Журнал прикладной химии. 2022. Т. 95. Вып. 7

УДК 66.092-977-922: 691.175.675

ПИРОЛИЗ ПОЛИАМИДСОДЕРЖАЩИХ МАТЕРИАЛОВ. ОСОБЕННОСТИ ПРОЦЕССА И СОСТАВ ПРОДУКТОВ РЕАКЦИИ (обзор)

© Е. М. Захарян¹, А. Л. Максимов^{1,2}

 ¹ Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29
 ² Московский государственный университет, им. М. В. Ломоносова, химический факультет, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3 E-mail: Zakharyan@ips.ac.ru

> Поступила в Редакцию 13 июля 2022 г. После доработки 1 сентября 2022 г. Принята к публикации 12 октября 2022 г.

Увеличение мощностей производства и потребления изделий из полиамидов, используемых в легкой, пищевой, текстильной промышленности, в строительной отрасли, машиностроении, медицине, приводит к формированию больших объемов полиамидсодержащих отходов, которые необходимо перерабатывать и утилизировать. Термическая переработка полиамидов в инертной атмосфере (пиролиз), как и разложение полимера в присутствии кислорода воздуха, приводят к образованию большого количества органических соединений — лактамов, кетонов, различных нитрилов, а также канцерогенных полициклических ароматических и азотсодержащих соединений, в том числе ценных органических продуктов, используемых при дальнейшей переработке. В связи с этим встает вопрос определения оптимальных условий переработки полиамидсодержащих отходов, при которых выход ценных продуктов увеличивается и происходит минимизация количества побочных, канцерогенных соединений. В обзоре описаны особенности протекания процесса термического разложения полиамидов и материалов на их основе в инертной среде и в присутствии кислорода воздуха и механизмы деполимеризации полиамидов. Рассмотрено влияние структуры полимера, температуры, состава газовой среды, добавок антипиренов, наличия катализатора на образование продуктов разложения в газовой и конденсированной фазах. Совместный пиролиз полиамидов с другими полимерами приводит к росту выхода газообразных продуктов и к образованию пиролизного масла, содержащего меньшее количество кислородсодержащих соединений, что говорит о синергическом эффекте совместного пиролиза. В качестве примера пиролиза промышленных полиамидсодержащих отходов рассмотрен процесс термического разложения материалов рыболовных сетей (как новых товарных продуктов, так и отработанных).

Ключевые слова: полиамид; нейлон; отходы полиамида; отходы нейлона; термическое разложение полиамида; пиролиз полиамида; каталитический пиролиз полиамида; сопиролиз полиамида DOI: 10.31857/S0044461822070015; EDN: DLPCBE

Введение

Полиамиды образуются в результате полимеризации є-капролактама (полиамид-6) (І), поликонденсации аминокислот (полиамид-11) (ІІ), поликонденсации диаминов и дикарбоновых кислот (полиамид-6,6) (III), поликонденсации высших аминокислот и дикарбоновых кислот и солей диаминов дикарбоновых кислот (полилактамы) (табл. 1) [1].

Высокая механическая прочность, эластичность, жесткость, вязкость, стойкость к воздействию внешней среды термопластичных полиамидов обусловлены водородными связями, образующимися между амидными группами [1, 2]. Добавка различных модификаторов на стадии полимеризации или экструзии полиамидов позволяет изменять их структуру и свойства, что в свою очередь приводит к получению новых материалов, используемых в текстильной промышленности [3, 4], медицине [5], а добавка антипиренов в состав полиамидов способствует улучшению их термостабильных свойств [5-8]. Наиболее широко используемым инженерным полимерным пластиком во многих областях промышленности является полиамид-6 [2] ввиду дешевизны его производства по сравнению с другими полиамидами.

За последние 50 лет мировое производство полиамидсодержащих материалов выросло более чем в 2 раза и составило к 2020 г. 5.45 млн т [9]. На 2018 г. производство только полиамида-6 составило 5.2 млн т, в то время как его мировая производственная мощность достигала более 6.8 млн т.* Основным производителем полиамида-6 на 2018 г. является Китай, производственная мощность которого составляет 4.01 млн т, за ним следуют Япония, Таиланд и Тайвань (в совокупности 1.28 млн т), производственные мощности европейских государств, таких как Испания, Польша, Нидерланды, Германия, Италия, Бельгия, в совокупности не превышают 1 млн т, производственная мощность Канады, США и Мексики — 0.55 млн т.** В России в 2021 г. полиамидов в первичных формах было произведено 198 тыс. т,*** тогда как производственная мощность основного отечественного производителя ПАО «КуйбышевАзот», производящего 97-99% от всего производства полиамида в России,**** составляла 212 тыс. т.****

Увеличение производства полиамидов приводит к росту количества отходов, которые перерабатывают (34.6%), подвергают рекуперации (42%) и отвозят на свалки (23.4%),****** тем самым нанося окружающей среде значительный ущерб. Как и другие виды полимерных отходов [10–12], отработанные полиамидсодержащие материалы сортируют и измельчают с целью дальнейшего использования в качестве наполнителя для строительных смесей (механический метод переработки) [13] и подвергают процессам гликолиза с выделением полиуретанов [14], аминолиза [15], гидролиза [16] и пиролиза [17] (химический метод переработки) с целью получения ценного органического сырья.

*** Рынок полиамидов в России. Текущая ситуация и прогноз 2022-2026 гг. // ACG Alto Consulting Group. https://alto-group.ru/otchot/rossija/568-rynok-poliamidatekushhaya-situaciya-i-prognoz-2015-2019-gg.html

**** Анализ рынка полиамида в России // DISCOVERY RESEARCH GROUP. https://drgroup. ru/components/com_jshopping/files/demo_products/ Demo. 1477-Analiz-rynka-poliamida-v-Rossii.PDF

***** «КуйбышевАзот» запустил четвертую очередь производства полиамида-6 // Plastinfo. 5 марта 2018 г. https://plastinfo.ru/information/news/36910 05.03.2018/

****** Plastic — The facts 2021.PlasticsEurope. https:// plasticseurope.org/knowledge-hub/plastics-the-facts-2021/

^{*} Nylon 6 market global review and outlook. 2019 // HDIN RESEARCH. https://hdinresearch.s3.us-east-2.amazonaws. com/Nylon+6+Market+Global+Review+and+Outlook+(2019). pdf

^{**} Там же.

E		Отношение		Cocraв
тип полиамида	Формула	-CH2-:NHCO	лактам/диамин	кислота
Полиамид-3	[2	β-Пропиолактам	
Полиамид-4	[3		ю-Аминокарбоновая кислота
Полиамид-6	[5	е-Капролактам	
Полиамид-6Т	[5	Гександиамин	Терефталевая кислота
Полиамид-7	[6	ζ-Энантолактам	
Полиамид-8	[7		ю-Аминокарбоновая кислота
Полиамид-11	[10		11-Аминоундекановая кислота
Полиамид-12	[11	ю-Лауриллактам	
Полиамид-4,6	$[NH(CH_2)_4NHCO(CH_2)_4CO-]_n$	4	1,4-Тетраметилендиамин	Адипиновая кислота
Полиамид-4,10	$[NH(CH_2)_4NHCO(CH_2)_8CO-]_n$	9	1,4-Тетраметилендиамин	Себациновая кислота
Полиамид-6,6	$[NH(CH_2)_6NHCO(CH_2)_4CO-]_n$	5	1,6-Гексаметилендиамин	Адипиновая кислота
Полиамид-6,8	$[NH(CH_2)_6NHCO(CH_2)_6CO-]_n$	5	1,6-Гексаметилендиамин	Адипиновая кислота
Полиамид-6,9	$[-NH(CH_2)_6NHCO(CH_2)_7CO-]_n$	6.5	1,6-Гексаметилендиамин	Азелаиновая кислота
Полиамид-6,10	[7	1,6-Гексаметилендиамин	Себациновая кислота
Полиамид-6,12	[8	1,6-Гексаметилендиамин	1,12-Додекандиовая кислота
Полиамид-10,10	[6	1,10-Декаметилендиамин	Себациновая кислота
Полиамид-10,12	[10	1,10-Декаметилендиамин	1,12-Додекандиовая кислота
Полиамид-11,6	[7.5	1,11-Ундекаметилендиамин	Адининовая кислота
Полиамид-12,6	[8	1,12-Додекаметилендиамин	Адининовая кислота
Полиамид-12,10	[10	1,12-Додекаметилендиамин	1,8-Октандиовая кислота
Полиамид-12,12	[]n	11	1,12-Додекаметилендиамин	1,12-Додекандиовая кислота

Таблица 1 Наиболее часто использующиеся в промышленности полиамиды Цель обзора — обобщение литературных данных в области теоретических основ переработки полиамидсодержащих материалов, анализ механизмов разложения полиамидсодержащих материалов при различных условиях термообработки и образования кислород- и азотсодержащих соединений в продуктах процесса.

Общие положения о механизме разложения полиамидов

Разложение полиамида-6 в инертной атмосфере начинается с выделения незначительного количества связанной воды при 40-50°С (до 1.5 мас%) [18]. Вторая стадия деполимеризации полимера протекает при 350-470°С с потерей более 90 мас% путем гомолитического разрыва амидной — CO—NH либо алкиламидной — NH—CH₂— связей [18, 19]. Скорость максимальной массопотери полимера при скорости нагрева 20 град·мин-1 наблюдается при температуре 435.2°С [18]. Снижение скорости нагрева до 10 и 1 град мин⁻¹ при разложении полиамида-6 приводит к понижению температуры начала его разложения (300 и 250°С соответственно) и уменьшению скорости максимальной потери массы [20]. Разложение полиамида-6,6 происходит в диапазоне 350-459°С (98.13 мас%), тогда как частичная потеря связанной воды наблюдается при 50-60°С (0.94 мас%) [18].

Скорость максимальной массопотери полиамида-6,6 наблюдается при температуре 431.8°С.

цис-Элиминирование, приводящее к разрыву —NH—CH₂— связей в β-положении по отношению к карбонильной связи, протекает через шестичленный цикл с образованием амида и соединений с терминальной двойной связью (схема 1) [19]. Высокая температура способствует разрывам связей —CH₂—CH₂—, находящихся в β-положении относительно карбонильной связи, с образованием олефинов, а также деполимеризации полимера с последующей циклизацией концевых групп —COOH и —NH₂ с выделением основного продукта — ε-капролактама [21].

Выделение NH₃, H₂O и CO₂ и образование протонированных мономеров и олигомеров происходит путем диссоциативной ионизации в результате H-переноса в NH-группе либо реакции перегруппировки типа Маклафферти (схема 2) [22]. Формирование нитрильной группы в полимерной цепи и выделяемых продуктах обусловлено процессом дегидратации амидной группы. H₂O, образующаяся в результате межмолекулярного аминолиза, конденсации концевых карбоксильных групп и реакции ε-капролактама с концевыми кислотными группами, гидролизует компоненты с амидными группами с выделением значительного количества газообразных

CO, CO₂ и NH₃, а также с образованием соединений, содержащих карбоновые и аминогруппы.

Нуклеофильная атака выделяющегося NH₃ на карбонильные группы полимерных цепей и соединений приводит к образованию производных иминов, перенос атома водорода в которых способствует выделению соединений с концевыми нитрильными группами (схема 3) [22]. Межмолекулярные взаимодействия между аминными и карбонильными группами, возникающие между двумя различными полимерными цепями при более высоких температурах (450–480°С), приводят к образованию более сложных азотсодержащих соединений (IV) по сравнению с нитрилами, аминами и амидами. Протекание подобных процессов является причиной отсутствия NH₃ при разложении полиамида [22].

Пиролиз полиамидов в инертной среде

Алифатические полиамиды, полученные поликонденсацией є-капролактама и солей диаминов дикарбоновых кислот (полилактамы). В процессе разложения полиамида-3 [23] при 500–600°С (скорость нагрева 100 град·мин⁻¹) в результате внутримолекулярно-го обмена образуются акриламид и олигомеры (V).

Схема 3

Образование производных иминов в результате реакции NH₃ с карбонильными группами [22]

Поскольку трехчленный цикл является нестабильным за счет сильного внутреннего напряжения, циклиза-

ция акриламида при разложении данного полиамида не наблюдается.

Циклизация выделяемых лактамов наблюдается в процессе разложения полиамидов, образованных из $C_{\geq 4}$ -мономеров [24–29]. Так, при разложении полиамида-4 при 550°С образуются бутиролактам, основной продукт пиролиза, газообразные СО, СО₂, NH₃ и низшие углеводороды, выделяемые в результате разрыва связей полимерной цепи [24], при разложении полиамида-6 при 400°С — циклопентанон, пропионовая кислота, N-винил-2-пирролидон и є-капролактам, среди которых преобладал последний [29], а продуктами пиролиза полиамидов-8, -11 и -12 в основном являлись лактамы с 7, 10 и 11 атомами углерода [24].

