Журнал прикладной химии. 2022. Т. 95. Вып. 11-12

ГИДРОДЕОКСИГЕНАЦИЯ КОМПОНЕНТОВ БИОНЕФТИ, СОДЕРЖАЩИХ ГВАЯКОЛЬНЫЙ ФРАГМЕНТ, В ПРИСУТСТВИИ РУТЕНИЕВОГО КАТАЛИЗАТОРА НА ОСНОВЕ МЕЗОПОРИСТОГО АЛЮМОСИЛИКАТА

© Е. А. Ролдугина¹, С. В. Кардашев¹, А. Л. Максимов^{1,2}, Э. А. Караханов¹

 Московский государственный университет им. М. В. Ломоносова, химический факультет, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3
² Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29, стр. 2 E-mail: rolduginakate@mail.ru

> Поступила в Редакцию 24 ноября 2022 г. После доработки 25 декабря 2022 г. Принята к публикации 25 декабря 2022 г.

Рутениевый катализатор на основе модифицированного алюминием мезопористого силиката структурного типа HMS (Hexagonal Mesoporous Silica) Al-HMS с отношением Si/Al, равным 10, исследован в реакции гидродеоксигенации компонентов бионефти, содержащих гваякольный фрагмент. Катализатор испытан в гидродеоксигенации гваякола, метоксигваякола, формилгваякола и пропилгваякола в присутствии воды при давлении водорода 6.0 МПа и температуре 250°С. Показано влияние структуры субстрата на конверсию и селективность гидропревращения по полностью гидрированным и деоксигенированным продуктам. Показано влияние температуры в интервале 210–290°С на конверсию и распределение продуктов гидродеоксигенации гваякола при различном давлении водорода — 2.5 и 6.0 МПа. Проведены эксперименты по гидродеоксигенации гваякола в смеси с водой, н-додеканом и метанолом при давлении водорода 6.0 МПа H₂ и температуре 250°С. Показано влияние состава модельной смеси на конверсию и распределение продуктов гидродеоксигенации гваякола.

Ключевые слова: гидродеоксигенация; гваякол; ванилин; сирингол; дигидроэвгенол; мезопористые алюмосиликаты; рутений

DOI: 10.31857/S0044461822110044; EDN: GQKXVY

Одним из эффективных способов переработки растительных и древесных отходов является процесс быстрого пиролиза, в ходе которого из отходов лигноцеллюлозной биомассы образуется жидкий продукт — бионефть — альтернативное возобновляемое сырье, пригодное для производства компонентов биотоплив и ценных химических мономеров [1]. Бионефть — сложная многокомпонентная смесь кислородсодержащих соединений (кислот, спиртов, кетонов, фенолов и др.), образующихся в результате термохимической деструкции полимеров лигноцеллюлозного сырья, содержащая до 50 мас% воды. Из-за высокого содержания компонентов с кислородсодержащими функциональными группами и воды бионефть характеризуется физико-химическими параметрами, которые затрудняют ее использование в качестве сырья для нефтеперерабатывающей промышленности, такими как химическая и термическая нестабильность, коррозионная активность, низкая смешиваемость с нефтяными фракциями, низкая теплотворная способность и высокая вязкость [2].

Одним из способов удаления кислородсодержащих групп из состава компонентов бионефти является каталитическая гидродеоксигенация. Актуальной проблемой, связанной с переработкой бионефти, является создание каталитических систем для гидродеоксигенации малореакционноспособных фенолсодержащих фрагментов деполимеризации лигнина. Лигнин — трехмерный ароматический полимер в составе биомассы, состоящий из фенилпропановых

УДК 665.658.2

звеньев, связанных различными функциональными кислородсодержащими группами, является вторым по распространенности природным полимером после целлюлозы. Согласно современным исследованиям, катализатор гидродеоксигенации должен быть бифункциональным, а именно содержать активные центры, выполняющие гидрирующую функцию, и кислотные центры, необходимые для осуществления эффективной деоксигенации молекул биосырья [3, 4]. Рутениевые катализаторы демонстрируют высокую гидрирующую активность в водных средах [5, 6], что является преимуществом при переработке биосырья, которое содержит значительное количество воды. В ходе гидродеоксигенации кислородсодержащие группы удаляются из состава бионефти также преимущественно в виде воды.

Замещенные метоксифенолы (гваякол, ванилин, эвгенол, сирингол и др.) широко используются в качестве компонентов модельного сырья для изучения закономерностей каталитической гидродеоксигенации бионефти [7, 8]. Помимо мономерных фенольных звеньев продукты быстрого пиролиза содержат фрагменты неполной деполимеризации лигнина (3-30 мас%) [9]. Наличие в составе сырья соединений олигомерной природы обосновывает возможность применения мезопористых носителей для катализаторов гидродеоксигенации, структура и регулируемый размер пор (2-50 нм) которых способствуют преодолению диффузионных ограничений и превращению объемных молекул внутри пор катализатора [10]. Мезопористые материалы на основе HMS характеризуются высокой удельной поверхностью, их текстурные характеристики имеют преимущества за счет малого размера частиц материалов, обеспечивающего большую текстурную (межчастичную) мезопористость [11], и трехмерной структуры, похожей на систему взаимосвязанных каналов-червоточин [12]. Введение алюминия в состав материала создает кислотные центры, которые задействованы в реакциях деоксигенации компонентов бионефти.

