ПОЛУЧЕНИЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГЕМОСОРБЕНТА НА ОСНОВЕ ФИБРОИНА КОКОНОВ ШЕЛКОПРЯДА *Bombyx mori*

© А. А. Сарымсаков, С. С. Ярматов, Х. Э. Юнусов*

Институт химии и физики полимеров АН Республики Узбекистан, 700128, Узбекистан, г. Ташкент, ул. А. Кадыри, д. 76 * E-mail: polymer@academy.uz; silver4727@yahoo.com

> Поступила в Редакцию 10 мая 2022 г. После доработки 30 сентября 2022 г. Принята к публикации 30 сентября 2022 г.

Разработан способ получения гемосорбента посредством химической и физической модификации натурального шелка и волокнистых отходов, получаемых при переработке коконов шелкопряда Bombyx mori. Посредством гидролиза шелковых волокон и волокнистых отходов в воде в замкнутой системе при 110°C и давлении 0.143 МПа в течение 24 ч достигнуто полное разделение шелковых нитей на чистый фиброин и серицин. Гидролиз чистого фиброина осушествлен в водной среде при температуре 130°C под давлением 0.145 МПа. Далее температуру повышали до 210°C при давлении 0.60 МПа и на реакционую среду воздействовали ультразвуковым диспергированием и сверхвысокочастотным облучением при 2450 МГц в течение 1–15 мин. Состав, структуру, физико-химические свойства гемосорбента изучали с использованием методов ИК-спектроскопии, рентгеноструктурного анализа и высокоэффективной жидкостной хроматографии. Полученный гемосорбент обладает высокой сорбционной активностью по отношению к витамину B₁₂.

Ключевые слова: *гемосорбент; фиброин; аминокислота; серицин; коконы Bombyx mori* DOI: 10.31857/S0044461822070088; EDN: DMQXET

Белок природного шелка — фиброин, который выделяют из коконов шелкопряда *Bombyx mori*, не растворяется в воде и в некоторых разбавленных растворах кислот и щелочей [1]. Он существует в нескольких структурных формах, в частности, способен формировать α -спирали и β -складки [2, 3]. Фиброин применяется в регенеративной медицине в качестве материала для изготовления матриксов, пленок, хирургических нитей и покрытий [4]. Кроме того, он обладает умеренной антимикробной активностью и может быть рекомендован в качестве природного антибактериального биоматериала [5].

Цель работы — получение гемосорбента на основе фиброина шелка из коконов шелкопряда *Bombyx mori* для детоксикации крови и сыворотки крови, а также определение его физико-химических и сорбционных характеристик.

Экспериментальная часть

В качестве объектов исследований были выбраны шелковые нити, некондиционные коконы шелкопряда *Bombyx mori* и волокнистые отходы переработки шелка фирмы ООО Inter Silk Pro. Основные используемые реактивы приобретены у фирмы Sigma-Aldrich: спирт этиловый (96.0%, кат. № 1.59010), HCl (37.0%, кат. № H1758), бензол (99.9%, кат. № 270790), витамин B₁₂ (98.0%, кат. № V6629), LiCl (98.0%, кат. № 203637, диметилформамид (99.8%, кат. № 227056), CaCl₂ (99.99%, кат. № 499609), гель додецилсульфат-полиакриламид натрия (4–12%, 10 × 10 см, кат. № PCG2003); для получения дистиллированной воды использовали дистиллятор DZ-10L11 фирмы Huanghua Faithful Instrument Co., LTD.

Очистку шелковых нитей и волокнистых отходов от жиро-восковых и неорганических примесей осу-

Научное редактирование проведено научным редактором журнала «Нефтехимия» к.х.н. Н. В. Шелеминой.

ществляли посредством последовательной обработки бензолом и смесью этанол–дистиллированная вода при соотношении 70:30 (об%) трехкратно в течение 1 ч при температуре 50°С. Степень чистоты шелковых нитей и волокнистых отходов, определенная по методу,* составила 99.8%.