Повышение температуры пиролиза полиамида-6 до 550°С приводит к образованию є-капролактама, основного продукта, и ненасыщенных нитрилов с 1-5 атомами углерода в цепи [24], дальнейшее повышение температуры (800 и 950°С) способствует выделению 3-бутеннитрила, пентаннитрила, гексаннитрила, гептаннитрила, 2-циклогексен-1-она, гександинитрила, толуола и бензонитрила [25]. Основными продуктами пиролиза полиамида-6 в данных условиях, как в работе [29], являлись є-капролактам и циклопентанон [25]. При пиролизе полиамида-6 при 950°С (скорость нагрева 10 град мин⁻¹) [30] были получены пентаннитрил, циклопентанон, циклододекан, пиперидин, бензонитрил, ε-капролактам, стирол, инден и полиароматические нафталин, аценафтилен, 1- и 2-нафталинкарбонитрил, фенантрен, флуорантен, пирен и бензо[gi]флуорантен, что свидетельствует о протекании в основном процессов циклизации и ароматизации углеводородов при повышенных температурах. Среди полиароматических углеводородов, полученных в пиролизном масле при 950°С [30], преобладал нафталин. Увеличение скорости нагрева полиамида-6 с 5 до 40 град мин⁻¹ способствует смещению температуры разложения полимера в сторону более высоких значений [17]. Пиролизное масло, выход которого увеличивается с повышением температуры процесса (475-650°С) и скорости нагрева, состоит из фракции короткоцепочечных углеводородов (С₆₋₁₉), пиролизный газ представляет собой смесь H₂, NH₃, CO, CO₂ и легких углеводородов (метан, этан, этилен, пропан, пропилен, н- и изо-бутаны и пентаны), в которой доля СО колеблется в интервале 11.12–15.71 мас%. Наибольший выход пиролизного масла при высокой скорости нагрева (10 град·мин⁻¹) был достигнут при 600°С, при меньшей скорости нагрева (5 град·мин⁻¹) — при 550°С. Низкая температура и высокая скорость нагрева способствуют крекингу компонентов пиролизного масла с образованием большего количества газообразных продуктов. При повышении скорости нагрева наблюдается рост выделения СН₄ и H₂ в продуктах.

Термическое разложение полиамидов-11 и -12 при 500°С (скорость нагрева 10 град мин⁻¹) сопровождается процессами внутримолекулярного амидного обмена в процессе β-С-Н-переноса водорода С—Н (схема 4), который возможен либо путем обменного процесса (1), либо путем аминолиза (2) [19], иис-элиминирования, гомолитического разрыва связей С-N и приводит к образованию в основном СО, СН₄, ненасыщенных углеводородов и нитрилов, незначительных количеств ундекалактама в случае полиамида-11 и CO₂, NH₃, этилена, пропилена, α-олефинов, содержащих до 8 атомов углерода, доделактама в случае полиамида-12 [31]. Повышение скорости нагрева полиамидов-11 и -12 до 100 град мин⁻¹ при пиролизе при 500-600°С [23] способствует образованию в основном мономеров и димерных лактамов. Быстрый пиролиз полиамида-11 при 600°С приводит к образованию до 20 компонентов пиролизных масел [27], среди которых были идентифицированы линейные углеводороды с числом атомов углеро-

Схема 4

Механизм внутримолекулярного обмена при разложении полиамида-11 и -12 [19]

Повышение температуры пиролиза полиамида-12 до 800 и 950°С [25] приводит к образованию нитрилов, содержащих 4–12 атомов углерода, 2-циклогексен-1-она, толуола и бензонитрила, выходы которых варьировались в зависимости от температуры (табл. 2). Выход преобладающего циклического мономера лауриллактама составлял 17.31 мг·г⁻¹ сырья при 800°С и 14.97 мг·г⁻¹ сырья при 950°С соответственно.

Алифатические полиамиды, полученные поликонденсацией диаминов и дикарбоновых кислот (нейлоны). Разложение полиамидов-4,10, -6,10, -10,10, полученных в результате взаимодействия себациновой кислоты и 1,4-тетраметилендиамина, 1,6-гексаметилендиамина и 1,10-декаметилендиамина, и полиамида-10,12, образованного из 1,12-додекановой кислоты и 1,10-декаметилендиамина (табл. 1), в инертной атмосфере протекает в одну стадию (440-500°С). Это говорит о том, что на процесс разложения не влияли ни природа составных компонентов полимеров, ни длина цепи диаминов [28]. Наибольшая температура, при которой достигается максимальная скорость разложения полимера, наблюдалась при пиролизе полиамида-4,10. Связь с наименьшей энергией диссоциации — С в N-алкиламидных группах (—CH₂NHCO—) подвергается расщеплению уже при 300°С, в результате чего образуются первичные амиды, нитрилы, соединения с винильной группой, изоцианаты. Фрагментация цепи может также протекать в результате разрывов амидной связи (--CONH---) и расщепления вдоль цепи ---СН2---СН2--- и —NH—CH₂— в β-положении к карбонильным группам с выделением соединений с карбоксильными

и аминогруппами, которые в свою очередь разлагаются до CO₂, H₂O и NH₃ (схема 5) [28]. В процессе пиролиза полиамида-4,10 было образовано большее количество газообразных продуктов по сравнению с пиролизом других полиамидов, тогда как при разложении полиамида-6,10 в продуктах преобладали производные циклогексана и циклогексанона [28]. Помимо циклических соединений в процессе пиролиза полиамидов на основе дикарбоновых кислот в результате их декарбоксилирования и дегидратации были получены динитрилы (октандинитрил и декандинитрил).

Основным продуктом медленного пиролиза полиамида-6,6 при 400°С является циклопентанон, помимо которого образуются продукты с концевыми нитрильными и изоцианатными группами, взаимодействие последних друг с другом приводит к формированию карбодиимида, который в свою очередь подвергается сшивке (схема 6) [32]. Таким образом, в результате термообработки полимера образуется большее количество твердого остатка (около 8 мас%) по сравнению с пиролизом любых других алифатических полиамидов. При быстром пиролизе полиамида-6,6 в горизонтальном реакторе выделение HCN, СН4 и СО увеличивается с ростом температуры (800-1000°С) и времени пребывания частиц (0.28–1.7 с) в реакторе, в то время как на образование NH_3 и CO_2 данные параметры влияют не столь значительно, что обусловлено протеканием двух конкурирующих процессов: образованием карбоновых кислот и аминов при низкой температуре и нитрилов при высоких температурах [33]. Оксиды NO_r в газовой среде обнаружены не были, что говорит об отсутствии процессов окисления азотсодержащих компонентов продуктов пиролиза полиамида-6,6 [33]. Пиролиз полиамидов-6,10 и -6,12 не дает столь большого количества полукокса, поскольку в процессе гомолитического разрыва алкиламидных связей образующиеся макро-

Π	Количество,	мг г ⁻¹ сырья		Количество, мг·г ⁻¹ сырья		
Продукт	800°C	950°C	Продукт	800°C	950°C	
Лауриллактам	17.31	14.97	Октаннитрил	1.9	1.83	
3-Бутеннитрил	2.5	2.15	Нонаннитрил	4.05	3.6	
Пентаннитрил	3	3.15	Деканнитрил	2.85	2.1	
Гексаннитрил	2.4	2.43	Ундеканнитрил	4.75	3.95	
Гептаннитрил	1.85	1.72	Толуол	3.97	6.98	
2-Циклогексен-1-он	1.15	1.17	Бензонитрил	2.5	4.35	

Таблица 2 Продукты пиролиза полиамида-12 при 800 и 950°С в N₂ [25]

Схема 6

молекулы подвергаются диспропорционированию с выделением насыщенных и ненасыщенных нитрилов

и Н₂О [19]. Разложение полиамидов-6,6, -6,9, -6,10, -6,12, -12,6, -12,10, -12,12 [24] при быстром пиролизе при 550°С сопровождается образованием бутандинитрила, гександинитрила, октандинитрила, декандинитрила соответственно, є-капролактама (в случае полиамидов-6,6, -6,9, -6,10, -6,12), различных С₄₋₁₀-нитрилов, С₄₋₁₀-олефинов и в незначительных количествах ацетонитрила и акрилонитрила. Увеличение доли гексаннитрила в 2 раза в продуктах пиролиза полиамида-6,6 по сравнению с его долей при пиролизе полиамида-6 при 800-950°С связано с дегидрированием гексаметилендиамина, присутствующего в полимере, при высоких температурах [25]. Повышение температуры процесса разложения полиамида-6,6 с 800 до 950°С способствует снижению доли основных продуктов — є-капролактама и циклопентанона — с 30 и 109 мг·г-1 сырья до 24 и 106 мг · г-1 сырья. Аналогично пиролизу полиамида-12 [25] при разложении полиамида-6,12 при повышенных температурах образуются ряд нитрилов С₄₋₁₁, толуол, бензонитрил и 2-циклогексен-1-он [25]. Компоненты, содержащие 12 атомов углерода, обнаружены не были, поскольку такие соединения подвергаются циклизации с образованием толуола, преобладающего в продуктах при 950°С.

В жидком продукте, полученном при пиролизе полиамида-10,12 при 600°С, помимо линейных терминальных С₃₋₁₀-олефинов содержались С_{<10}-нитрилы (6-гептеннитрил, 7-октеннитрил, 8-ноненнитрил, ноненнитрил, 9-деценнитрил, 10-ундеканитрил, ундеканитрил) и С_{<10}-амины (1-деканамин, 1,10-диаминодекан), N-бутилбензолсульфонамид и 1,10-дицианодекан [27]. Состав продуктов при пиролизе полиамида-11 (VI) и полиамида-10,12 (VII) различался: в случае термического разложения полиамида-11 были получены 2-азациклотридеканон ($C_{\leq 11}$ -лактам) и дегидратированная 11-аминоундекановая кислота, а в случае термического разложения полиамида-10,12 — 1,10-диамино-, 1,10-дицианодекан, диаминодекан и ацетилат додекандиовой кислоты.

Первичный процесс термического разложения полиамида-11,6 [23, 18, 34], полученного путем конденсации диаминов и адипиновой кислоты, начинается с переноса водорода связи С—Н в аминогруппу с образованием соединений 1 и 2 с терминальной амино- и (или) кетоамидной группой (схема 7), дальнейшее разложение которых с реакцией NH-переноса водорода приводит к выделению циклопентанона и аминоундекаметиленизоцианата. Соединение 1, подвергаясь процессу термической циклизации, преобразуется в соединение 3, в то время как соединение 2 и его высший гомолог могут взаимодействовать с циклопентаноном с образованием вторичных продуктов (соединение 4), содержащих группы оснований Шиффа.

Схема 7

Ароматические полиамиды (кевлар). Термическое разложение ароматического полиамидного волокна TenaxTM (Teijin Limited) [35], представляющего собой арамидное волокно мета-амидного типа и характеризующегося исключительной термостойкостью и огнестойкостью, протекает в две стадии, первая из которых происходит при температуре около 420°С с потерей до 10% первоначального веса. На второй стадии, наблюдаемой при 540°С, потеря массы составляла около 80%. Молекулы ароматического полиамида в процессе пиролиза при 30-400°С (скорость нагрева 10 град мин⁻¹) в инертной атмосфере [36] разлагаются путем внутримолекулярного обмена и сопутствующего процесса переноса водорода группы — NH с образованием соединений с аминными и (или) сукцинимидными концевыми группами (VIII).

Пиролиз кевлара, входящего в состав автомобильных шин [37], при 400, 550 и 900°С (скорость нагрева 5 град·мин⁻¹) приводил к образованию 31.5, 53 и 53 мас% масла и 6.2, 9.7 и 10.3 мас% соответственно газообразного продукта, т. е. повышение температуры приводит к снижению доли полукокса (площадь поверхности 68 м²·г⁻¹) и росту газовой фракции. В пиролизном масле, полученном в результате разложения отходов шин при 550°С, были обнаружены циклопентанон, диметилциклогексен, этилбензол, ксилол, стирол, этилметилбензол, метилстирол, бензонитрил, лимонен, терпинолен, метилбензонитрил, бензойная кислота, ε -капролактам, метилнафталин, диметилнафталин, пентадецен, N-гексилбензамид, гексадеканитрил, гептадеканитрил и бензотиазол, образующийся в результате разложения бензотиазолдисульфида, используемого в качестве ускорителя при производстве шин. С повышением температуры пиролиза сырья вследствие глубокого крекинга увеличивается доля CH₄ и H₂.