Малоисследованной является область применения катализаторов на основе мезопористых носителей для жидкофазной гидродеоксигенации богатого продуктами деструкции лигнина сырья, в особенности в водных средах при большом содержании фенольного компонента [13–16].

Цель работы — изучение закономерностей гидродеоксигенации компонентов бионефти, содержащих гваякольный фрагмент, в присутствии рутениевого катализатора на основе модифицированного алюминием мезопористого силиката структурного типа HMS (Hexagonal Mesoporous Silica) Al-HMS.

Экспериментальная часть

Для синтеза мезопористого алюмосиликата к раствору 0.01 моль втор-бутоксида алюминия (97%, кат. номер 2269-22-9, Sigma-Aldrich) в 35 мл изопропанола (ос.ч., ООО ТД «ХИММЕД») при интенсивном перемешивании прибавляли 0.1 моль тетраэтоксисилана (99.99%, кат. номер 78-10-4, Sigma-Aldrich), перемешивали 5 мин, добавляли 40 мл дистиллированной воды, перемешивали 30 мин. Гексадециламин (98%, кат. номер 143-27-1, Sigma-Aldrich) в количестве 0.025 моль растворяли в 28.5 мл изопропанола, затем добавляли 100 мл воды. К раствору, содержащему гексадециламин, порционно при интенсивном перемешивании прибавляли смесь соединений кремния и алюминия, затем по каплям 40 мл воды. Смесь перемешивали при комнатной температуре 6 ч, далее выдерживали без перемешивания 20 ч. Осадок отфильтровывали, сушили при комнатной температуре 12 ч, при 100°С — 3 ч, при 300°С — 3 ч, прокаливали при циркуляции воздуха при 550°С 6 ч. Методика синтеза катализатора включала пропитку материала носителя солью рутения в избытке растворителя с последующим удалением растворителя на роторном испарителе. Для этого к раствору соли рутения в 30 мл этанола (ч.д.а., ООО «Иреа 2000») при комнатной температуре прибавляли рассчитанное количество носителя, смесь перемешивали в течение 12 ч. После удаления растворителя образец сушили в токе воздуха при 80°С 6 ч, затем восстанавливали в токе водорода в проточном реакторе при 300°С 3 ч. Реактор с образцом предварительно насыщали водородом в течение 1 ч при комнатной температуре. В качестве источника металла использовали хлорид рутения RuCl₃ (47.8%, OAO «Аурат»). При приготовлении раствора соли металла количество RuCl₃ pacсчитывали исходя из того, чтобы теоретическое содержание рутения в катализаторе составляло 1 мас%.

Кислотность носителя и катализатора определяли методом термопрограммируемой десорбции аммиака на анализаторе хемосорбции УСГА-101 (УНИСИТ). В кварцевый трубчатый реактор помещали 0.15–0.20 г образца; стандартная автоматическая предобработка включала последовательные операции прокаливания образца при 500°С в течение 1 ч в токе гелия, насыщения аммиаком при температуре 60°С в течение 15 мин, удаления физически адсорбированного аммиака в токе гелия при 100°С. Эксперимент по термопрограммируемой десорбции аммиака проводили в токе гелия (30 мл·мин⁻¹) со скоростью подъема температуры 8 град·мин⁻¹, выделяющийся аммиак регистрировали детектором по

теплопроводности. Анализ катализатора методом просвечивающей электронной микроскопии был выполнен при помощи микроскопа LEO912 AB OMEGA (Carl Zeiss). Обработку микрофотографий и расчет среднего размера частиц производили с помощью программы Image Pro Plus. Количественный анализ содержания металла в катализаторе определяли методом масс-спектрометрии с индуктивно связанной аргоновой плазмой (ИСП-МС) на приборе ELAN 9000 (PerkinElmer Inc.) с квадрупольной реакционной ячейкой. Пробоподготовку осуществляли путем перевода образца в раствор смесью HNO₃ (70%, ос.ч., OAO «HAK Aзот»), HCl (35–38%, ос.ч., «Сигма Тек») и HF (47.8%, ос.ч., ООО «Торговая компания AHT»), взятых в соотношении 1:3:4.