С целью удаления водорастворимого серицина из структуры шелковых нитей образцы выдерживали в течение 24 ч в воде при температуре 110°С и давлении 0.143 МПа. Аминокислотный состав фиброина шелка определяли на приборе Agilent 6400 Series Triple Quadrupole LC/MS Systems (Shimadzu) методом, представленным в сообщении А. Steven и D. Cohen [6].

С целью повышения сорбционной активности фиброина и получения гемосорбента проведен его повторный гидролиз в воде при температуре 130– 230°С и давлении 0.145–0.60 МПа с последующим ультразвуковым диспергированием на приборе УЗДН-1, У-4,2 (ООО НПП «Укрросприбор») в течение 1–15 мин с последующим сверхвысокочастотным облучением на СВЧ-установке УОМО-Т150 (ООО «Специнтех»).

ИК-спектроскопические исследования фиброина и гемосорбента на его основе осуществляли с использованием ИК-Фурье-спектрометра Inventio-S (Bruker) в спектральном диапазоне 4000 ± 500 см⁻¹. Рентгеноструктурный анализ гемосорбента проводили на приборе Miniflex600 (Rigalku) при 40 кВ и силе тока 15 мА в интервале 20, равном 5–44°.

Расчет степени кристалличности (СК) проводили по оценке интенсивности максимального пика и по формуле

$$CK = \frac{I_k}{I_k + KI_a} \cdot 100\%$$

где I_{κ} и I_a — интенсивности кристаллического рефлекса и аморфного рассеяния соответственно, K — поправочный коэффициент.

Размер кристаллитов определяли по формуле Шеррера:

$$L = \frac{k\lambda}{\beta\cos\theta},$$

где L — эффективный размер кристаллита (Å); $\lambda = 1.5418$ Å — длина волны; 2 θ — брэгговский угол (град); k — коэффициент, зависящий от формы кристаллита, k = 0.9; β — ширина полувысоты пика (град).

Характеристическую вязкость фиброина и гемосорбента на его основе определяли вискозиметрическим методом в 2.5 М растворе LiCl, в диметилформамиде при 25°С. Молекулярная масса фиброина рассчитана по уравнению Марка–Куна–Хаувинка с использованием параметров $K = 1.23 \cdot 10^{-3}$, $\alpha = 0.91$, величины которых зависят от природы полимера, растворителя и температуры [7].

Также молекулярную массу фиброина определяли электрофоретическим методом [8]; при этом водный раствор фиброина был разделен по методике [9] на 6 фракций, различающихся молекулярной массой. Для определения молекулярной массы фиброина электрофоретическим методом [8] 130 мг фиброина в растворителе, содержащем 389 мг CaCl₂, 388 мкл этилового спирта и 544 мкл дистиллированной воды, перемешивали 5 ч до полного растворения фиброина. Раствор центрифугировали на центрифуге Cenlee 20К (Hunan) в течение 20 мин при 8000 об мин⁻¹. Центрифугат диализовали через полупроницаемую целлюлозную мембрану (8–14 кДа) [10]. Распределение молекулярной массы раствора фиброина измеряли электрофорезом на многоцелевой системе электрофореза EW-28571-02 (Cole-Parmer) в геле додецилсульфат-полиакриламид натрия.

Степень чистоты фиброина, промытого дистиллированной водой, определяли УФ-спектроскопическим методом. Оптические спектры поглощения растворов были зарегистрированы на приборе Specord M210 (Analytic Jena) в диапазоне длин волн 200–900 нм, где длина оптического пути составляла 2 мм.