Таким образом, в процессе пиролиза полиамидов в результате расщепления амидных связей образуются CH₄, NH₃, CO, амины, олефины и амиды; в результате дегидратации амидной связи — нитрилы, динитрилы; крекинг компонентов приводит к образованию низших углеводородов; декарбоксилирование — выделению CO₂; циклизация и ароматизация кислородсодержащих углеводородов — образованию лактамов в случае полиамидов-6, -8, -11, -12, циклических кетонов в случае полиамидов-6, 6, -6,9, -6,10, -6,12 и диаминов и дицианов в случае полиамидов-10,12, -11,12, -12,6, -12,10, -12,12 (табл. 3) [17–19, 23–25, 27–34, 37].

Пиролиз полиамидов, содержащих антипирены. В качестве антипиренов, добавки которых улучшают термостабильные свойства полиамидов, как правило, используют:

 — фосфорсодержащие соединения: красный фосфор [38], PN-DOPO (9,10-дигидро-9-производное окса-10-фосфафенантрен-10-оксида) [26], Exolit OP1230 (диэтилфосфинат алюминия) [26, 39], АРР (полифосфат аммония) [31, 40], (PON)_m (оксинитрид фосфора), (PN₂H)_n (фосфам) [41];

— азотсодержащие соединения: меламин (1,3,5-триазин-2,4,6-триамин) [22, 29], цианурат меламина [22], эфиры 4-оксидифениламина [42];

— другие соединения: MgO, Mg(OH)₂ [18], NH₄SO₃NH₂ [43].

Пиролиз продукта полиамида-6T, полуароматического нейлона, образованного в результате взаимодействия терефталевой кислоты и гександиамина, содержащего антипирены PN-DOPO и Exolit OP1230 в своем составе, приводит к образованию продуктов разложения самого полимера и соответственно антипирена (схема 8) [26].

Добавка меламина и цианурата меламина в качестве антипирена в полиамид-6 способствовала образованию дополнительных продуктов при его термическом разложении [22], что было связано с реакциями карбонильных групп полимера с аминогруппами меламина (IX) и HCN, выделяемой при термообработке цианурата меламина, с аминогруппами полимера. Последующая дегидратация образуемых компонентов приводит к формированию иминовых звеньев при 222°С — фрагменты COC₅H₁₀N=C(N₆C₃H₅), C₅H₁₀N=C(N₆C₃H₅) и C₃H₇N=C(N₆C₃H₅). Гидратация связей полиамида-6 способствует образованию соединений с концевой группой —COOH, т. е. карбоновых кислот. Также путем взаимодействия NH₃ с карбонильной группой с последующей

		,	·
Тип полиамида	Продукты разложения полиамида	Температура, °С	Литературный источник
Полиамид-3	Акриламид, олигомеры	500-600	[23]
Полиамид-4	CO, CO ₂ , NH ₃ и низшие углеводороды, бутиролактам	550	[24]
Полиамид-6	ε-Капролактам, циклопентанон, пропионовая кислота, N-винил-2- пирролидон	400	[29]
	H ₂ , NH ₃ , CO, CO ₂ , метан, этан, этилен, пропан, пропилен, н- и <i>изо</i> -бу- таны и пентаны, C ₆₋₁₉ -углеводороды	475–650	[17]
	є-Капролактам, ненасыщенные C ₁₋₅ -нитрилы	550	[24]
	3-Бутеннитрил, пентаннитрил, гексаннитрил, гептаннитрил, 2-цикло- гексен-1-он, гександинитрил, толуол и бензонитрил	800–950	[25]
	Пентаннитрил, циклопентанон, циклододекан, пиперидин, бензони- трил, ε-капролактам, стирол, инден, нафталин, аценафтилен, 1- и 2-нафталинкарбонитрил, фенантрен, флуорантен, пирен и бензо[gi]- флуорантен	950	[30]

Таблица 3

Продукты разложения полиамидов в инертной атмосфере (пиролиза)

Таблица 3 (продолжение)

Тип полиамида	Продукты разложения полиамида	Температура, °С	Литературный источник
Полиамид-8	С ₇ -Лактам	550	[24]
Полиамид-11	Ундекалактам, димер ундекалактама	550	[23, 24]
	СО, СН ₄ , ненасыщенные углеводороды и нитрилы, ундекалактам	500	[31]
	Пропилен, 1-бутен, 1-пентен, 1-гексен, 1-гептен, 1-октен, 1,8-нонади- ен, 1-нонен, 6-гептеннитрил, 1-децен, 7-октеннитрил, 8-ноненни- трил, нонаннитрил, 9-деценнитрил, 10-ундеценнитрил, ундеканни- трил, 2-азациклотридеканон, N-бутилбензолсульфонамид	600	[27]
Полиамид-12	Доделактам, димер доделактама	550	[23, 24]
	$\mathrm{CO}_2,\mathrm{NH}_3,$ этилен, пропилен, $\mathrm{C}_{\leq 8}$ -а-олефины, доделактам	500	[31]
	Лауриллактам, 3-бутеннитрил, пентаннитрил, гексаннитрил, гептанни- трил, 2-циклогексен-1-он, октаннитрил, нонаннитрил, деканнитрил, ундеканнитрил, толуол, бензонитрил	800–950	[25]
Полиамид-4,10	CO ₂ , H ₂ O, NH ₃	440–500	[28]
Полиамид-6,6	Циклопентанон, карбодиимид, нитрилы, изоцианаты	400	[32]
	HCN, CH ₄ , NH ₃ , CO, CO ₂ , карбоновые кислоты, амины	800-1000	[33]
	Бутандинитрил, є-капролактам, С _{4–10} -нитрилы, С _{4–10} -олефины, аце- тонитрил, акрилонитрил	550	[24]
	Гексаннитрил, є-капролактам, циклопентанон	800–950	[24]
Полиамид-6,9	Гександинитрил, є-капролактам, С _{4–10} -нитрилы, С _{4–10} -олефины, аце- тонитрил, акрилонитрил	550	[24]
Полиамид-6,10	CO ₂ , H ₂ O, NH ₃ , октандинитрил, декандинитрил	440–500	[28]
	Насыщенные и ненасыщенные нитрилы, динитрилы, диены, H ₂ O		[19]
	Октандинитрил, є-капролактам, С _{4–10} -нитрилы, С _{4–10} -олефины, аце- тонитрил, акрилонитрил	550	[24]
Полиамид-6,12	Насыщенные и ненасыщенные нитрилы, динитрилы, диены, Н2О		[19]
	Декандинитрил, є-капролактам, С _{4–10} -нитрилы, С _{4–10} -олефины, аце- тонитрил, акрилонитрил	550	[24]
	ε-Капролактам, С ₄₋₁₁ -нитрилы, толуол, бензонитрил, 2-циклогек- сен-1-он	800–950	[24]
Полиамид-10,10	CO ₂ , H ₂ O, NH ₃ , октандинитрил, декандинитрил	440-500	[28]
Полиамид-10,12	Пропилен, 1-бутен, 1-пентен, 1-гексен, 1-гептен, 1-октен, 1,8-нонади- ен, 1-нонен, 1-децен, 6-гептеннитрил, 7-октеннитрил, нонаннитрил, 1-деканамин, 9-деценнитрил, 10-ундеценнитрил, ундеканитрил, 1,10-диаминодекан, 1,10-дицианодекан, N-бутилбензолсульфонамид	600	[27]
Полиамид-11,6	Циклопентанон, аминоундекаметиленизоцианат	—	[18, 23, 34]
Кевлар	СН ₄ , H ₂ , циклопентанон, диметилциклогексен, этилбензол, ксилол, стирол, этилметилбензол, метилстирол, бензонитрил, лимонен, терпинолен, метилбензонитрил, бензойная кислота, ε-капролактам, метилнафталин, диметилнафталин, пентадецен, N-гексилбензамид, гексадеканитрил, гептадеканитрил и бензотиазол	400–900	[37]

Примечание. «—» — информация отсутствует.

-OH

Ξ

Ξ

 H_2N_1

 Ξ

ŇH,

 \sim

Ò

NH₃ H₂O

Exolit OP1230

 \simeq

ΞZ

0

¢ Al+3

С

Алюмофосфаты/Полифосфаты

Фосфорсодержащие оксиды

Углеводороды

ŇH2

дегидратацией и перегруппировкой образуются терминальные нитрилы [CH₃(CH₂)₄NHCN]. При нагревании до 261°C цианурат меламина разлагается до меламина и HOCN, взаимодействие которой с аминогруппами полимера приводит к формированию соединений с функциональными группами — CONH— и — CH₂CHO (X).

Добавка антипирена полифосфата аммония, индуцирующего разложение полиамида-11 и -12 по ионному и молекулярному механизмам, подавляет образование СО, СО₂ и лактамов в процессе пиролиза полимеров и способствует образованию первичных амидов и концевых эфиров фосфорной кислоты (XI) в результате разрыва алкиламидных связей цепи [31]. Выделение реакционноспособного NH₃ при разложении полифосфата аммония обусловлено разрывом алкиламидной связи с последующим взаимодействием с интермедиатами эфиров фосфорной кислоты. Полифосфатный эфир подвергается расщеплению либо путем *цис*-элиминирования с образованием двойной связи (XII), либо посредством протонирования с формированием стабильного вторичного карбкатиона, отщепление H⁺ от которого приводит к формированию двойной связи в β-положении (XIII).

Использующийся в качестве термостабилизатора Mg(OH)₂ [18] способствует снижению температур разложения полиамида-6 и -6,6, что обусловлено ускорением процесса цепного гидролиза полиамидной цепи, катализируемого H₂O, выделяющейся при разложении Mg(OH)₂. В результате гидролиза полиамидов с расщеплением основной цепи образуются амиды и карбоновые кислоты, которые в свою очередь разлагаются на H₂O, NH₃ и CO₂ (XIV)-(XVI). Наличие NH₄SO₃NH₂ в составе полиамида-6 при его пиролизе при 500°С способствует образованию незначительных количеств 1-(циклогексен-1-ен-1-ил)-пиперидина, азепат-2-тиона, N-(5-цианопентил)пент-4-енамида и 6-ацетамидо-N-(5-цианопентил)гексанамида [43] помимо основных продуктов (є-капролактам, СО, CO_2 , H_2O , NH_3).

$$2 \operatorname{www} NH_2 \longrightarrow \frac{N_{W_N}}{H} + NH_3 \qquad (XVI)$$

Быстрый пиролиз полиамидов, стабилизированных эфирами 4-оксидифениламина (XVII), в реакторе при 200–800°С проводили в [42]. При наличии стабилизатора снижается доля H₂, CO₂, 2,2-диметилпропана, изобутена, изомеров бутена-2, 2,2-диметилбутана, пентена-1, ацетонитрила (табл. 4), при этом природа стабилизатора на состав продуктов влияет незначительно. Серосодержащие стабилизаторы способствуют ингибированию образования СО сильнее, чем другие антипирены. Доля CO₂ в продуктах пиролиза полиамидов увеличивается с повышением температуры и увеличением длины алифатических цепей стабилизаторов.

где R = (CH₂)_{*x*} и *x* = 2 (H-2), 2 (H-60), 4 (H-4), 5(H-61), 6 (H-62) или 10 (H-63), —(CH₂—CH₂)₂O (H-1), —[CH₂—CH(OH)]₂O (H-3), —(CH₂—CH₂)₂S (HC-2), —(CH₂—CH₂—O—CH₂—CH₂)₂S (HC-1).

Пиролиз полиамидов в окислительной среде

В отличие от разложения полиамидов в инертной атмосфере [25, 30], потеря массы полиамидов-6, -12, -6,6, -6,12 при нагревании в присутствии кислорода воздуха [25, 30] происходит в два этапа: первый в интервале 350–475°С, второй — 475–600°С. Основными газообразными продуктами пиролиза полиамидов являлись NH₃, H₂O, HCN и CO₂, высокий выход последнего в случае окислительного разложения обусловлен окислительными процессами при разложении полукокса, образуемого на первой стадии.

Процесс термоокисления полиамидов начинается с атаки Н• на N-вицинальную метиленовую группу с формированием макрорадикала (схема 9) [19], к которому присоединяется кислород с образованием пероксида, радикала кислорода в цепи и, как следствие, гидроксильной группы. Разрыв алкиламидной связи приводит к образованию карбонила и амина. Дальнейшее взаимодействие карбонила с Н• способствует выделению алкильного радикала и карбоновой кислоты.