Каталитические эксперименты по гидродеоксигенации гваяколов проводили в стальном автоклаве объемом 7 мл, снабженном магнитной мешалкой, в который помещали якорь магнитной мешалки и рассчитанные количества катализатора и модельной смеси, содержащей гваякольный субстрат и сокомпонент. В качестве субстрата использованы гваякол (98%, кат. номер 90-05-1, Sigma-Aldrich), сирингол (99%, кат. номер 91-10-1, ABCR), дигидроэвгенол (≥99%, кат. номер 2785-87-7, ABCR), ванилин (99%, кат. номер 121-33-5, Sigma-Aldrich), в качестве сокомпонента вода, полученная с использованием аппарата для дистилляции воды (Glaswarenfabrik Karl Hecht GmbH & Со КG), н-додекан (99%, кат. номер 112-40-3, ABCR), метанол (х.ч., ООО ТД «ХИММЕД»). Автоклав герметизировали, продували и наполняли водородом (марка А, АО «МГПЗ») до заданного давления (2.5 и 6.0 МПа). Реакцию проводили при перемешивании со скоростью 950 об∙мин-1 при заданной температуре (210, 250 и 290°С), контроль температуры осуществлялся с помощью термопары. Время реакции составляло 1 и 3 ч. По окончании реакции автоклав охлаждали ниже комнатной температуры и разгерметизировали. Для гомогенизации реакционной смеси перед извлечением в пробу добавляли изопропанол, катализатор отделяли от пробы центрифугированием.

Анализ жидких продуктов гидродеоксигенации проводили на хроматографе Кристаллюкс 4000 М (ООО «Мета-Хром»), снабженном пламенно-ионизационным детектором, капиллярной колонкой Petrocol® DH 50.2 с неподвижной жидкой фазой полидиметилсилоксан (размеры 50 м × 0.25 мм, газ-носитель — гелий, деление потока 1:90). Идентификацию продуктов проводили на газохроматомасс-спектрометре Finnigan MAT 95 XL (Finnigan), оборудованном хроматографом с капиллярной колонкой Varian VF-5MS (30 м \times 0.25 мм \times 0.25 мкм), газ-носитель — гелий (1.5 см³·мин⁻¹).

Обсуждение результатов

Согласно данным термопрограммируемой десорбции аммиака, общее число кислотных центров Al-HMS(10) равно 307 мкмоль г⁻¹ NH₃, материал характеризуется наличием слабых кислотных центров и кислотных центров средней силы (рис. 1).

Удаление кислородсодержащих метоксильных и гидроксильных групп гваякола и продуктов его превращения протекает на кислотных центрах катализатора. При использовании носителя в качестве катализатора превращения гваякола не наблюдалось, поскольку для осуществления гидродеоксигенации необходимо введение в каталитическую систему металла, выполняющего гидрирующую функцию [3, 4]. Кислотность катализатора, содержащего частицы рутения, составила 361 мкмоль·г⁻¹ NH₃, при этом наличие на кривой десорбции аммиака пика в области высоких температур свидетельствовало о появлении сильных кислотных центров. Содержание рутения, определенное методом ИСП-МС, составляло 0.8 мас%. Наночастицы рутения равномерно распределены по носителю, их средний размер составляет 2-3 нм (рис. 2).

Каталитическая активность Ru/Al-HMS(10) исследована в реакции гидродеоксигенации гваякола в присутствии воды при изменении температуры реакции. В реакции гидродеоксигенации при 210°C (6 МПа H₂, 1 ч) конверсия гваякола составила 97% (рис. 3, *a*). Реакционная смесь в основном содержала продукты гидрирования ароматического кольца субстрата —

Рис. 1. Спектр термопрограммируемой десорбции аммиака носителя Al-HMS(10) и катализатора Ru/Al-HMS(10).

Рис. 2. Микрофотографии (*a*, *б*) и диаграмма распределения частиц рутения по размерам (*в*) катализатора Ru/Al-HMS(10).

метоксициклогексанол и циклогексанол — с селективностью 20 и 59%. Селективность гидродеоксигенации по циклогексану — продукту, образующемуся в результате дегидратации циклогексанола, составила 20% (рис. 3, δ). Повышение температуры реакции до 250°С привело к снижению конверсии гваякола с 97 до 89%, при этом распределение продуктов реакции существенно изменилось. Основным продуктом гидродеоксигенации при 250°С являлся циклогексан с селективностью 67%, селективности образования циклогексанола и метоксициклогексанола снизились до 13 и 7%. Также в реакционной смеси обнаружен бензол с селективностью 7%. Бензол — продукт полной деоксигенации гваякола, протекающей без гидрирования ароматического кольца. При проведении гидродеоксигенации при 290°С тенденция к снижению конверсии продолжилась. Повышение температуры привело к снижению селективности гидродеоксигенации по циклогексану с 67 до 43%. Селективность образования бензола возросла с 7 до 23%. В продуктах гидродеоксигенации гваякола при 290°С содержалось значительное количество фенола (селективность — 15%).

Снижение начального давления водорода привело к резкому падению конверсии гваякола (рис. 3, *a*). При 210°С и 2.5 МПа H₂ конверсия гваякола составила 38%. Реакционная смесь состояла преимущественно из циклогексанола (47%), фенола (18%), бензола (15%) и циклогексана (7%) (рис. 3, *в*). При повышении температуры до 250°С конверсия гваякола незначительно снизилась на 6%. Селективность гидродеоксигенации по циклогексанолу снизилась с 48 до 20%, селективности образования бензола и циклогексана практически не изменились, содержание фенола возросло в 2.3 раза. В реакции при 290°С и 2.5 МПа H₂ конверсия гваякола составила только

19%, основным продуктом реакции являлся фенол с селективностью образования 70%.