Сорбционные свойства гемосорбента по отношению к витамину B_{12} изучали в статических условиях при комнатной температуре [11]. К навеске образца чистого фиброина и гемосорбента на его основе (1.0000 ± 0.0002 г) добавляли 25 мл водного раствора витамина B_{12} концентрацией 0.50 ± 0.02 мг·мл⁻¹. Концентрацию сорбата в растворе определяли через 60 мин методом УФ-спектроскопии до и после проведения сорбции при длине волны 360 нм в кювете толщиной 10 мм. Содержание в гидролизованном фиброине карбоксильных и аминогрупп определяли потенциометрически по методике [12], объем пор методом ГОСТ 17219–71.**

Обсуждение результатов

Экспериментально определенный аминокислотный состав чистого фиброина (табл. 1) близок к расчетному [13].

^{*} ГОСТ 5556–81. Вата медицинская гигроскопическая. Технические условия.

^{**} ГОСТ 17219–71. Угли активные. Метод определения суммарного объема пор в воде.

A 1	Количественный сост	ав аминокислот, мас%	Содержание аминокислот	
Аминокислога	рассчитано	определено	в гидролизате, мг·мл ⁻¹	
Серин (Ser)*	12.22	11.91	0.3121	
Аспарагин (Asp)*	1.93	0.75	0.3563	
Аргинин (Arg)*	0.51	0.45	0.0176	
Треонин (Thr)*	0.95	0.82	0.0152	
Глутамин (Glu)*	1.42	1.35	0.0205	
Гистидин (His)*	0.19	0.19	0.0428	
Цистеин (Cys)*	0.05	0.05	0.0593	
Пролин (Pro)*	0.45	0.65	0.0233	
Лизин HCl (Lys)*	0.34	0.46	0.0135	
Глицин (Gly)**	42.92	43.10	0.2605	
Аланин (Ala)**	29.91	31.21	0.0260	
Валин (Val)**	2.55	2.34	0.0253	
Изолейцин (Ile)**	0.64	0.72	0.0295	
Лейцин (Leu)**	0.55	0.46	0.0217	
Метионин (Met)**	0.12	0.22	0.0297	
Тирозин (Tyr)***	4.81	5.12	0.0908	
Фенилаланин (Phe)***	0.67	0.55	0.0298	

Таблица 1 Аминокислотный состав чистого фиброина и после его гидролиза

Примечание. * гидрофильные, ** гидрофобные, *** ароматические.

Фиброин шелка шелкопряда *Bombyx mori* содержит в своем составе шесть тяжелых Н-цепей (~350 кДа) и шесть легких L-цепей (~25.8 кДа), связанных одной дисульфидной связью [14]. Щелочное рафинирование может привести к деградации макромолекул фиброина за счет разрыва пептидных связей в основных Н- и L-цепях, что снижает среднюю молекулярную массу регенерированного фиброина [15].

Фиброин содержит в своем составе примерно 75% гидрофобных аминокислот. Кроме того, аминокислоты фиброина способны формировать большое количество межмолекулярных водородных связей. В связи с этим фиброин не может растворяться, но способен к набуханию в воде и большинстве органических растворителей. Фиброин растворим только в растворителях, которые могут разрушить его водородные связи и гидрофобные взаимодействия, включая разрыв пептидных цепей [4].

Молекулярная масса фиброина, определенная вискозиметрическим методом, составила 340 кДа, что сопоставимо с результатом, полученным электрофоретическим методом.

Выделенный очищенный фиброин был подвергнут повторному гидролизу при температурах 130–230°С в течение 30–240 мин.

При температуре повторного гидролиза фиброина 210°С сохраняется волокнистая структура и достигаются высокие значения сорбции витамина B₁₂ (табл. 2, 3).

Предполагаемый механизм гидротермической деструкции фиброина [16] приведен ниже (см. схему).

При повторном гидролизе фиброина в результате разрыва пептидных связей образуются свободные карбоксильные и аминогруппы, способствующие увеличению сорбционной способности гемосорбента. В процессе гидролиза фиброин частично гидролизуется до аминокислот, содержание которых представлено в табл. 1.