Разложение полиамида-6 в среде O₂ приводит к выделению ε -капролактама (126 и 135 мг·г⁻¹ при 800 и 950°С соответственно) и циклопентанона (5 и 4.6 мг·г⁻¹ при 800 и 950°С соответственно), а полиамида-12 — ω -лауриллактама (10.67 и 7.83 мг·г⁻¹ при 800 и 950°С соответственно), а также различных нитрилов (рис. 1), выход которых снижается с повышением температуры, за исключением пентаннитрила [27]. Сжигание полиамида-6 в присутствии кислорода воздуха при высоких температурах в печи приводит к образованию токсичных азотсодержащих соединений (табл. 5) [30]. Повышение температуры до 1000°С привело к снижению выхода аминонафта-

	-		•		-			-	-	-	
	Полиония				Стабил	изатор (то	рговое на	звание)			
продукт пиролиза	Полиамид	H-1	H-3	HC-1	HC-2	Н-2	H-60	H-4	H-61	H-62	H-63
H_2	Следы	Следы	Следы		_				_		
СО	+++	+++	++	++	++	++	++	++	++	++	++
CH ₄	+	+	+			+	Следы	Следы	Следы	Следы	+
CO ₂	++		—		—	—			—		
C_2H_6	+++	+++	++	++	+	+	++	++	++	+	++
C_2H_4	+++	+++	+	+++	+++	+++	++	+++	+++	++	+++
C_3H_8	+++	++	++	+	+	+	+	+	++	++	++
C_3H_6	+++	+	+	+	Следы		+	+	++	++	++
2,2-Диметилпропан	Следы			+	Следы			+	++	+	+
C_2H_2	+	Следы			—			Следы	Следы		Следы
Бутен-1	+	Следы	Следы		—			+	+	+	+
изо-Бутен	Следы							Следы	Следы		Следы
<i>транс-2-</i> Бутен	Следы								+	+	Следы
<i>цис</i> -2-Бутен	Следы								+	+	Следы
2,2-Диметилбутан	++							+	+	+	+
Пентен-1	Следы				—			Следы	+	+	+
Ацетальдегид	+	++	+	+	Следы		Следы	Следы			+
Бензол	+	+	Следы	Следы	Следы	Следы	+	Следы	Следы		Следы
Ацетонитрил	+										
Толуол	Следы										
Ацетон	_					+					

Таблица 4 Продукты пиролиза чистого и термостабилизированного полиамида-6 при 400°С [42]*

Примечание. «+, ++, +++» — обнаружено, «—» — не обнаружено, следы — следовые количества.

Рис. 1. Продукты окислительного пиролиза полиамида-6 и полиамида-12 [25].**

* Разрешение на публикацию получено 06.07.2022, © Elsevier.

** Разрешение на публикацию получено 06.07.2022, © Elsevier.

линов и акридина и увеличению доли фенантридина, бензохинолинов, 4-азапирена и бензакридинов.

В отличие от пиролиза полиамидов [28] термоокислительное разложение полиамидов-4,10, -6,10, -10,10 и -10,12 начинается с разрыва N-вицинальной метиленовой группы и сопровождается разрывом алкиламидной или вицинальной С—С-связи. Потеря массы полиамидов-4,10 и -6,10 начинается при 369°С, тогда как полиамиды-10,10 и -10,12 разлагаются при 401 и 410°С соответственно. Вторым этапом разложения полиамидной цепи (450°С) является образование углеводородов (алканы, алкены) (табл. 6) с последующей циклизацией и ароматизацией, которые в свою очередь окисляются до CO₂ и CO (520°С). Отсутствие HCN в продуктах разложения полимеров является результатом разрыва связи — С — N — и восстановления фрагмента — N — до NH₃.

Процесс термоокислительного разложения полиамида-6,6 (130–200°С) протекает по четырем различным направлениям (схема 10) [44]. Начальной стади-

Таблица 5
Азотсодержащие соединения, обнаруженные в жидком продукте окислительного разложения полиамида-6
при 800 и 1000°С [30]

Компонент	Массовая	я доля, %	Контононт	Массовая доля, %			
KOMIIOHEHT	800°C	1000°C	KOMIIOHEHT	800°C	1000°C		
1-Аминонафталин	0.23	0.0017	Фенантридин	+	0.19		
2-Аминонафталин	0.05	0.001	Бензо[h]хинолин	+	0.07		
2-Аминоантрацен	+		Бензо[f]хинолин	+	+		
1-Аминопирен	+		4-Азапирен	+	1.33		
6-Аминохризен	+		Бенза[а]акридин		+		
4-Азафлуорен	+		Бенза[с]акридин		0.035		
Акридин	0.3	0.04					

Примечание. «+» — обнаружено в следовых количествах, «—» — не обнаружено.

Таблица 6 Состав пиролизных масел, полученных при разложении полиамидов-4,10, -6,10, -10,10 и -10,12 в среде О₂ при 400–600°С [28]*

Идентифицированные ионы	Компонент	Полиамид-4,10	Полиамид-6,10	Полиамид-10,10	Полиамид-10,12
CH ₂ OCH ₃ , COOH, C ₂ H ₇ N	Лактоны, карбоновые кислоты, амины	+	+	+	+
$H_2O + CO, C_2H_6O^+$	Карбоновые кислоты, этиловые эфиры	+	+	+	+
$C_4H_3^+, C_4H_4^+$	Ароматические соединения	+	+	+	+
$C_4H_9^+, C_2H_5CO^+$	Алканы, кетоны, пен- тиламины	+	+	+	
$\begin{array}{c} C_{4}H_{10}{}^{+}, \ C_{3}H_{8}N^{+}, \ C_{3}H_{6}O^{+}, \\ C_{3}H_{9}N^{+} \end{array}$	Алканы, метилкетоны, амины, амиды		+	+	
CH ₂ COOH	Алифатические кислоты		+	+	+
$C_2H_5O_2^+$	Гликоли	+	+		+
$C_5H_3^+, C_5H_4^+, C_5H_5^+, C_5H_6^+$	Ароматические соеди- нения, циклопентены			+	+
$C_{5}H_{7}^{+}$	Циклоалкены	+	+	+	+
(CH ₂) ₃ CN, (CH ₂) ₄ CN, C ₆ H ₁₀ , (CH ₂) ₅ CN	Нитрилы	+	+	+	+
$C_5H_{10}^+, C_4H_6O^+$	Алканы, алкены, цикло- алканы	+	+	+	+
$C_5H_9^+, C_4H_5O^+$	Цикло-С ₅ - и С ₆ -кетоны	+	+	+	+
C ₅ H ₁₁ ⁺ , C ₃ H ₇ C==O	Фрагменты цепи алка- нов и кетонов		+	+	+
C ₃ H ₇ CHNH ₂ , C ₂ H ₅ NHCHCH ₃	Амины		+		
$C_6H_8^+$, $C_5H_4O^+$, $C_5H_6N^+$	Циклогексены, цикло- пентанон, производ- ные пиридина	+	+	+	+
C ₆ H ₉ ⁺ , C ₆ H ₁₀ ⁺ , C ₆ H ₅ CH ₂ ⁺	Циклогексан, диены, циклогексиловые эфи- ры и амиды	_		+	+
$C_7H_8^+, C_5H_6N^+, C_6H_4(O)CH_2^+$	Алкилбензол, алкилпи- ридин	+	+	+	+
C ₆ H ₁₂ N ⁺ , C ₆ H ₅ N ⁺ CH ₃ , C ₆ H ₅ N ⁺ CH ₂	Производные пипери- дина				+

Примечание. «+» — обнаружено, «—» — не обнаружено.

ей радикально-цепного окисления полимера является термическое разложение гидропероксида, сопровождающееся образованием реакционноспособных частиц — гидроксил- и алкоксильных радикалов. Атака радикалов О[•] происходит преимущественно по связям —С—Н в α-положении атомов азота. Дальнейшее окисление протекает по процессам, конкурирующим между собой (схема 10):

 перегруппировка алкоксирадикала путем β-разрыва вызывает разрыв связи —СN, приводящий к образованию первичного амида и альдегида;

* Разрешение на публикацию получено 06.07.2022, © Elsevier.

 удаление атома водорода индуцирует β-разрыв с выделением макрорадикала и формиламида;

 образование имидов в результате реакции диспропорционирования вторичных алкильных радикалов;

4) отщепление атома водорода алкоксирадикалами приводит к образованию нестабильных спиртов, разлагающихся на первичные амиды и альдегиды.

В процессе окисления полиамида-6,6 [45] 42 мас% образовавшегося CO₂ формируется из карбонильных атомов углерода внутри макромолекулярной цепи, 15 мас% CO₂ — из метиленовых групп, примыкающих к атомам азота в амидной связи цепи, 25 мас% CO₂ — из остальных метиленовых групп в повторяющемся звене полиамида, 18 мас% CO₂ — из концевых карбоксильных групп полиамида. По сравнению с пиролизом полиамида-6 термообработка полимера в присутствии кислорода воздуха приводит

к образованию меньшего количества є-капролактама (15 и 14 мг·г⁻¹ при 800 и 950°С соответственно) и большего количества циклопентанона (67 и 64 мг·г⁻¹ при 800 и 950°С соответственно), что обусловлено строением полимера [25]. Первичные продукты разложения полиамида-6,12 представляют собой ряд нитрилов C_{4-11} , два ароматических соединения и кетон. Линейные углеводороды, содержащие 12 атомов углерода, не образуются, поскольку они подвергаются циклизации с образованием циклического мономера.

Таким образом, в процессе разложения полиамидов в присутствии кислорода воздуха в значительном количестве образуются газообразные СО и СО₂ и алканы, насыщенные и ненасыщенные нитрилы, оксигенаты, такие как карбоновые кислоты, кетоны, эфиры, гликоли, и полиароматические соединения (табл. 7) [25, 27, 28, 30].

Тип полиамида	Продукты разложения полиамида	Температура, °С	Литературный источник
Полиамид-6	NH ₃ , H ₂ O, HCN, CO ₂	475-600	[25, 30]
	ε-Капролактам, циклопентанон, 3-бутеннитрил, пентаннитрил, гексаннитрил, 2-циклогексен-1-он, толуол, бензонитрил	800–950	[27]
	 и 2-аминонафталин, 2-аминоантрацен, 1-аминопирен, 6-амино- хризен, 4-азафлуорен, акридин, фенантридин, бензо[h]хинолин, бензо[f]хинолин, 4-азапирен, бенза[а]акридин, бенза[с]акридин 	800-1000	[30]
Полиамид-12	NH ₃ , H ₂ O, HCN, CO ₂	475–600	[25, 30]
	 ω-Лауриллактам, 3-бутеннитрил, гексаннитрил, гептаннитрил, октаннитрил, нонаннитрил, деканнитрил, ундеканнитрил, доде- каннитрил, 2-циклогексен-1-он, толуол, бензонитрил 	800–950	[27]
Полиамид-4,10	CO ₂ , CO, лактоны, уксусная кислота, амины, этилацетат, C ₄ -алканы, кетоны, пентиламины, метилкетоны, амины, амиды, гликоли, нитрилы	400–600	[28]
Полиамид-6,6	NH ₃ , H ₂ O, HCN, CO ₂ , циклопентанон, ε-капролактам	475-600	[25, 30]
Полиамид-6,10	CO ₂ , CO, лактоны, уксусная кислота, амины, этилацетат, C ₄ -алканы, кетоны, пентиламины, метилкетоны, амины, амиды, нитрилы, цикло-C ₅ - и C ₆ -кетоны	400–600	[28]
Полиамид-6,12	NH ₃ , H ₂ O, HCN, CO ₂ , циклопентанон, C ₄₋₁₁ -нитрилы	475–600	[25, 30]
Полиамид-10,10	CO ₂ , CO, лактоны, уксусная кислота, амины, этилацетат, алканы, кетоны, пентиламины, метилкетоны, амины, амиды, циклопен- тены, нитрилы, цикло-C ₅ - и C ₆ -кетоны, циклогексан, диены, циклогексиловые эфиры и амиды	400–600	[28]
Полиамид-10,12	CO ₂ , CO, лактоны, уксусная кислота, амины, этилацетат, алканы, кетоны, пентиламины, метилкетоны, амины, амиды, циклопентены, нитрилы, цикло-C ₅ - и C ₆ -кетоны, циклогексан, диены, циклогексиловые эфиры и амиды	400–600	[28]

Таблица 7

Продукты разложения полиамидов в присутствии кислорода воздуха

Каталитический пиролиз

Введение катализаторов в процесс разложения полиамидов позволяет количественно получать мономер ε-капролактама [46–51], снижать долю азотсодержащих соединений в пиролизных маслах [52] и повышать долю газообразных низших углеводородов [52–54].