Температура реакции существенно влияет на конверсию и распределение продуктов гидродеоксигенации гваякола при высоком давлении водорода. В мягких условиях при температуре 210°С достигнута практически полная конверсия гваякола, процесс характеризуется образованием циклогексанолов. Повышение температуры до 250°С позволяет увеличить степень деоксигенации субстрата и приводит к превращению гваякола преимущественно в циклогексан. Основным продуктом гидродеоксигенации при 290°С также является циклогексан, однако селективность его образования снижается. Высокотемпературная гидродеоксигенация приводит к появлению в реакционной смеси значительных количеств ароматических продуктов частичной и полной деоксигенации гваякола — бензола, фенола и анизола. Снижение конверсии с увеличением температуры реакции может быть связано с конкурентной адсорбцией субстрата и промежуточных продуктов реакции на активных центрах катализатора. Ароматические полупродукты с кислородсодержащими группами, например пирокатехин и фенол, могут прочно адсорбироваться на активных центрах катализатора и блокировать их для превращения гваякола [17-19].

Для гидродеоксигенации гваякола при низком начальном давлении водорода характерны невысокая конверсия субстрата и образование ароматических углеводородов (фенола, бензола) во всем исследуемом диапазоне температур. В низкотемпературных условиях (T = 210°C) селективного образования какого-либо продукта не наблюдается. Повышение температуры приводит к более селективному образованию фенола. При температурах выше 250°C в

Рис. 3. Конверсия гваякола (*a*) и распределение продуктов гидродеоксигенации в присутствии катализатора Ru/Al-HMS(10) при различных температурах реакции и давлении водорода 6 (*б*) и 2.5 МПа (*в*).

Условия реакции: 25 мг катализатора, 0.25 г гваякола, 0.25 г воды, 2.5 или 6.0 МПа H₂, 1 ч. * В следовых количествах: циклогександиол, метоксициклогексан, циклопентилметанол, толуол, метилциклогексанол, метилциклогексан, при 2.5 МПа H₂ также — циклогексанон, метоксициклогексанон, гидроксициклогексанон.

реакционной смеси в следовых количествах (до 3%) детектированы C₇₊ продукты (метилированные фенолы/циклогексанолы, циклогексилфенолы, дициклогексилы), образующиеся в результате побочных реакций алкилирования полупродуктов гидродеоксигенации гваякола на кислотных центрах катализатора. Метилированные продукты могут образовываться в ходе миграции метильной группы от молекулы одного продукта к другому и (или) в результате присоединения метанола, образующегося при деметоксилировании гваякола и метоксициклогексанола. Соединения типа циклогексена и циклогексанола также могут являться алкилирующими агентами. Тяжелые C₇₊ продукты могут адсорбироваться на активных центрах катализатора, снижать степень превращения гваякола и селективность по целевым продуктам.

На основании выявленных при изменении температуры и давления водорода закономерностей можно предположить, что в присутствии воды гидродеоксигенация гваякола на рутениевом катализаторе на основе мезопористого алюмосиликата типа Al-HMS протекает по двум основным маршрутам в зависимости от условий процесса. При высоком начальном давлении водорода (6.0 МПа) в мягких условиях ($T = 210^{\circ}$ C) превращение гваякола осуществляется преимущественно через гидрирование ароматического кольца с образованием метоксициклогексанола, его деметоксилирование до циклогексанола, дальнейшую дегидратацию циклогексанола с образованием циклогексена и гидрирование последнего в циклогексан. При высокой температуре ($T = 290^{\circ}$ C) доминирующим процессом является прямая деоксигенация гваякола с образованием фенола (в меньшей степени — анизола), затем — бензола, который может подвергаться гидрированию до циклогексана. В промежуточных условиях ($T = 250^{\circ}$ C) процессы гидрирования и деоксигенации протекают параллельно. При низком начальном давлении водорода (2.5 МПа) прямая деоксигенация гваякола с образованием ароматических соединений активно протекает уже при 210°С. Предложенные закономерности находятся в соответствии с описанными в литературе маршрутами гидродеоксигенации гваякола на бифункциональных кислотных катализаторах [3, 20].

В данной работе состав реакционной смеси выбран с целью моделирования процесса гидродеоксигенации биосырья, богатого продуктами пиролиза лигнина. Исследование активности катализатора в гидродеоксигенации модельной смеси проводили при малом массовом отношении фенольный субстрат/сокомпонент, равном 1. Вода выбрана в качеРолдугина Е. А. и др.

в значительных количествах содержится в жидком продукте, получаемом быстрым пиролизом биомассы. Для оценки влияния состава модельного сырья гидродеоксигенация гваякола исследована в присутствии метанола и н-додекана (табл. 1). Метанол низкомолекулярный оксигенат в составе бионефти, образующийся как при первичной переработке биомассы, так и в ходе гидродеоксигенации компонентов бионефти [2]. н-Додекан используется в качестве типичного неполярного растворителя в процессах гидродеоксигенации гваякола [21].