С целью дальнейшего повышения сорбционной активности гидролизованного фиброина было проведено его ультразвуковое (УЗ) диспергирование и сверхвысокочастотное облучение (табл. 4). Максимальная сорбционная активность гидролизованного фиброина достигнута при ультразвуковом диспергировании в течение 5 мин и составляет 76 мас%. Данный факт, видимо, объясняется тем, что в процессе ультразвукового диспергирования из структуры фиброина в водную среду переходят аморфные фрагменты фиброина с относительно низкой молекулярной массой, в результате чего формируются

Температура, °С	Давление, МПа	Концентрация сорбированного витамина В ₁₂ гидролизованным фиброином, мг [.] л ⁻¹	Сорбция витамина В ₁₂ , мас%	Потеря массы фиброина после повторного гидролиза, мас%	Внешний вид гидролизованного фиброина
130	0.145	82	45.55	2.2	Волокно
150	0.249	85	47.22	2.4	»
170	0.320	89	49.44	3.3	»
190	0.410	97	53.89	5.7	»
210	0.510	109	61.23	8.8	»
230	0.609				Порошок

Таблица 2 Зависимость сорбции витамина B₁₂ от температуры повторного гидролиза фиброина (время гидролиза 60 мин, начальная концентрация B₁₂ 180 мг·л⁻¹)

П р и м е ч а н и е: «—» — не определяли, поскольку фиброин в виде порошка не может быть использован в качестве гемосорбента.

Таблица 3

Зависимость сорбции витамина B_{12} от времени повторного гидролиза фиброина (температура 210°С, давление 0.51 МПа, начальная концентрация B_{12} 180 мг·л⁻¹)

Время, мин	Потеря массы фиброина после повторного гидролиза, мас%	Концентрация сорбирован- ного витамина В ₁₂ , мг·л ⁻¹	Сорбция витамина В ₁₂ , мас%	Внешний вид гидролизованного фиброина
30	6.2	97.2	54.1	Волокно
60	8.8	109.8	61.2	»
120	12.6	117.9	65.5	»
180	25.7	124.7	69.3	Смесь волокна и порош-
				ка
240				Порошок

П р и м е ч а н и е: «—» — не определяли, поскольку фиброин в виде порошка не может быть использован в качестве гемосорбента.

Схема

Пептидная связь

Фиброин

фиброина (начальная концентрация B ₁₂ 180 мг·л ⁻¹ , время сорбции 45 мин)							
Время ультразвукового диспергирования, мин	Изменение концентрации витамина В12 в системе	Сорбция витамина В ₁₂ , мас%	Потеря массы фиброина, мас%	Размеры частиц фиброина, мкм			
	после сорбции, мг·л ⁻¹			средние	минимальные	максимальные	
1	52	71.13	6.02	540	93	850	
3	50	71.94	6.10	360	70	720	
5	43	76.12	7.51	120	45	590	
10	53	70.55	9.75	27	9	60	
15	56	68.89	11.97	18	7	38	

Таблица 4

Влияние времени ультразвукового лиспергирования на изменение сорбщионной активности гилролизованного

полости, содержащие реакционноактивные амино- и карбоксильные группы.

Гидролизованный фиброин модифицировали также с использованием сверхвысокочастотного (СВЧ) облучения. Сорбционные свойства приведены в табл. 5.

Сверхвысокочастотное облучение гидролизованного фиброина способствует увеличению объема пор за счет разрыва структуры волокон фиброина и удаления паров воды из внутренних слоев структуры элементарных волокон. Установлено, что последовательное УЗ-диспергирование и СВЧ-облучение гидролизованного фиброина способствует увеличению его сорбционной активности до 95 мас% при сорбции В12. Наблюдаемый эффект объясняется увеличением содержания реакционноактивных карбоксильных и аминогрупп. Для подтверждения данного факта определено содержание карбоксильных и аминогрупп в структуре гидролизованного фиброина (табл. 6).