Так, например, деполимеризация полиамида-6 в реакторе с псевдоожиженным слоем в присутствии α -Al₂O₃, обработанного 5 мас% КОН, в среде N₂ приводит к образованию 89.5 мас% ε -капролактама при 330°С и 86.8 мас% при 360°С [46], а также 2- ω -аминопентилазациклогепт-1-ена (внутреннего основания Шиффа 1,11-диамино-6-оксоундекана), который формируется в результате декарбоксилирования/дегидратации аминокапроновой кислоты с последующей аминокарбонильной перегруппировкой диаминкетона до циклического амина [47], 3 и 5 мас% соответственно, и следовых количеств димера ε -капролактама.

Исследование влияния температуры, давления и введения в систему NaOH в качестве катализатора деполимеризации полиамида-6 [48] показало, что увеличение температуры с 240 до 250°С приводит к трехкратному увеличению выхода продукта є-капролактама, а снижение давления в системе от 15 до 3 мм рт. ст. — к девятикратному увеличению выхода продукта в присутствии 1 мас% NaOH. Дальнейшее повышение температуры и увеличение количества щелочи в системе способствует снижению доли є-капролактама в продуктах реакции. Наибольший выход ценного мономера был достигнут при 250°С, давлении 3 мм рт. ст., 4 ч в присутствии 1 мас% NaOH — 90.5%.

Отличие кислотного от щелочного каталитического разложения полиамида-6 исследовали в [21, 49] (табл. 8). Так, в присутствии 10 мас% H₃PO₄ при 450°С выход основного продукта составлял 97.4% (схема 11), а в присутствии 10 мас% эвтектической смеси NaOH и KOH (60 мол%/40 мол%) — 98.4% є-капролактама (схема 12). Увеличение выхода основного продукта в присутствии катализаторов обусловлено катализом процесса гидролиза амидных связей до аминокислот и карбоновых кислот. В процессе основной деполимеризации основание катализирует депротонирование амидных групп с последующей внутримолекулярной циклизацией с образованием лактамных звеньев.

Процесс каталитической деполимеризации полиамида-6 в присутствии ионных жидкостей проводили в [51]. Добавка 10 мас% N,N-диметиламинопиридина в качестве катализатора разложения полимера в присутствии тетрафлуоробората 1-этил-3-метилимидазолия ([emin][BF₄]) под воздействием микроволнового излучения при 300–310°С приводила к образованию 54–55% ε-капролактама (1 ч). Дальнейшее повышение температуры и снижение времени процесса негативно влияло на выход ценного мономера.

Присутствие цеолитов NH₄NaY и HUSY в качестве катализаторов разложения полиамида-6 (соотношение цеолит/полиамид-6 = 1:1) способствует образованию дигидроазепина, являющегося дегидратированным производным ε -капролактама, и его изомеров (XVIII) [53, 54]. Увеличение добавки цеолита (5:1) приводит к выделению значительных количеств ненасыщенных C₃₋₆ углеводородов в результате крекинга компонентов пиролизного масла и алкилбензолов и алкилнафталинов, образующихся в процессе циклизации и ароматизации углеводородов.

		Количество, %	
Компонент	в отсутствие катализатора, 450°С	10 мас% Н ₃ РО ₄ , 320°С	10 мас% NaOH/KOH, 300°С
є-Капролактам	92	97.4	98.4
1,8-Диазациклотетрадекан-2,9-дион	4	2	1
Амид 5-гексеновой кислоты	2	0.1	0.1
5-Гексеннитрил	1	0.3	0.1
Гексаннитрил	0.5	0.2	0.4
2-Циклогексен-1-он	0.5		

Таблица 8 Продукты некаталитического и каталитического разложения полиамида-6 [49]

Примечание. «—» — не обнаружено.

Схема 12 Анионный процесс разложения полиамида-6 в присутствии оснований NaOH/KOH [49]

В результате каталитического пиролиза полиамида-12 в присутствии цеолита HUSY (соотношение цеолит/полимер = 1:1) основными продуктами являлись азациклотридекадиены (изомеры дегидратированного мономера полиамида-12) и ненасыщенный нитрил, содержащий 12 атомов углерода [53, 54], помимо которых были обнаружены С_{4–6}-алкены и диены, гомологичные С_{7–11}-нитрилы и низкомолекулярные ароматические углеводороды (бензол, нафталин, алкилбензолы и алкилнафталины) в качестве побочных продуктов. Повышение соотношения цеолит/полимер до 5:1 приводит к увеличению доли ароматических соединений за счет крекинга азациклотридекадиенов. Селективность же катализатора NH4NaY в пиролизе полиамида-12 оказалась меньше, чем селективность цеолита HUSY, тогда как конверсия была одинакова.

Сравнение процессов пиролиза полиамида-6,6 в отсутствие и в присутствии цеолитных катализаторов (4Å, NaY, NH₄Y, c.NH₄NaY, NH₄NaY и HUSY) при 500 и 550°С свидетельствует о различном влиянии природы добавляемого цеолита на разложение полимера и состав продуктов процесса (табл. 9) [52]. При термическом разложении полимера на начальном этапе образуются легколетучие соединения, такие как CO, CO₂, NH₃, H₂O, амины, нитрилы и олефины, содержащие от 2 до 6 атомов углерода. Наибольший выход NH₃, образующегося в результате его отщепления от первичных аминосодержащих соединений, наблюдается при 380–420°С. В присутствии молеку-

Таблица 9

Продукты пиролиза полиамида-6,6 (интенсивности хроматографического пика) в отсутствие и в присутствии различных цеолитных катализаторов (0.1–0.3 мг сырья, 0.5–0.9 мг катализатора, 500°С, 20 с, 20 мл мин⁻¹ He) [52]*

Продукт		Катализатор							
продукт	нет	4Å	NaY	c.NH4NaY	NH4NaY	HUSY			
NH ₃	0.8	0.9	1.4	1.3	9.6	1.7			
CO ₂	26	32	30	24	20	20			
Циклопентанон	11	17	7.8	14	0	0			
Гекс-5-ениламин	3.6	7	0.4	2.1	0	0			
1-Гексанамин	6.2	11	1.6	4.5	0	0			
Адипонитрил	1.9	6.1	0	1.9	0.6	0			
є-Капролактам	2.7	2.4	0.2	2.5	0	0			
Тригидро-4-этенилхинолин	1.5	3.7	1.1	1.6	0	0			
N-Пентил-5-цианопентанамид	0.5	0.5	0	0.2	0	0			
N-Гекс-5-енил-5-цианопентанамид	4.1	3.8	0	1.5	0	0			
N-Гексил-5-цианопентанамид	1	1.3	0	0.5	0	0			
Дегидратированный циклический мономер полиамида-6,6	0.3	0.1	0	0.1	0	0			
1,8-Диазациклотетрадекан-1,8-дигидро-2,7-дион (цикли- ческий мономер полиамида-6,6)	0.9	0.4	0	0.1	0	0			
Бензол			+	+	+	+			
Толуол				+	+	+			
Орто-/пара-Ксилол				+	+	+			
Нафталин				+	+	+			
1-Метилнафталин				+	+	+			
2-Метилнафталин					+	+			
Нитроароматические компоненты			+						
Инданол и индены			+						

Примечание. «+» — обнаружено, «—» — не обнаружено.

* Разрешение на публикацию получено 08.07.2022, © Elsevier.

лярных сит 4Å помимо основных продуктов пиролиза полиамида-6,6 (табл. 9) образуется 1,6-гексадиамин и выделяется наибольшее количество СО2 за счет снижения доли циклических олигомеров/мономеров полиамида-6,6, что обусловлено усилением гидролиза амидных групп на поверхности цеолита, содержащего достаточно узкие поры (до 0.4 нм). Особенностью процесса, протекающего в присутствии протонного цеолита NaY, является образование значительной доли ароматических (бензол) и азотсодержащих соединений (инданол, инден, пиридин, пиррол, тетрагидрохинолин и их алкилпроизводные) в результате циклизации и ароматизации сегментов углеводородной цепи в замещенных олефинах, алифатических аминах и амидах. Наибольшую эффективность в процессах деазотирования и деоксигенации пиролизных продуктов проявил цеолит с.NH₄YNaY в стабилизированной форме, поскольку алкиламины подвергаются кислотно-катализируемому разложению на алкен и NH₃ на брендстедовских кислотных центрах [55]. Наибольшую активность в процессе деазотирования проявили цеолиты NH₄YNaY и HUSY, в присутствии которых наблюдался максимальный выход NH₃ (9.6 и 1.7 соответственно), в то время как в пиролизном масле были идентифицированы ароматические соединения, такие как бензол, толуол, ксилолы и нафталины (табл. 9) [52].

Исследование влияния введения цеолитов HUSY и NH₄NaY в систему при разложении полиамида-6,6 в пиролизе при 500°С [53, 54] показало, что при пиролизе полимера в присутствии цеолитов в соотношении 1:1 в продуктах реакции преобладает гександинитрил, формирующийся в результате двойного цис-элиминирования амидных связей, и ненасыщенные С₃₋₆-углеводороды (схема 13). При снижении температуры до 400°С выделяется циклический мономер полиамида-6,6, тогда как повышение температуры до 450°С приводит к образованию циклопентанона и незначительных количеств амидов. В присутствии NH₄NaY гександинитрил образуется уже при 400°С, доля которого росла с повышением температуры. Увеличение добавки цеолитов способствовало образованию большего количества ароматических алкилбензолов и алкилнафталинов помимо гександинитрила, что говорит о катализирующих свойствах цеолитов в процессах деазотирования, циклизации и ароматизации компонентов.

В процессе высокотемпературного пиролиза полимера-6,6 в трубчатом реакторе периодического действия помимо газообразных неконденсируемых продуктов, как правило, получают углеродные нанотрубки [56]. Проведение процесса при высокой температуре (600–900°С) совместно с катализатором Fe/Al₂O₃ способствовала крекингу образующихся

Схема 13

Образование гександинитрила и диенов в результате каталитического разложения полиамида-6,6 в присутствии цеолитов [53]

углеводородов с выделением H₂, CO, CO₂, NH₃, метана, этана, этилена, пропилена, бензола и толуола (рис. 2). При низких температурах основными газообразными продуктами являлись H₂, CO, CO₂, NH₃, помимо которых было получено пиролизное масло, содержащее олигомерные фрагменты и циклопентанон, амины, амиды, нитрилы, ацетилен, бутан, 1-бутен, иис-2-бутен, 1-пентен, гексан и др. Повышение температуры приводило к увеличению концентрации Н₂, метана, этилена, пропилена в результате крекинга углеводородов. При температурах 850-900°С помимо азотсодержащего NH₃ были идентифицированы HCN, 3-бутеннитрил, С₅₋₈-нитрилы, гександинитрил и бензонитрил. Полученные при 900°С углеродные нанотрубки, диаметр которых составлял 20 нм, длина — 1 мкм, состояли из 5-20 слоев.

Совместный пиролиз полиамидов и других полимеров

Поскольку в легкой, пищевой, текстильной промышленности, в строительной отрасли, в машиностроении, в медицине используют, как правило, не чистые полиамиды, а их смеси с другими полимерами, такими как бутадиен-стирольный каучук [11], полипропилен [57], полиэтилен [57], поливинилхлорид [58, 59] и др., возникает вопрос совместной переработки отработанных полиамидсодержащих материалов, одним из вариантов утилизации которых является пиролиз [10–12, 57–64].

Исследование влияния добавок других полимеров, таких как полипропилен, термопластичный эласто-

Рис. 2. Выход основных компонентов неконденсируемого газа, полученного при пиролизе полиамида-6,6 [56].*

мер, поливинилхлорид, полиарилат, при пиролизе полиамида проводили в работах [57–64]. Так, например, добавка функционализированного диэтилмалеатом полипропилена к полиамиду-6 в процессе пиролиза приводила к снижению начальной температуры разложения с 380 до 340°С с увеличением концентрации добавки, добавка чистого полипропилена — с 360 до 300°С [62], а добавка акрилатного каучука (40/60) — с 455 до 401°С [64], что объясняется реакцией «эфирамидного обмена» при высоких температурах.