В водной и спиртовой средах достигнуты сравнимые значения конверсии гваякола в реакции гидродеоксигенации. Снижение селективности образования полностью гидрированных и деоксигенированных продуктов в присутствии метанола может быть связано с уменьшением числа свободных для превращений активных центров катализатора. Молекулы метанола, адсорбируясь на поверхность катализатора, блокируют активные центры, затрудняя к ним доступ субстрата и промежуточных продуктов реакции [22]. Наибольшая суммарная селективность гидродеоксигенации по полностью гидрированным и (или) деоксигенированным продуктам — циклогексану,

Таблица 1 Гидродеоксигенация гваякола в присутствии катализатора Ru/Al-HMS(10) с использованием различных сокомпонентов молельной смеси

Распределение продуктов* и конверсия субстрата	Селективность, %, при использовании сокомпонента модельной смеси		
	вода	н-додекан	метанол
Основные продукты гидродеоксигенации:			
бензол	7.2	0.1	1.6
циклогексан	68.2	87.7	53.1
циклогексанол ¹	11.8	3.1	17.4
метоксициклогексанол	7.4	1.5	21.5
метилциклопентан ²	1.0	4.9	1.2
Побочные продукты гидродеоксигенации:			
метоксициклогексанон, гидроксициклогексанон, цикло-	0.4	0.0	2.0
гександиол			
С ₇₊ продукты ³	0.0	2.1	1.3
анизол, фенол	2.4	0	0.6
циклогексен	1.6	0.1	1.0
Конверсия гваякола, %	89.3	99.4	88.5

Примечание. Условия реакции: 25 мг катализатора, 0.25 г гваякола, 0.25 г сокомпонента, 6.0 МПа H₂, 250°С, 1 ч.

^{*} В следовых количествах: 1 — в смеси с метоксициклогексаном, циклогексаноном, циклопентилметанолом; 2 — в смеси с метилциклогексаном, н-гексаном; 3 — метилированные фенолы/циклогексанолы, циклогексилфенолы, дициклогексилы.

бензолу, метилциклопентану — была достигнута в присутствии н-додекана. Молекулы неполярного углеводорода не взаимодействуют с поверхностью гидрофильного катализатора, что нивелирует эффект, связанный с конкурентной адсорбцией молекул субстрата и растворителя на активные центры катализатора. Однако длинноцепочечные углеводороды мало представлены в составе бионефти, получаемой из лигноцеллюлозной биомассы [2]. Следует отметить, что только в присутствии воды продукты реакции содержали заметное количество ароматических углеводородов (бензола и в меньшей степени — фенола и анизола), в присутствии н-додекана и метанола реакция по маршруту прямой деоксигенации гваякола практически не протекала.

Для изучения влияния структуры субстрата исследована гидродеоксигенация замещенных гваяколов с метоксильной, пропильной и формильной группами в присутствии Ru/Al-HMS(10). Конверсия гваякола в реакции при 250°С и 6.0 МПа H₂ через 1 ч составила 89% при суммарной селективности гидродеоксигенации по циклогексану и бензолу — 75%. В гидродеоксигенации пропилгваякола (дигидроэвгенола) за 1 ч была достигнута меньшая конверсия субстрата (63%), при этом суммарная селективность образования полностью гидрированных и деоксигенированных продуктов (пропилбензола и пропилциклогексана) составила только 38% (табл. 2). Увеличение времени реакции привело к увеличению конверсии пропилгваякола и суммарной селективности гидродеоксигенации по пропилбензолу и пропилциклогексану на 10 и 18% соответственно.

Конверсия метоксигваякола (сирингола) за 1 ч в исследуемых условиях составила 53% (табл. 3) при суммарной селективности образования циклогексана и бензола — 52%. Основными продуктами гидродеоксигенации метоксигваякола помимо циклогексана являлись циклогексанол (12%), метоксициклогексанол (9%) и гваякол (20%). При увеличении времени реакции до 3 ч конверсия метоксигваякола и селективность гидродеоксигенации по циклогексану возросли до ~65%. Увеличение концентрации катализатора не оказало существенного влияния на показатели гидродеоксигенации.

Конверсия формилгваякола (ванилина) в гидродеоксигенации при 250°С и 6.0 МПа H₂ за 1 ч составила 49%, при этом продукты реакции в основном содержали метилгваякол и гваякол (табл. 4). Циклогексана в продуктах гидродеоксигенации ванилина практически не наблюдалось. Увеличение времени реакции с 1 до 3 ч позволило увеличить конверсию лишь на 10%, однако селективность образования циклогексана возросла с 4 до 28%. Другими продуктами реакции были метилциклогексан (4%), метоксициклогексанол (5%), метилгваякол (34%) и гваякол (26%). Исследуемая модельная система гваякольный субстрат/вода является двухфазной, с целью ее гомогенизации гидродеоксигенация ванилина была проведена при введении в систему н-пропанола (массовое отношение вода/н-пропанол = 2). Конверсия ванилина