При последовательном изменении условий обработки гидролизованного фиброина наблюдается увеличение содержания в его составе карбоксильных и аминогрупп, что приводит к увеличению сорбционной активности (рис. 1).

Рис. 1. Предполагаемый механизм модификации гидролизованного фиброина с использованием ультразвукового диспергирования и сверхвысокочастотного облучения.

Таблица 5

Зависимость сорбции витамина В₁₂ от времени сверхвысокочастотного облучения гидролизованного фиброина (начальная концентрация B₁₂ 180 мг·л⁻¹, мощность 800 Вт, частота 2450 мГц, время сорбции 45 мин)

Время сверхвысокочастотного облучения, мин	Изменение концентрации	Сорбция витамина В ₁₂		Потеря массы	Внешний вид
	витамина B ₁₂ в системе после сорбции, мг·л ⁻¹	мг∙л−1	мас%	фиороина, мас%	гидролизованного фиброина
1	41.4	138.6	77	7.8	Волокно
3	37.8	142.2	79	8.2	»
5	31.5	148.5	82	10.6	»
10	14.4	165.6	92	15.8	»
20	9.3	171.1	95	18.7	Частично волокно
30					Порошок

	Реакционноактивные функцион	Сорбция		
Образец	карбоксильные	аминогруппы	витамина В ₁₂ , мас%	
Исходный шелк	4.65	3.52	31.8	
Чистый фиброин	4.71	3.86	43.3	
Гидролизованный фиброин (210°С)	8.14	6.72	65.5	
Гидролизованный фиброин (210°С + ультразвуковое диспергирование)	9.33	8.23	69.4	
Гидролизованный фиброин (210°С + сверхвысоко- частотное облучение)	11.64	9.86	70.8	
Гидролизованный фиброин (210°С + ультразвуковое диспергирование + сверхвысокочастотное облучение)	14.26	12.82	95.2	

Таблица 6 Сорбционные показатели образцов гидролизованного фиброина (начальная концентрация В₁₂ 180 мг·л⁻¹)

Вода способна проникать во внутренние слои фиброина. В процессе СВЧ-облучения гидролизованного фиброина при 2450 МГц и мощности 800 Вт молекулы воды, содержащиеся во внутренних слоях волокна фиброина, быстро переходят в состояние пара и способствуют образованию пор за счет разрыва поверхности волокон. Путем модификации гидролизованного фиброина под воздействием физических факторов были получены полифункциональные волокнистые гемосорбенты с длиной волокон 5–7 мм и высокими сорбционными свойствами. Их сорбционная активность по отношению к витамину B₁₂ составляла 95 мас%.

При определении содержания свободных карбоксильных и аминогрупп в результате разрыва пептидных и водородных связей под воздействием УЗ-диспергирования и СВЧ-облучения по вышеуказанной методике установлено, что объем пор гемосорбента в 3–4 раза выше, чем при термическом гидролизе фиброина в водной среде. Установлено, что содержание свободных карбоксильных групп в гемосорбенте составляет 14.2 мас%. Это достигается за счет разрыва пептидных связей фиброина в процессе его модификации.

В ИК-спектрах фиброина шелка (рис. 2) полосы поглощения при 1700–2710 см⁻¹ соответствуют карбоксильным группам, 1514 см⁻¹ — полосам поглощения —СО—NH-групп, 2931 см⁻¹ — —СН₂группам и 2979 см⁻¹ — третичным —С(R)Н-группам. В ИК-спектрах гемосорбента, полученного из фиброина, полосы поглощения при 3296 см⁻¹ характеризуют —ОН-группу; 3300, 1623, 690 см⁻¹ отнесены к —NH₂-группам; полоса при 1230 см⁻¹ — к связам С—О карбоксильных групп и 1700 см⁻¹ — карбок-

Рис. 2. ИК-Фурье-спектры: *1* — фиброина, *2* — гемосорбента, полученного посредством ультразвукового диспергирования и сверхвысокочастотного облучения фиброина.