Пиролиз переработанных полимеров [полиамид-6, термопластичный эластомер, полипропилен 1 и 2, различающиеся элементным составом (табл. 10)] и их смесей с полиамидом-6 (50%/50%) проводили в кварцевой трубке при 600°С в течение 1 ч в атмосфере N₂ [63]. Среди полимеров и их смесей с полиамидом наибольший выход пиролизного масла был получен

гаспределение продуктов пиролиза полимеров и элементный анализ пиролизного масла [05]**								
Сырье	Распределение продуктов, %			Элементный анализ масла, %				
	газ	масло	остаток	С	Н	0	Ν	
Полиамид-6 (ПА)	30	57.76	12.24	84.17	8.39	3	4.43	
Эластомер (ТПЭ)	52.15	25.49	22.36	91.58	8.01	0.3	0.11	
Полипропилен 1 (ПП1)	60	19.87	20.13	83.41	12.25	4.33	0	
Полипропилен 2 (ПП2)	56.75	37.83	5.42	86.25	10.52	3.1	0.13	
ΠΑ/ΤΠЭ	59.12	29.02	11.86	90.66	7.42	0.46	1.46	
ΠΑ/ΠΠ1	61.5	24.74	13.76	86.48	7.77	1.28	4.48	
ΠΑ/ΠΠ2	60.91	31.22	7.87	87.62	8.83	1.44	2.11	

Таблица 10 Распределение продуктов пиролиза полимеров и элементный анализ пиролизного масла [63]**

Примечание. Элементный состав полипропиленов, %: ПП1 — 77.42 С, 11.26 Н, 0.21 N, 16.12 О; ПП2 — 80.81 С, 13.17 Н, 0.03 N, 5.99 О.

* Разрешение на публикацию получено 08.07.2022, © Elsevier.

** Разрешение на публикацию получено 08.07.2022, © Elsevier.

при термообработке полиамида-6 (57.76%), тогда как полипропилен 1 разлагался с большим выходом газообразного продукта (60%) (табл. 10), что объясняется структурой полимеров. Добавка полимеров других типов к полиамиду-6 приводила к росту доли газообразных продуктов пиролиза (59–61.5%), что говорит о синергическом эффекте совместного пиролиза. Совместный пиролиз полимеров также приводит к образованию пиролизного масла, содержащего меньшее количество кислородсодержащих соединений, чем в случае пиролиза полиамида-6 без добавок: их доля снижается до 0.46–1.28%.

Наибольшее количество ароматических соединений содержалось в жидком продукте пиролиза смеси полиамид-6/термопластичный эластомер (рис. 3). Это говорит о том, что среди конкурирующих процессов преобладает реакция циклизации. В ходе пиролиза полипропилена, наоборот, было получено больше алифатических углеводородов. Совместный пиролиз полимеров также приводил к протеканию процессов циклизации низших олефинов, полученных при разложении полипропилена, и гетероциклических соединений, содержащихся в масле полиамида-6, по реакции Дильса–Альдера и ароматизации. Основную часть в пиролизном масле полиамида составляют моноароматические углеводороды (около 40%), полиароматических соединений образовывалось не более 1.5%, тогда как совместный пиролиз способствовал образованию диароматических (с 17 до 35%) и полиароматических углеводородов (до 10.5%), а также циклических соединений (до 8.5%).

Основными газообразными продуктами являлись H₂, CO, CO₂ и CH₄ (рис. 3). Наибольший суммарный выход CO и CO₂, образующихся в результате процессов декарбонилирования и декарбоксилирования, достигался в случае пиролиза полиамида-6. Совместный пиролиз приводил к росту доли H₂, выделяющегося в процессах олигомеризации, циклизации и ароматизации промежуточных продуктов разложения полимеров, в продуктах.

Исследование влияния добавки поливинилхлорида (1:1) на термическое разложение полиамида-6, полиамида-12, полиамида-6,6 и поли(1,4-фенилентерефталамида) (кевлар) проводили при 550, 700 и 900°С в инертной среде [58, 59]. Добавка поливинилхлорида способствует не только снижению температуры разложения полиамида-6 и соответственно росту выхода определенных соединений, но и образованию дополнительных компонентов, которые в отсутствие поливинилхлорида не формируются [58]. Так, при пиролизе чистого полиамида-6 при 550°С были идентифицированы акрилонитрил,

Рис. 3. Состав пиролизных масел (*a*) и пиролизного газа (*б*), полученных в результате термообработки полиамида-6 (ПА), термопластичного эластомера (ТПЭ) и полипропиленов 1 (ПП1) и 2 (ПП2) [63].*

^{*} Разрешение на публикацию получено 08.07.2022, © Elsevier.

5-гексеннитрил, гексаннитрил, є-капролактам, N-5цианопентилацетамид, N-цианопентилбутанамид, N-цианопентилгексенамид, тогда как введение в систему поливинилхлорида привело к образованию дополнительно метана, бензола, толуола, нафталина, 5-гексеновой кислоты, 6-хлоргексаннитрила. Повышение температуры процесса до 900°С и добавка поливинилхлорида способствует росту выхода CO/CO₂, этилена, этана, H₂O, пропилена, пропана, 1-бутена, а также образованию бутадиена и HCN.

Выделение HCl из поливинилхлорида сопровождается образованием є-капролактама при разложении полиамида-6 в присутствии поливинилхлорида, что говорит о протекании внутримолекулярного амидного обмена более поляризованных амидных групп при взаимодействии с HCl. Реакция *цис*-элиминирования в присутствии HCl (схема 14) приводит к образованию виниловых соединений и терминального нитрила в результате отщепления молекулы H₂O, продукт *цис*-элиминирования на обоих концах цепи — N-цианопентилгексанамид.

Увеличение образования воды в результате *цис*элиминирования, а также наличие HCl, катализирующего процесс гидролиза амидной группы в полимере, способствуют формированию гексеновой кислоты (схема 15, путь 1). Выделяемый HCl, присоединяясь к аминогруппе, что приводит к повышению заряда у электрофильного атома углерода карбонильной группы, способствует расщеплению амидной группы с формированием NH₄Cl и винильной группы полимерной цепи. В ходе гидролиза двух соседних амидных групп образуется гексеновая кислота. Выделение 6-хлоргексаннитрила происходит в результате присоединения HCl к винильной концевой группе (схема 15, путь 2).

Пиролиз чистого полиамида-12, как правило, приводит к образованию ряда н-алкенов и алифатических

Схема 14 иис-Элиминирование в цепи полиамиада-6 в присутствии HCl

и смеси полиамид-12/поливинилхлорид (IIBX) (1:1) [59]*							
Компонент	Интенсивность хроматографического пика		Компонент	Интенсивность хроматографического пика			
	ПА-12 ПА-12/ПВХ		ПА-12	ПА-12/ПВХ			
Гептен	0.51	0.61	Октеннитрил	0.64	0.97		
Октен	2.23	2.36	Ноненнитрил	0.57	0.8		
Нонен	2.45	2.83	Деканнитрил	0.52	0.59		
Децен	2.85	3.38	Деценнитрил	0.35	0.59		
Ундецен	1.19	1.51	Ундеценнитрил	1.21	1.46		
Гептеннитрил	0.68	0.99	Додеценнитрил	1.97	3.89		

Таблица 11 Состав продуктов, полученных в результате мгновенного пиролиза при 700°С полиамида-12 (ПА-12) и смеси полиамид-12/поливинилхлорид (ПВХ) (1:1) [59]*

нитрилов (табл. 11), количество которых увеличивается при добавлении к полимеру поливинилхлорида в соотношении 1:1, что говорит о каталитических свойствах выделяемого в процессе разложения поливинилхлорида HCl (схема 16).

В результате пиролиза ароматического полиамида кевлара при 700°С образуются CO₂, HCN, бензол, толуол, бензоилизоцианат, бензонитрил, бензойная кислота, бензодинитрил, *n*-нитриланилин и мономер би-

фениламида (табл. 12) [59]. Как и в случае пиролиза полиамида-12, выделяющийся HCl из поливинилхлорида в смеси полимеров проявляет каталитические свойства в процессах образования бензоилизоцианата, бензонитрила (схема 17, 1, 2) и в процессе гидролиза амидной группы до бензойной кислоты и аминосодержащих ароматических соединений (схема 17, 3). Процесс образования изоцианатов происходит через гомолитический разрыв фенил-карбонильной

Схема 16 Формирование нитрильной группы в присутствии HCl при разложении полиамида-12

Таблица 12

Состав продуктов, полученных в результате мгновенного пиролиза при 700°С кевлара и смеси кевлар/поливинилхлорид (ПВХ) (1:1) [59]**

Компонент	Интенсивность хроматографического пика		Компонент	Интенсивность хроматографического пика		
	кевлар	кевлар/ПВХ		кевлар	кевлар/ПВХ	
C ₆ H ₅ NCO	0.05	0.31	NCC ₆ H ₄ CN	0.43	0.58	
C ₆ H ₅ CN	1.87	4.26	NH ₂ C ₆ H ₄ NH ₂	0.62	0.16	
$C_6H_5NH_2$	—	1.04	NCC ₆ H ₄ NH ₂	0.57	0.6	
C ₆ H ₅ COOH	0.12	0.37	C ₆ H ₅ CONC ₆ H ₅	0.52	0.85	

Примечание. «—» — не обнаружено.

* Разрешение на публикацию получено 08.07.2022, © Elsevier.

** Разрешение на публикацию получено 08.07.2022, © Elsevier.

С—С-связи с последующим отщеплением водородного радикала, формирование бензонитрила протекает через гомолитический разрыв ароматической NH-связи, протонирование и дегидратацию.

Пиролиз отработанных изделий из полиамидов на примере рыболовных сетей

Примером изделий из полиамидов, подлежащих утилизации, являются отработанные рыболовные снасти (сети, ловушки и др.), которые ежегодно теряют либо выбрасывают рыболовецкие суда по причине ненадобности [57]. На 2015 г. утерянные рыболовные снасти составляли 10% (640 тыс. т) всего морского мусора [65]. Ежегодно лишь 10% всего морского мусора, включая сети и ловушки из полиамидов, перерабатываются посредством пиролиза [57], основная же часть либо сжигается, либо выбрасывается на свалки, нанося в обоих случаях непоправимый вред окружающей среде. Рыболовные сети, в состав которых входят полиамид, полиэтилен, полипропилен и полиэстер [57], подвергали пиролизу в микротрубчатом реакторе в течение 60, 80 и 100 мин при 440°С [61], в результате пиролиза рыболовных сетей было получено 3.94, 4.41 и 5.5 мас% соответственно газообразных продуктов. Увеличение времени пиролиза способствовало глубокому крекингу углеводородов, поскольку снижалось число атомов углерода в компонентах с 5–20 до 5–15, среди которых преобладали C₆ и C₈. В незначительных количествах в жидком продукте были обнаружены соединения с 42–43 атомами углерода.

Сравнение продуктов пиролиза новых и выдержанных в морской воде в течение 5 мес рыболовных сетей в печи при 600°С показало, что соли, содержащиеся в морской воде, катализируют частичное разложение и окисление полимеров [66]. Процесс разложения выдержанных в морской воде сетей начинается раньше, чем в случае нового товарного продукта: наибольшая потеря массы при пиролизе

боловных сетей приводила к обра:

Захарян Е. М., Максимов А. Л.

выдержанных сетей происходит при 406°С, тогда как массопотеря материала новых сетей — при 443°С [67]. Основными компонентами масла, полученного при пиролизе материала новых сетей, являлись пропилен, гексеннитрил, гексаннитрил, є-карпролактам, N-(5-цианопентил)гекс-5-енамид, N-(5-цианопентил)гексанамид, 6-ацетамидо-N-(5-цианопентил)гексанамид, 6-бутирамидо-N-(5-цианопентил)гексанамид и N-(5-цианопентил)-6-гексанамид) [66]. В пиролизатах состаренных сетей был обнаружен 5-аминопентанол и были увеличены концентрации N-(5-цианопентил)гекс-5-енамида, N-(5-цианопентил)гексанамида и 6-ацетамидо-N-(5-цианопентил)гексанамида. Наличие аминоспирта в продуктах пиролиза состаренных сетей обусловлено диссоциацией амидной связи полиамида, входящего в состав сетей [66]. Максимальное количество основного продукта є-капролактама при проведении пиролиза отработанных рыболовных сетей образуется при 408°С, материала новых сетей — при 458°С [67]. Полученный таким образом є-капролактам можно в дальнейшем использовать для повторного синтеза полиамидов.

Использование добавки биологических отходов в каталитическом разложении отработанных рыболовных сетей, изготовленных из полиамида-6, исследовалось в [50]. Добавление измельченных и прокаленных при 900-1100°С раковин моллюсков способствовало снижению температуры разложения полимера с 420-480 до 380-420°С и соответственно увеличению выхода мономера є-капролактама с 15 до 66 мас% по сравнению с некаталитическим процессом. Исследование природы добавок в каталитическом разложении полиамида-6 показало, что активность катализаторов падает в ряду КОН (90 мас%) > > Ca(OH)₂ (77 мас%) > раковины моллюсков (66 мас%) > CaO (63 мас%) > MgO (37 мас%), что говорит о зависимости активности добавки от силы основания. Помимо основного мономера были обнаружены в жидком продукте циклический димер и тример є-капролактама, 1-(3,4,5,6-тетрагидро-2Н-азепин-7-ил)-2-азепанон, 2-метил-6-тридецил-6-пиперидин, 7-бутил-3,4,5,6(2Н)-тетрагидроазепин.