Распределение продуктов и конверсия субстрата	Селективность, %, при времени реакции, ч		
	1	3	
Продукты гидродеоксигенации:			
пропилциклогексан	21.7	40.5	
пропилбензол	16.2	15.0	
пропилциклогексен	2.3	2.2	
пропилциклогексанолы	33.9	25.3	
пропиланизол	2.2	1.7	
пропилфенол	15.1	5.0	
пропилметоксициклогексанолы	5.2	5.3	
пропилциклогександиолы	0.7	2.7	
другие продукты*	2.3	2.3	
Конверсия дигидроэвгенола, %	63.2	73.8	

Таблица 2

Гидродеоксигенация дигидроэвгенола (пропилгваякола) в присутствии катализатора Ru/Al-HMS(10) и воды

Примечание. Условия реакции: 25 мг катализатора, 0.33 г пропилгваякола, 0.25 г воды, 6.0 МПа H₂, 250°C.

* В следовых количествах: циклогексан, бензол, метилциклогексан, толуол, продукты изомеризации алкильной группы пропилбензола и пропилциклогексана, пропилметоксициклогексанон, пропилциклогексанон, пропилгидроксициклогексанон.

Распределение продуктов* и конверсия субстрата	Селекти	Селективность, %, при времени реакции, ч		
	1	3	1a	
Продукты гидродеоксигенации:				
циклогексан	50.4	65.4	47.2	
циклогексанол ¹	11.5	6.9	15.4	
метоксициклогексанол	8.8	9.9	9	
циклогександиол	2.6	2.2	4.2	
ГВАЯКОЛ	19.5	11.5	18.0	
С ₇₊ продукты ²	1.8	1.4	1.8	
циклогексен	1.2	1.1	0.6	
бензол	2.0	1	1.6	
фенол	1.6	0	1.3	
анизол	0.9	0	0.5	
другие продукты ³	0	0.6	0.4	
Конверсия сирингола, %	52.5	64.5	58.2	

Таблица 3 Гидродеоксигенация сирингола (метоксигваякола) в присутствии катализатора Ru/Al-HMS(10) и воды

Примечание. Условия реакции: 25 мг катализатора, 0.31 г метоксигваякола, 0.25 г воды, 6.0 МПа H₂, 250°C; а — 31.2 мг катализатора.

* В следовых количествах: 1 — в смеси с метоксициклогексаном, циклопентилметанолом; 2 — метилированные фенолы/циклогексанолы, циклогексилфенолы, дициклогексилы; 3 — метилциклопентан, метилциклогексан, толуол.

через 3 ч в системе вода/н-пропанол составила 100%, основными продуктами реакции являлись гваякол и метилгваякол с селективностью 35 и 53%. В следо-

вых количествах были детектированы циклогексан (6%), циклогексанол (2%) и метоксициклогексанол (3%). Присутствие н-пропанола позволило увеличить

Таблица 4

Гидродеоксигенация ванилина (формилгваякола) в присутствии катализатора Ru/Al-HMS(10) и воды

Распределение продуктов и конверсия субстрата	Селективность, %, при времени реакции, ч		
	1	3	3a
Продукты гидродеоксигенации:			
циклогексан	3.8	27.4	5.6
метилциклогексан	0.7	4.1	0.7
циклогексанол	3.3	1.5	1.7
метоксициклогексанол	5.1	5.8	3.3
ГВаякол	36.9	24.6	34.2
метилгваякол	46.3	33.7	52.0
метилциклогексанолы	0.6	0.9	0.3
циклогексен	0.1	0.3	0.8
С ₇₊ продукты*	0.0	0.0	1.4
бензол	0.1	0.3	0.1
анизол	0.4	0.0	0.0
фенол	1.0	0.0	0.0
циклогександиол	1.6	0.5	0.0
Конверсия ванилина, %	49.1	59.4	98.8

Примечание. Условия реакции: 25 мг катализатора, 0.306 г формилгваякола, 0.25 г воды, 6.0 МПа H₂, 250°C; а — массовое отношение вода/н-пропанол = 2.

* В следовых количествах: метилированные фенолы/циклогексанолы, циклогексилфенолы, дициклогексилы.

конверсию ванилина, однако оказало ингибирующее действие на протекание процессов гидрирования— деоксигенации образовавшихся гваяколов до цикло-гексана.

Основные продукты гидродеоксигенации замещенных гваяколов в присутствии катализатора Ru/Al-HMS(10) и воды соответствуют последовательностям превращений (II).

Особенностью гидродеоксигенации пропилгваякола являлось образование пропилбензола. Гидродеоксигенация метоксигваякола и формилгваякола не приводила к образованию заметных количеств полностью деоксигенированных ароматических продуктов. Пропилметоксициклогексанол и пропилциклогексанол — промежуточные продукты гидродеоксигенации пропилгваякола — присутствовали в продуктах реакции в виде смесей изомеров. Степень конверсии и деоксигенации метоксифенолсодержащих компонентов бионефти определяется диффузионными ограничениями при прохождении субстрата через поры носителя и стерическими ограничениями, возникающими при подходе объемных молекул к активным центрам катализатора. Наличие в структуре гваякольного фрагмента объемного алкильного заместителя существеннее снижает степень деоксигенации модельного сырья, чем конверсию. Введение в молекулу гваякола метоксильного заместителя значительно понижает конверсию субстрата, при этом селективность гидродеоксигенации по циклогексану остается на достаточно высоком уровне — 50%. Наименее эффективно в присутствии Ru/Al-HMS(10) протекала гидродеоксигенация формилгваякола. Нестабильный и склонный к полимеризации ванилин может формировать олигомерные фрагменты, которые адсорбируются на активных центрах катализатора и блокируют их [23]. В исследуемых условиях при высокой концентрации ванилина после реакции он присутствовал в пробе в виде отдельной фазы.

