А. Синтез цеолитов ZSM-12 с применением новых темплатов на основе солей этаноламинов // ЖПХ. 2018. Т. 91. № 12. С. 1729– 1734. https://doi.org/10.1134/S004446181812006X [*Tsaplin D. E., Makeeva D. A., Kulikov L. A., Maksimov A. L., Karakhanov E. A.* Synthesis of ZSM-12 zeolites with new templates based on salts of ethanolamines // Russ. J. Appl. Chem. 2018. V. 91. N 12. P. 1957–1962.

https://doi.org/10.1134/S1070427218120066].

- [8] Núñez F., Chen L., Wang J. A., Flores S. O., Salmones J., Arellano U., Noreña L. E., Tzompantzi F. Bifunctional Co₃O₄/ZSM-5 mesoporous catalysts for biodiesel production via esterification of unsaturated Omega-9 Oleic Acid // Catalysts. 2022. V. 12. ID 900. https://doi.org/10.3390/catal12080900
- [9] Rosenthal L. A., Davis D. A. Electrical characterization of a corona discharge for surface treatment // IEEE Trans. Ind. Appl. 1975. V. IA-11. P. 328–335. https://doi.org/10.1109/TIA.1975.349324
- [10] Teixeira Gouveia L. G., Borges Agustini C., Perez-Lopez O. W., Gutterres M. CO₂ adsorption using solids with different surface and acid-base properties // J. Environ. Chem. Eng. 2020. V. 8. N 4. ID 103823. https://doi.org/10.1016/j.jece.2020.103823
- [11] Zhou Z., Deng G., Li L., Liu X., Sun Z., Duan L. Chemical looping co-conversion of CH₄ and CO₂ using Fe₂O₃/Al₂O₃ pellets as both oxygen carrier and catalyst in a fluidized bed reactor // Chem. Eng. J. 2022. V. 428. ID 132133. https://doi.org/10.1016/j.cej.2021.132133