Исследование скорости нагрева в пиролизе отработанных рыболовных сетей [60] показало, что при низкой скорости нагрева в пиролизном масле преобладали є-капролактам (60.31%) и изомеры 6-ОН-2-метил-6-(4-метил-3-циклогексен-1-ил)-2-гептен-4-она (34.57%), тогда как высокая скорость нагрева способствовала незначительному снижению выхода є-капролактама (53.92%) и образованию 1,1'-пропилен-бис-циклогексана (18.05%). Добавка цеолита ZSM-5 в каталитическом пиролизе отработанных рыболовных сетей приводила к образованию большего числа компонентов пиролизного масла, что обусловлено наличием каталитически активных центров на поверхности цеолита, способствующих процессу разложения более мелких молекул и ускорению разрыва амидных —СО—NH— связей. Наибольшая доля основного циклического мономера в случае пиролиза при скорости нагрева 5 град·мин⁻¹ достигалась в присутствии 20 мас% ZSM-5 (83.15%), в то время как при скорости нагрева 5 град·мин⁻¹ — в присутствии 50 мас% ZSM-5 (55.54%).

Заключение

Анализ информации по термической обработке различных видов полиамидов позволяет сделать следующие выводы.

— При низкотемпературной переработке механизм разложения полиамидов заключается в основном в расщеплении амидных связей с образованием аминов, олефинов и амидов.

— В процессе пиролиза полиамидов при повышенных температурах, как правило, протекают вторичные процессы, такие как дегидратация амидной связи с выделением нитрилов и динитрилов, крекинг компонентов с образованием низших углеводородов, декарбоксилирование с выделением CO₂, циклизация и ароматизация кислородсодержащих углеводородов с образованием лактамов в случае полиамидов-6, -8, -11 и -12 и циклических кетонов помимо лактамов в случае полиамидов-6,6, -6,9, -6,10, -6,12. Циклизация кислородсодержащих углеводородов в случае полиамидов, содержащих большее число атомов углерода в мономерной цепи, таких как полиамиды-10,12, -11,12, -12,6, -12,10, -12,12, приводит к выделению значительного количества диаминов и дицианов.

— Термическое разложение полиамидов в окислительной атмосфере протекает в отличие от пиролиза в инертной атмосфере с большей скоростью с выделением большего количества CO₂, с образованием в основном альдегидов, аминов, карбоновых кислот и имидов. Повышение температуры окислительного пиролиза приводит к росту выхода токсичных азотсодержащих полициклических соединений.

— Полиамидные материалы, содержащие в своем составе антипирены, разлагаются с образованием помимо основных продуктов различных иминов в случае добавки меламина, кетонов в случае добавки цианурата меламина. Присутствие полифосфата аммония и серосодержащих антипиренов подавляет образование СО, СО₂ и лактамов, полифосфатный эфир катализирует *цис*-элиминирование с образованием олефинов и диенов, $Mg(OH)_2$ — образование амидов и карбоновых кислот, которые в свою очередь разлагаются на H_2O , NH_3 и CO_2 .

— Использование в качестве катализатора α-Al₂O₃, обработанного щелочными растворами, а также ионными жидкостями в качестве катализатора разложения, приводит к количественному образованию є-капролактама при термической обработке полиамидов. Присутствие цеолитов NH4NaY и HUSY при разложении полиамида-6 способствует образованию дигидроазепина и его изомеров, являющихся дегидратированным производным є-капролактама, и алкилбензолов и алкилнафталинов, образующихся в процессе циклизации и ароматизации углеводородов. В результате каталитического пиролиза полиамида-12 в присутствии цеолита HUSY образуются азациклотридекадиены (изомеры дигидратированного мономера полиамида-12). Пиролиз полиамида-6,6 с добавкой цеолитных катализаторов (4Å, NaY, NH₄Y, с.NH4NaY, NH4NaY и HUSY) приводит к значительному выделению CO, CO₂, NH₃, H₂O, аминов, нитрилов и олефинов, содержащих 2-6 атомов углерода.

— Добавка отработанных термопластичного эластомера и полипропилена приводила к росту доли газообразных H₂, CO, CO₂ и CH₄. Наибольшее количество ароматических соединений содержалось в жидких продуктах, образовавшихся в результате пиролиза смеси полиамида и термопластичного эластомера. Добавление поливинилхлорида к сырью при пиролизе приводит к образованию CH₄, бензола, толуола, нафталина, 5-гексеновой кислоты, 6-хлоргексаннитрила, а повышение температуры до 900°С — росту выхода H₂O, CO/CO₂, HCN, этилена, этана, пропилена, пропана и 1-бутена. В случае пиролиза полиамида-12 с добавкой поливинилхлорида выделяются бензоилизоцианат и бензонитрил.

— Пиролиз рыболовных сетей, в состав которых входят полиамид, полиэтилен, полипропилен и полиэстер, приводит к образованию жидкого продукта, содержащего є-капролактам, C_{5-20} - и C_{42-43} -углеводороды, нитрилы и амиды. В пиролизатах отработанных рыболовных сетей обнаружен 5-аминопентанол, образование которого обусловлено диссоциацией амидной связи полиамида. Исследование природы добавок в каталитическом разложении отработанных рыболовных сетей показало, что активность катализаторов (выход є-карпролактама) падает в ряду КОН (90 мас%) > 20 мас% ZSM-5 (83.15%) > Ca(OH)₂ (77 мас%) > раковины моллюсков (66 мас%) > CaO (63 мас%) > 50 мас% ZSM-5 (55.54%) > MgO (37 мас%).

Финансирование работы

Работа выполнена в рамках государственного задания Института нефтехимического синтеза им. А. В. Топчиева РАН.

Конфликт интересов

А. Л. Максимов является главным редактором Журнала прикладной химии. У Е. М. Захарян конфликт интересов, требующий раскрытия в данной статье, отсутствует.

Информация об авторах

Захарян Елена Михайловна, к.х.н.

ORCID: https://orcid.org/0000-0001-8850-2141.

Максимов Антон Львович, д.х.н., проф., чл.-корр. РАН

ORCID: https://orcid.org/0000-0001-9297-4950.

Список литературы

- Agrawal A. K., Jassal M. Chapter 4 Manufacture of polyamide fibers // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 97– 139. https://doi.org/10.1533/9781845694609.1.97
- [2] Deopura B. L. Chapter 2 Polyamide fibers // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 41–61. https://doi.org/10.1533/9781845694609.1.41
- [3] Kamath M. G., Bhat G. S. Chapter 7 Specialty fibers from polyesters and polyamides // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 203–218.

https://doi.org/10.1533/9781845694609.1.203

[4] Kothari V. K. Chapter 14 — Polyesters and polyamides fibers — apparel applications // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 419–440.

https://doi.org/10.1533/9781845694609.1.419

- [5] Gupta B., Grover N., Viju S., Saxena S. Chapter 15 Polyesters and nylon based textiles in biomedical engineering // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 441–501. https://doi.org/10.1533/9781845694609.1.441
- [6] Matsuo T. Chapter 17 Automotive applications // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 525–541. https://doi.org/10.1533/9781845694609.1.541
- [7] Joseph P., Ebron J. R. Chapter 11 Flame-retardant polyester and polyamide textiles // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 306–324. https://doi.org/10.1533/9781845694609.1.306

- [8] Fangueiro R., Gonilho Pereira C., de Araujo M. Chapter 18 — Applications of polyesters and polyamides in civil engineering // Polyesters and Polyamides. Woodhead Publishing Series in Textiles. 2008. P. 542–592. https://doi.org/10.1533/9781845694609.1.542
- [9] *Fernandez L*. Polyamide fibers production globally 1975–2020 // Statista. 2021. https://www.statista. com/statistics/649908/polyamide-fiber-production-worldwide/
- [10] Захарян Е. М., Петрухина Н. Н., Максимов А. Л. Направления вторичной переработки поливинилхлорида (обзор). Часть 1 // ЖПХ. 2020. Т. 93. № 9. С. 1219–1263. https://doi.org/10.31857/S0044461820090017
 [Zakharyan E. M., Petrukhina N. N., Maksimov A. L. Pathways of chemical recycling of polyvinyl chloride. Part 1 // Russ. J. Appl. Chem. 2020. V. 93. P. 1271–1313.

https://doi.org/10.1134/S1070427220090013].
[11] Захарян Е. М., Максимов А. Л. Пиролиз шин. Особенности процесса и состав продуктов реакции (обзор) // ЖПХ. 2021. Т. 94. № 10. С. 1226–1264 https://doi.org/10.31857/S0044461821100017 [Zakharyan E. M., Maksimov A. L. Tire pyrolysis.

- Process features and composition of reaction products // Russ. J. Appl. Chem. 2021. V. 94. P. 1351–1388. https://doi.org/10.1134/S1070427221100013].
- [12] Захарян Е. М., Максимов А. Л. Пиролиз полиуретанов. Особенности процесса и состав продуктов реакции (обзор) // ЖПХ. 2022. Т. 95. № 2. С. 164– 230. https://doi.org/10.31857/S0044461822020025; https://elibrary.ru/ddryao [Zakharyan E. M., Maksimov A. L. Pyrolysis of polyurethanes. Process features and composition of reaction products // Russ. J. Appl. Chem. 2022. V. 95. N 2. P. 191–255. https://doi.org/10.1134/S1070427222020033].
- [13] Salas M.A., Perez-Acebo H., Gonzalo-Orden H. Analysis and economic evaluation of the use of recycled polyamide powder in masonry mortars // Polym. 2020. V. 12. N 11. ID 2657. https://doi.org/10.3390/polym12112657
- [14] Datta J., Blazek K., Wloch M., Bukowski R. A New approach to chemical recycling of polyamide 6.6 and synthesis of polyurethanes with recovered intermediates// J. Polym. Environ. 2018. V. 26. P. 4415– 4429. https://doi.org/10.1007/s10924-018-1314-4
- [15] Pat. US 5302756 (publ. 1994). Ammonolysis of nylon.
- [16] Patil D., Madhamshettiwar S. Kinetic and thermodynamic studies of depolymerization of nylon waste by hydrolysis reaction // J. Appl. Chem. 2014. ID 286709. https://doi.org/10.1155/2014/286709
- [17] Pannase A.M., Singh R.K., Ruj B., Gupta P. Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on

product yield and composition // J. Anal. Appl. Pyrol. 2020. V. 151. 104886.

https://doi.org/10.1016/j.jaap.2020.104886

- [18] Hornsby P. R., Wang J., Rothon R., Jackson G., Wilkinson G., Cossick K. Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler // Polym. Degrad. Stab. 1996. V. 51. N 3. P. 235–249. https://doi.org/10.1016/0141-3910(95)00181-6
- [19] Levchik S. V., Weil E. D., Lewin M. Thermal decomposition of aliphatic nylons // Polym. Int. 1999. V. 48. N 7. P. 532–557. https://doi. org/10.1002/(sici)1097-0126(199907)48:7<532::aidpi214>3.0.co;2-r
- [20] Sustaita-Rodríguez J. M., Medellín-Rodríguez F. J., Olvera-Mendez D. C., Gimenez A. J., Luna-Barcenas G. Thermal stability and early degradation mechanisms of high-density polyethylene, polyamide 6 (nylon 6), and polyethylene terephthalate // Polym. Eng. Sci. 2019. V. 59. P. 2016–2023. https://doi.org/10.1002/pen.25201
- [21] Bockhorn H., Hornung A., Hornung U., Weichmann J. Kinetics study on the non-catalysed degradation of polyamide 6 with isothermal and dynamic methods // Thermochim. Acta. 1999. V. 337. P. 97–110. ID 177900.

https://doi.org/10.1016/S0040-6031(99)00151-3

[22] Isbasar C., Hacaloglu J. Investigation of thermal degradation characteristics of polyamide-6 containing melamine or melamine cyanurate via direct pyrolysis mass spectrometry // J. Anal. Appl. Pyrol. 2012. V. 98. P. 221–230.