Выводы

Температура и давление водорода существенно влияют на конверсию и распределение продуктов гидропревращения гваякола в присутствии рутениевого катализатора на основе мезопористого алюмосиликата Al-HMS и воды. При повышении давления водорода и понижении температуры реакции конверсия гваякола увеличивается. В низкотемпературных условиях (210°C) гидродеоксигенация гваякола приводит к образованию преимущественно циклогексанола. В богатой водородом среде увеличение температуры до 250°С способствует селективному образованию полностью гидродеоксигенированного продукта циклогексана, до 290°С — циклогексана в смеси с бензолом. При низком давлении водорода при повышении температуры возрастает селективность гидродеоксигенации по ароматическим продуктам, в частности по фенолу. Конверсия гваяколов снижается в следующем ряду в зависимости от природы функциональных групп субстрата: гваякол > пропилгваякол > метоксигваякол >> формилгваякол. Селективность образования полностью гидрированных и деоксигенированных продуктов снижается в ряду гваякол > метоксигваякол > пропилгваякол >> формилгваякол. Для достижения более высокой конверсии и селективности по полностью гидрированным и (или) деоксигенированным продуктам гидропревращение гваякола предпочтительнее проводить в смеси с н-додеканом по сравнению с водой и метанолом. Полученные данные о влиянии температуры, начального давления водорода, времени реакции и состава реакционной смеси на конверсию и селективность гидродеоксигенации модельного сырья могут быть использованы при дальнейшем масштабировании процесса.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-79-00118, https://rscf.ru/project/22-79-00118/

Конфликт интересов

Соавтор А. Л. Максимов является главным редактором Журнала прикладной химии. Остальные соавторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация о вкладе авторов

Э. А. Караханов предложил концепцию исследования; Е. А. Ролдугина провела каталитические эксперименты и является основным автором текста рукописи; С. В. Кардашев провел анализ продуктов каталитических реакций; А. Л. Максимов внес вклад в интерпретацию результатов катализа.

Информация об авторах

Ролдугина Екатерина Алексеевна, к.х.н. ORCID: https://orcid.org/0000-0002-9194-1097 Кардашев Сергей Викторович, к.х.н.

ORCID: https://orcid.org/0000-0003-1818-7697 Максимов Антон Львович, д.х.н., чл.-корр. РАН

- ORCID: https://orcid.org/0000-0001-9297-4950 Караханов Эдуард Аветисович, д.х.н., проф.
- ORCID: https://orcid.org/0000-0003-4727-954X

Список литературы

 Su G., Ong H. C., Mofijur M., Mahlia T. M. I., Ok Y. S. Pyrolysis of waste oils for the production of biofuels: A Critical review // J. Hazard. Mater. 2022. V. 424. ID 127396.

https://doi.org/10.1016/j.jhazmat.2021.127396

- [2] Talmadge M. S., Baldwin R. M., Biddy M. J., McCormick R. L., Beckham G. T., Ferguson G. A., Czernik S., Magrini-Bair K. A., Foust T. D., Metelski P. D., Hetrick C., Nimlos M. R. A perspective on oxygenated species in the refinery integration of pyrolysis oil // Green Chem. 2014. V. 16. P. 407–453. https://doi.org/10.1039/C3GC41951G
- [3] Mäki-Arvela P., Murzin D. Y. Hydrodeoxygenation of lignin-derived phenols: From fundamental studies towards industrial applications // Catal. 2017. V. 7. N 9. ID 265. https://doi.org/10.3390/catal7090265
- [4] Mortensen P. M., Grunwaldt J. D., Jensen P. A., Knudsen K. G., Jensen A. D. A Review of catalytic upgrading of bio-oil to engine fuels // Appl. Catal. A: General. 2011. V. 407. P. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046