Рис. 3. Рентгеновские дифракционные кривые: *1* — фиброина, *2* — гемосорбента на его основе.

сильным группам, интенсивность которых увеличена по сравнению с исходным фиброином.

С целью определения изменения степени кристалличности чистого фиброина и полученного гемосорбента были зарегистрированы их дифрактограммы (рис. 3). Степень кристалличности чистого фиброина составила 46.1 мас%. Высокая кристалличность фиброина является результатом вымывания аморфных частей из межплоскостных участков кристаллических слоев фиброина. В процессе получения гемосорбента на основе чистого фиброина, обработанного УЗ-диспергированием и СВЧ-облучением, степень кристалличности снижается до 38.1 мас%, что объясняется аморфизацией структуры гемосорбента. При выделении фиброина из шелка происходит увеличение степени кристалличности, которое может быть связано с переходом α-спирали в β-структуру под действием их гидролиза в среде чистой воды при высоких температурах (130-210°С) и давлениях (0.145-0.510 МПа). Степень кристалличности гемосорбента еще в больщей степени снижалась при его УЗ-диспергировании и СВЧ-облучении.

Выводы

Разработан способ очистки природных шелковых нитей и волокнистых отходов предприятий по переработке коконов шелкопряда *Bombyx mori* от жиро-восковых и минеральных примесей. Путем последовательной промывки полярными (этанол–вода) и неполярным (бензол) растворителями достигнута степень чистоты 99.8 мас%. Обработкой шелковых нитей и волокнистых отходов водой при температурах 110–230°С и давлениях 0.143–0.600 МПа получен чистый фиброин.

Посредством последовательного гидролиза чистого фиброина в водной среде с использованием методов ультразвукового диспергирования и сверхвысокочастотного облучения получен высокопористый гемосорбент, обладающий высокой сорбционной способностью по отношению к витамину B₁₂.

Финансирование работы

Исследования выполнены при поддержке фундаментальных исследований по базовому финансированию Академии наук Республики Узбекистан и проекту № MBB-2021-548.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Сарымсаков Абдушкур Абдухалилович, проф. ORCID: https://orcid.org/0000-0003-4562-7280 *Ярматов Сардорбек Собиржонович* ORCID: https://orcid.org/0000-0002-8557-3304 *Юнусов Хайдар Эргашович*, д.т.н. ORCID: https://orcid.org/0000-0002-4646-7859

Список литературы

- Hai-Yan W., Yu-Qing Zh., Zheng-Guo W. Dissolution and processing of silk fibroin for materials science // Crit. Rev. Biotechnol. 2021. V. 41. N 3. P. 406–424. https://doi.org/10.1080/07388551.2020.1853030
- [2] Weisel J. W., Litvinov R. I. Fibrin formation, structure, and properties. Fibrous proteins: Structures and mechanisms / Eds D. Parry, J. Squire. Subcell. Biochem. Springer, Cham. 2017. V. 82. P. 405–456. https://doi.org/10.1007/978-3-319-49674-0 13
- [3] Zheng Y., Wang D., Zhao L., Wang X., Han W., Wang L. Chemically modified silk fibroin hydrogel for environment-stable electronic skin // Sens. Actuators Rep. 2022. V. 4. P. 100089–100095. https://doi.org/10.1016/j.snr.2022.100089
- [4] Сашина Е. С., Голубихин А. Ю., Новоселов Н. П., Цобкалло Е. С., Заборский М., Горальский Я. Исследование возможности применения пленок фиброина шелка и его смесей с синтетическими полимерами для создания материалов контактных линз // ЖПХ. 2009. Т. 82. № 5. С. 843–849 [Sashina E. S., Golubikhin A. Yu., Novoselov N. P., Tsobkallo E. S., Zaborskii M., Goralskii Ya. Study of a possibility of applying the films of the silk fibroin and its mixtures with synthetic polymers for creating the materials of contact lenses // Russ. J. Appl. Chem. 2009. V. 82. N 5. P. 898–904.

https://doi.org/10.1134/S1070427209050292].