https://doi.org/10.1016/j.jaap.2012.09.002

- [23] Ballistreri A., Garozzo D., Giuffrida M., Impallomeni G., Montaudo G. Primary thermal decomposition processes in aliphatic polyamides // Polym. Degrad. Stab. 1989. V. 23. N 1. P. 25–41. https://doi.org/10.1016/0141-3910(89)90066-9
- [24] Ohtani H., Nagaya T., Sugimura Y., Tsuge Sh. Studies on thermal degradation of aliphatic polyamides by pyrolysis-glass capillary chromatography // J. Anal. Appl. Pyrol. 1982. V. 4. N 2. P. 117–131. https://doi.org/10.1016/0165-2370(82)80003-X
- [25] Herrera M., Matuschek G., Kettrup A. Main products and kinetics of the thermal degradation of polyamides // Chemosphere. 2001. V. 42. N 5–7. P. 601–607. https://doi.org/10.1016/S0045-6535(00)00233-2
- [26] Huang W., He W., Long L., Yan W., He M., Qin Sh., Yu J. Highly efficient flame-retardant glass-fiberreinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior // Polym. Degrad. Stab. 2018. V. 148. P. 26–41. https://doi. org/10.1016/j.polymdegradstab.2018.01.008
- [27] Wu T., Hu H., Jiang D., Du Y., Jiang W., Wang H. Analysis method Identification of two polyamides

(PA11 and PA1012) using pyrolysis-GC/MS and MALDI-TOF MS // Polym. Test. 2013. V. 32. N 2. P. 426-431. https://doi.org/10.1016/j. polymertesting.2012.12.004

- [28] Pagacz J., Leszczyńska A., Modesti M., Boaretti C., Roso M., Malka I., Pielichowski K. Thermal decomposition studies of bio-resourced polyamides by thermogravimetry and evolved gas analysis // Thermochim. Acta. 2015. V. 612. P. 40–48. https://doi.org/10.1016/j.tca.2015.05.003
- [29] Shimasaki Ch., Watanabe N., Fukushima K., Rengakuji S., Nakamura Yu., Ono Sh. Yoshimura T., Morita H., Takakura M., Shiroishi A. Effect of the fire-retardant, melamine, on the combustion and the thermal decomposition of polyamide-6, polypropylene and low-density polyethylene // Polym. Degrad. Stab. 1997. V. 58. N 1–2. P. 171–180. https://doi.org/10.1016/S0141-3910(97)00043-8
- [30] Herrera M., Wilhelm M., Matuschek G., Kettrup A. Thermoanalytical and pyrolysis studies of nitrogen containing polymers // J. Anal. Appl. Pyrol. 2001. V. 58–59. P. 173–188. https://doi.org/10.1016/S0165-2370(00)00193-5
- [31] Levchik S. V., Costa L., Camino G. Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides. I. Polyamides 11 and 12 // Polym. Degrad. Stab. 1992. V. 36. N 1. P. 31–41.

https://doi.org/10.1016/0141-3910(92)90045-7

- [32] Holland B. J., Hay J. N. Thermal degradation of nylon polymers // Polym. Int. 2000. V. 49. 943–948. https:// doi.org/10.1002/1097-0126(200009)49:93.0.CO;2-5
- [33] Leichtnam J.-N., Schwartz D., Gadiou R. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature // J. Anal. Appl. Pyrol. 2000. V. 55. N 2. P. 255–268. https://doi.org/10.1016/S0165-2370(00)00075-9
- [34] Statheropoulos M., Georgakopoulos C., Montaudo G.
- [34] Statheropoulos M., Georgakopoulos C., Montaudo G.
 A Method for the interpretation of pyrolysis-mass spectra of polyamides // J. Anal. Appl. Pyrol. 1992.
 V. 23. N 1. P. 15–32. https://doi.org/10.1016/0165-2370(92)80009-B
- [35] Fukatsu K. Thermal degradation behavior of aromatic polyamide fiber blended with cotton fiber // Polym. Degrad. Stab. 2002. V. 75. N 3. P. 479–484. https://doi.org/10.1016/S0141-3910(01)00251-8
- [36] Ballistreri A., Garozzo D., Giuffrida M., Montaudo G. Analysis of polymers by mass spectrometry: Metastable mapping of transitions from pyrolysis products of an aromatic polyamide // J. Anal. Appl. Pyrol. 1987. V. 12. N 1. P. 3–10. https://doi.org/10.1016/0165-2370(87)80009-8
- [37] Fernández A. M., Barriocanal C., Alvarez R. Pyrolysis of a waste from the grinding of scrap tires // J. Hazard. Mater. 2012. V. 203–204. P. 236–243. https://doi.org/10.1016/j.jhazmat.2011.12.014

- [38] Ding Y., Swann J. D., Sun Q., Stoliarov S. I., Kraemer R. H. Development of a pyrolysis model for glass fiber reinforced polyamide 66 blended with red phosphorus: Relationship between flammability behavior and material composition // Composites. Part B: Eng. 2019. V. 176. ID 107263. https://doi.org/10.1016/j.compositesb.2019.107263
- [39] Zhan Zh., Xu M., Li B. Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites // Polym. Degrad. Stab. 2015. V. 117. P. 66–74. https://doi.org/10.1016/j. polymdegradstab.2015.03.018
- [40] Levchik S. V., Costa L., Camino G. Effect of the fireretardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides: Part II polyamide 6 // Polym. Degrad. Stab. 1992. V. 36. N 3. P. 229–237.

https://doi.org/10.1016/0141-3910(92)90060-I

- [41] Balabanovich A. I., Levchik S. V., Levchik G. F., Schnabel W. C., Wilkie A. Thermal decomposition and combustion of γ-irradiated polyamide 6 containing phosphorus oxynitride or phospham // Polym. Degrad. Stab. 1999. V. 64. N 2. P. 191–195. https://doi.org/10.1016/S0141-3910(98)00183-9
- [42] Krull M., Kogerman A., Kirret O., Kutyina L., Zapolski D. Pyrolysis gas chromatography of capron (nylon-6) fibre stabilized with ethers of 4-oxydiphenylamine // J. Chromatogr. A. 1977. V. 135. N 1. P. 212–216.

https://doi.org/10.1016/S0021-9673(00)86322-0

- [43] Coquelle M., Duquesne S., Casetta M., Sun J., Zhang Sh., Bourbigot S. Investigation of the decomposition pathway of polyamide 6/ammonium sulfamate fibers // Polym. Degrad. Stab. 2014.
 V. 106. P. 150–157. https://doi.org/10.1016/j. polymdegradstab.2014.02.007
- [44] Pliquet M., Rapeaux M., Delange F., Bussiere P. O., Therias S., Gardette J. L. Multiscale analysis of the thermal degradation of polyamide 6,6: Correlating chemical structure to mechanical properties // Polym. Degrad. Stab. 2021. V. 185. ID 109496. https://doi. org/10.1016/j.polymdegradstab.2021.109496
- [45] White G. V., Smith J. N., Clough R. L., Ohlhausen J. A., Hochrein J. M., Bernstein R. The origins of CO₂ and NH₃ in the thermal-oxidative degradation of nylon 6.6// Polym. Degrad. Stab. 2012. V. 97. N 8. P. 1396–1404. https:// doi.org/10.1016/j.polymdegradstab.2012.05.018
- [46] Czernik S., Elam C. C., Evans R. J., Meglen R. R., Moens L., Tatsumoto K. Catalytic pyrolysis of nylon-6 to recover caprolactam // J. Anal. Appl. Pyrol. 1998. V. 46. N 1. P. 51–64.

https://doi.org/10.1016/s0165-2370(98)00068-0

[47] Kamerbeek G., Kroes H., Grolle W. Thermal Degradation of polymers // Soc. Chem. Ind. 1961. N 13. P. 357.

- [48] Mukherjee A. K., Goel D. K. Depolymerization of poly-ω-caprolactam catalyzed by sodium hydroxide // J. Anal. Polym. Sci. 1978. V. 22. P. 361–368. https://doi.org/10.1002/app.1978.070220205
- [49] Bockhorn H., Donner S., Gernsbeck M., Hornung A., Hornung U. Pyrolysis of polyamide 6 under catalytic conditions and its application to reutilization of carpets // J. Anal. Appl. Pyrol. 2001. V. 58–59. P. 79–94. https://doi.org/10.1016/S0165-2370(00)00187-X
- [50] Chaihad N., Kurnia I., Yoshida A., Watanabe Ch., Tei K., Reubroycharoen P., Kasai Y., Abudula A., Guan G. Catalytic pyrolysis of wasted fishing net over calcined scallop shells: Analytical Py-GC/MS study // J. Anal. Appl. Pyrol. 2020. V. 146. ID 104750. https://doi.org/10.1016/j.jaap.2019.104750
- [51] Kamimura A., Shiramatsu Y., Kawamoto T. Depolymerization of polyamide 6 in hydrophilic ionic liquids // Green Energy Environm. 2019. V. 4. P. 166– 170. https://doi.org/10.1016/j.gee.2019.01.002
- [52] Bozi J., Czégény Z., Blazsó M. Conversion of the volatile thermal decomposition products of polyamide-6,6 and ABS over Y zeolites // Thermochim. Acta. 2008. V. 472. N 1–2. P. 84–94. https://doi.org/10.1016/j.tca.2008.03.018
- [53] Bozi J., Blazsó M. Catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites // J. Anal. Appl. Pyrol. 2012. V. 97. P. 189– 197. https://doi.org/10.1016/j.jaap.2012.06.002
- [54] Bozi J., Mihályi M. R., Blazsó M. Study on temperature dependence of catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites // J. Anal. Appl. Pyrol. 2013. V. 101. P. 103– 110. https://doi.org/10.1016/j.jaap.2013.02.005
- [55] Hertzanberg E. P., Maesen T. L. M. Proton distribution in modified FAU-type zeolites // J. Catal. 1999. V. 182. N 5. P. 270–273.
 - https://doi.org/10.1006/jcat.1998.2324
- [56] Arnaiz N., Martin-Gullon I., Font R., Gomez-Rico F. Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas // J. Anal. Appl. Pyrol. 2018. V. 130. P. 52–61. https://doi.org/10.1016/j.jaap.2018.01.027
- [57] Li W. C., Tse H. F., Fok L. Plastic waste in the marine environment: A Review of sources, occurrence and effects // Sci. Total Environm. 2016. V. 566–567. P. 333–349.

https://doi.org/10.1016/j.scitotenv.2016.05.084

[58] *Kubatovics F., Blazso M.* Thermal decomposition of polyamide-6 in the presence of poly(vinyl chloride)

PVC// Macromol. Chem. Phys. 2000. V. 201. P. 349–354. https://doi.org/10.1002/(sici)1521-3935(20000201)201:3<349::aid-macp349>3.0.co;2-y

- [59] Czégény Z., Blazsó M. Thermal decomposition of polyamides in the presence of poly(vinyl chloride) // J. Anal. Appl. Pyrol. 2001. V. 58–59. P. 95–104. https://doi.org/10.1016/S0165-2370(00)00152-2
- [60] Eimontas J., Yousef S., Striūgas N., Abdelnaby M. A. Catalytic pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery // Renew. Energy. 2021. V. 179. P. 1385–1403. https://doi.org/10.1016/j.renene.2021.07.143
- [61] Kim S.-S., Jeon J.-K., Park Y.-K., Kim S. Thermal pyrolysis of fresh and waste fishing nets // Waste Manage. 2005. V. 25. N 8. P. 811–817. https://doi.org/10.1016/j.wasman.2005.01.017
- [62] González J., Albano C., Sciamanna R., Ichazo M., Rosales C., Martínez J., Candal M. Dynamic thermal decomposition of blends of polyamide 6 with functionalized and non-functionalized PP // Polym. Degrad. Stab. 2000. V. 68. N 1. P. 9–19. https://doi.org/10.1016/S0141-3910(99)00160-3
- [63] Luo W., Hu Q., Fan Zh., Wan J., Luo B., Yanh., Huang Sh-X., Zhou Zh. Co-pyrolysis characteristics of different reworked synthetic polymer types // J. Energy Institute. 2020. V. 93. N 6. P. 2232–2237. https://doi.org/10.1016/j.joei.2020.06.005
- [64] Jha A., Bhowmick A. K. Thermal degradation and ageing behaviour of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends // Polym. Degrad. Stab. 1998. V. 62. N 3. P. 575–586. https://doi.org/10.1016/S0141-3910(98)00044-5
- [65] Gould H. Hidden problem of «ghost gear»: The Abandoned fishing nets closing up oceans. 10 September 2015. Theguardian.com. https://www. theguardian.com/sustainable-business/2015/sep/10/ fishing-industry-vows-to-tackle-wildlife-deaths-fromghost-gear
- [66] Jang E.-S., Song E., Zain Siddiqui M., Lim S. J., Shin G. H., Kim D., Kim Y.-M. The effect of seawater aging on the pyrolysis of fishing nets // J. Anal. Appl. Pyrol. 2021. V. 156. ID 105160. https://doi.org/10.1016/j.jaap.2021.105160
- [67] *Skvorčinskienė R., Striūgas N., Navakas R.* Thermal analysis of waste fishing nets for polymer recovery // Waste Biomass Valor. 2019. V. 10. P. 3735–3744. https://doi.org/10.1007/s12649-019-00803-w