- [5] Tan Q., Wang G., Nie L., Dinse A., Buda C., Shabaker J., Resasco D. E. Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts // ACS Catal. 2015. V. 5. P. 6271-6283. https://doi.org/10.1021/acscatal.5b00765
- [6] Maximov A., Zolotukhina A., Murzin V., Karakhanov E., Rosenberg E. Ruthenium nanoparticles stabilized in cross-linked dendrimer matrices: Hydrogenation of phenols in aqueous media // ChemCatChem. 2015. V. 7. P. 1197-1210. https://doi.org/10.1002/cctc.201403054
- [7] Shu R., Li R., Lin B., Wang Ch., Cheng Zh., Chen Y. A Review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels // Biomass Bioenergy. 2020. V. 132. ID 105432. https://doi.org/10.1016/j.biombioe.2019.105432
- [8] Gea S., Hutapea Y. A., Piliang A. F. R., Pulungan A. N., Rahayu R., Layla J., Tikoalu A. D., Wijaya K., Saputri W. D. A Comprehensive review of experimental parameters in bio-oil upgrading from pyrolysis of biomass to biofuel through catalytic hydrodeoxygenation // Bioenergy Res. 2023. V. 16. P. 325-347. https://doi.org/10.1007/s12155-022-10438-w
- [9] Elliott D. C., Meier D., Oasmaa A., van de Beld B., Bridgwater A. V., Marklund M. Results of the international energy agency round robin on fast pyrolysis bio-oil production // Energy Fuels. 2017. V. 31. P. 5111–5119. https://doi.org/10.1021/acs.energyfuels.6b03502
- [10] Phan T. N., Park Y.-K., Lee I.-G., Ko C. H. Enhancement of co bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over rutheniumsupporting mesoporous metal oxides // Appl. Catal. A: General. 2017. V. 544. P. 84-93. https://doi.org/10.1016/j.apcata.2017.06.029
- [11] Tanev P. T., Chibwe M., Pinnavaia T. J. Titaniumcontaining mesoporous molecular sieves for catalytic oxidation of aromatic compounds // Nature. 1994. V. 368. N 6469. P. 321-323. https://doi.org/10.1038/368321a0
- [12] Nava R., Morales J., Alonso G., Ornelas C., Pawelec B., Fierro J. L. G. Influence of the preparation method on the activity of phosphate-containing CoMo/ HMS catalysts in deep hydrodesulphurization // Appl. Catal. A: General. 2007. V. 321. P. 58-70. https://doi.org/10.1016/j.apcata.2007.01.038
- [13] Doukeh R., Bombos D., Bombos M., Oprescu E. E., Dumitrascu Gh., Vasilievici G., Calin C. Catalytic hydrotreating of bio-oil and evaluation of main noxious emissions of gaseous phase // Sci. Rep. 2021. V. 11. N 1. ID 6176.

https://doi.org/10.1038/s41598-021-85244-z

[14] Zhou M., Ye J., Liu P., Xu J., Jiang J. Waterassisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported ni and co bimetallic catalysts // ACS Sustainable Chem. Eng. 2017. V. 5. P. 8824-8835.

https://doi.org/10.1021/acssuschemeng.7b01615

- [15] Zhang C., Jia C., Cao Y., Yao Y., Xie S., Zhang S., Lin H. Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process // Green Chem. 2019. V. 21. P. 1668-1679. https://doi.org/10.1039/C8GC04017F
- [16] Zeng Y., Wang Z., Lin W., Song W. In situ hydrodeoxygenation of phenol with liquid hydrogen donor over three supported noble-metal catalysts // Chem. Eng. J. 2017. V. 320. P. 55-62. https://doi.org/10.1016/j.cej.2017.03.028
- [17] González-Borja M. Á., Resasco D. E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts // Energy Fuels. 2011. V. 25. P. 4155-4162. https://doi.org/10.1021/ef200728r
- [18] Bykova M. V., Zavarukhin S. G., Trusov L. I., Yakovlev V.A. Guaiacol hydrodeoxygenation kinetics with catalyst deactivation taken into consideration // Kinet. Catal. 2013. V. 54. P. 40-48. https://doi.org/10.1134/S0023158413010023
- [19] Chang J., Danuthai T., Dewiyanti S., Wang C., Borgna A. Hydrodeoxygenation of guaiacol over carbonsupported metal catalysts // ChemCatChem. 2013. V. 5. P. 3041-3049.
- https://doi.org/10.1002/cctc.201300096 [20] Bu Q., Lei H., Zacher A. H., Wang L., Ren S., Liang J., Wei Y., Liu Y., Tang J., Zhang Q., Ruan R. A Review of catalytic hydrodeoxygenation of lignin-derived
 - phenols from biomass pyrolysis // Bioresour. Technol. 2012. V. 124. P. 470-477.

https://doi.org/10.1016/j.biortech.2012.08.089

- [21] Campos-Franzani M. I., Gajardo-Parra N. F., Pazo-Carballo C., Aravena P., Santiago R., Palomar J., Escalona N., Canales R. I. Extraction of guaiacol from hydrocarbons as an alternative for the upgraded bio-oil purification: Experimental and computational thermodynamic study // Fuel. 2020. V. 280. ID 118405. https://doi.org/10.1016/j.fuel.2020.118405
- Kumar A., Thallada B. Hydrodeoxygenation of lignin [22] derived phenolics over a hydrous ruthenium oxide based catalyst(s): Role of surface water molecules and acidity of the support // Sustain. Energy Fuels. 2021. V. 5. P. 3802-3817.

https://doi.org/10.1039/D1SE00102G

[23] He L., Qin Y., Lou H., Chen P. Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin // RSC Adv. 2015. V. 5. P. 43141-43147.

https://doi.org/10.1039/C5RA00866B