[5] Abdel-Fattah W. I., Atwa N., Ali G. W. Influence of the protocol of fibroin extraction on the antibiotic activities of the constructed composites // Prog. Biomater. 2015. V. 4. N 2–4. P. 77–88.

https://doi.org/10.1007/s40204-015-0039-x

[6] Chumroenphat T., Somboonwatthanakul I., Saensouk S., Siriamornpun S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods // Food Chem. 2021. V. 339. P. 128121– 128130.

https://doi.org/10.1016/j.foodchem.2020.128121

- [7] Pawcenis D., Syrek M., Koperska M. A., Łojewski T., Łojewska J. Mark-Houwink-Sakurada coefficients determination for molar mass of silk fibroin from viscometric results // RSC Adv. 2016. V. 6. P. 38071– 38078. https://doi.org/10.1039/C6RA00871B
- [8] Остерман Л. А. Методы исследования белков и нуклеиновых кислот: электрофорез и ультрацентрифугирование. М.: Наука, 1981. С. 56–59.
- [9] Aoki M., Masuda Y., Ishikawa. K., Tamada Y. Fractionation of regenerated silk fibroin and characterization of the fractions // Molecules. 2021.
 V. 26. P. 6317–6343.

https://doi.org/10.3390/molecules 26206317

[10] Сафонова Л. А., Боброва М. М., Агапова О. И., Архипова А. Ю., Гончаренко А. В., Агапов И. И. Пленки на основе фиброина шелка для заживления полнослойной раны кожи у крыс // Вестн. трансплантологии и искусств. органов. 2016. Т. 18. № 3. С. 74–84 [Safonova L. A., Bobrova M. M., Agapova O. I., Arkhipova A. Yu., Goncharenko A. V., Agapov I. I. Fibroin silk based films for rat's fullthickness skin wound regeneration // Russ. J. Transplantology and Artificial Organs. 2016. V. 18. N 3. P. 74–84.

https://doi.org/10.15825/1995-1191-2016-3-74-84].

[11] Veprikova E. V., Ivanov I. P., Chesnokov N. V., Kuznetsov B. N. Study of enterosorption activity of carbon sorbents based on organosolvent lignin of fir wood // J. Sib. Fed. Univ. Chem. 2018. V. 11. N 2. P. 249–261.

https://doi.org/10.17516/1998-2836-0072

- [12] Аввакумова Н. И., Бударина Л. А., Дивгун С. М., Заикин А. Е., Кузнецов Е. В., Куренков В. Ф. Практикум по химии и физике полимеров. М.: Химия, 1990. С. 57–58.
- [13] Yuan-Jing W., Yu-Qing Zh. Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition // Adv. Mater. Res. 2011. V. 175–176. P. 158–163. https://doi.org/10.4028/ www.scientific.net/AMR.175–176.158
- [14] Asakura T. Structure of silk I (Bombyx mori silk fibroin before spinning)-type II β-turn, not α-helix- // Molecules. 2021. V. 26. P. 3706–3726. https://doi.org/10.3390/molecules26123706
- [15] Gandhimathi C., Venugopal J. R., Tham A. Y., Ramakrishna S., Kumar S. D. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells // Mater. Sci. Eng. C. 2015. V. 49. P. 776–785.

https://doi.org/10.1016/j.msec.2015.01.075

[16] Qiang L., Bing Zh., Mingzhong L., Baoqi Z., David L. K., Yongli H., an Hesun Zh. Degradation mechanism and control of silk fibroin // Biomacromolecules. 2011. V. 12. N 4. P.1080–1086. https://doi.org/10.1021/bm101422j