= СОРБЦИОННЫЕ И ИОНООБМЕННЫЕ ПРОЦЕССЫ =

УДК 544.23+544.723.23+546.284-31+546.171.1

АДСОРБЦИЯ ВЛАЖНОГО АММИАКА НА ПОВЕРХНОСТИ ВАНАДИЙСОДЕРЖАЩЕГО СИЛИКАГЕЛЯ

© Е. А. Соснов, А. А. Малыгин

Санкт-Петербургский государственный технологический институт (технический университет), 190013, г. Санкт-Петербург, Московский пр., д. 26 E-mail: sosnov@lti-gti.ru

> Поступила в Редакцию 29 сентября 2022 г. После доработки 11 ноября 2022 г. Принята к публикации 17 ноября 2022 г.

Изучено протекание взаимодействия индикаторного ванадийсодержащего силикагеля ИВС-1 с влажным воздушным потоком, содержащим аммиак. По двустадийному изменению окраски сорбента и исчезновению гистерезиса на кривых атомно-силовой спектроскопии предположено протекание на поверхности сорбента вытеснительной адсорбции аммиака.

Ключевые слова: ванадийсодержащий силикагель; поверхность; адсорбция; аммиак DOI: 10.31857/S0044461822080138; EDN: NYEFBS

В проводившихся ранее исследованиях [1, 2] было показано, что силикагель, содержащий на поверхности монослой ванадийоксидных групп, привитых методом молекулярного наслаивания [в настоящее время промышленно выпускаемый сорбент — индикаторный ванадийсодержащий силикагель марки ИВС-1 (ТУ 6-10-1971–84)], при контакте с влажным воздухом изменяет свою окраску в диапазоне цветов белый-желтый-оранжевый-красный-бордовый с широкой гаммой промежуточных оттенков. При этом конечная (равновесная) окраска индикатора зависит от концентрации влаги в воздушной среде.

Однако при взаимодействии ИВС-1 с газовой средой, содержащей аммиак, вместо желто-красной цветовой гаммы наблюдается двустадийное изменение окраски сорбента: сначала появляется окраска, характерная для индикации влажного газового потока, которая через ряд промежуточных оттенков (желтый– светло-желтый) сменяется на белую, характерную для аммиачного комплекса с ванадий-кислородной структурой [2]. И если анализ газовых систем, содержащих всего один аналит, хорошо отработан, то анализ технологических газовых сред, содержащих несколько активных компонентов, способных реагировать с сорбентом (в том числе присутствуя в малых концентрациях) и тем самым маскировать взаимодействие основного аналита, достаточно нетривиален.

Цель работы — выявление процессов, вызывающих изменение окраски индикаторного ванадийсодержащего силикагеля ИВС-1 при анализе технических газов, содержащих пары воды и следы аммиака.

Экспериментальная часть

В исследовании использовали индикаторный ванадийсодержащий силикагель марки ИВС-1 [ФГБОУ ВО «СПбГТИ (ТУ)»], синтезированный на основе силикагеля ШСКГ (ЗАО «Союзхимпром») по технологии молекулярного наслаивания [1]. Содержание ванадия в ИВС-1 находится в пределах 0.85 ± 0.15 ммоль г⁻¹, что соответствует близкому к монослойному покрытию поверхности матрицы ванадийоксидными группами. Структурные характеристики сорбента: удельная поверхность (S_{yd}) 242 м²·г⁻¹, удельный объем пор (V_{Π}), 0.88 см³·г⁻¹. Исследовали взаимодействие силикагеля ИВС-1 с влажным аммиаксодержащим [использовали аммиак марки А (99.9%), ООО «ПТК «Криоген»] газовым потоком (воздух, содержание NH₃ — 50 ± 8 мг·м⁻³, H₂O — 5.7 ± 0.1 г·м⁻³) в динамическом режиме [расход через слой сорбента (1.1 ± 0.1)·10⁻⁶ м³·с⁻¹].

Исследования осуществляли на сканирующем зондовом микроскопе Solver P47 Pro (ООО «НТ-МДТ») в конструктиве атомно-силового микроскопа с использованием кремниевых кантилеверов марки NSG-01 (ООО «НТ-МДТ»). Использована методика оценки адгезионного взаимодействия зонда микроскопа с поверхностью исследуемого материала (атомно-силовая спектроскопия) [3]. Результаты исследований (см. рисунок) свидетельствуют об образовании в начальный момент контакта индикаторного силикагеля с влажным аммиаксодержащим газовым потоком гистерезиса, характерного для появления на поверхности матрицы нанометрового слоя жидкого сорбата (см. рисунок, кривая 1), достигающего в условиях проведения процесса максимального значения (согласно измерениям — ~7 нм) через 2 мин после начала взаимодействия. При дальнейшем контакте ИВС-1 с газовым потоком гистерезис убывает, вплоть до полного исчезновения (см. рисунок, кривая 2), что сопровождается и исчезновением окраски, характерной для ванадийоксидных комплексов с участием координированных молекул воды. Следует отметить, что при контакте ИВС-1 с аммиачным газовым потоком, практически не содержащим паров H₂O (влагосодержание газового потока ~4 мг·м-3, что соответствует точке росы -65°С), гистерезис на кривых атомно-силовой спектроскопии отсутствует, а силикагель приобретает матово-белый цвет [2].

При оценке толщины слоя жидкого сорбата следует учитывать, что в измеряемую величину вносит вклад образование мениска между слоем адсорбированной воды и острием зонда атомно-силового микроскопа с гидрофильной (поскольку изготовлен на основе монокристаллического кремния) поверхностью. Предельная величина силы (F_{Cap}), с которой мениск жидкости удерживает кантилевер, может быть оценена по формуле [4]

$$F_{\rm Cap} = -2\pi R\gamma \cos\theta$$

где R — радиус кривизны острия кантилевера, γ — величина поверхностного натяжения жидкого слоя, θ — угол смачивания жидкостью поверхности кантилевера (в пределе $\cos\theta = -1$).

Кривая сила взаимодействия–расстояние, полученная в ходе атомно-силовой спектроскопии силикагеля ИВС-1 во влажной аммиаксодержащей воздушной среде (содержание NH₃ — 50 мг·м⁻³, H₂O — 5.7 г·м⁻³) через 2 (*1*) и 10 мин (*2*) после начала контакта силикагеля с воздухом.

Тогда в случае сорбции воды при 20°С ($\gamma = 72.9 \text{ мH} \cdot \text{м}^{-1}$)* $F_{\text{Сар}}$ составит 4.6 нН, что для кантилевера NSG-01 (R = 10 нм, коэффициент жесткости $K_{\text{N}} = 2.26 \text{ H} \cdot \text{м}^{-1}$) требует внесения поправки в измеренную толщину слоя сорбата на ~2.0 нм.

Исследования динамики изменения окрашенного слоя ИВС-1 в индикаторной трубке при различных концентрациях NH₃ в потоке (от 50 до 450 мг·м⁻³) и влагосодержании потока 5.7 г·м⁻³ (соответствует влажности воздуха 30% при $T = 20 \pm 2^{\circ}$ С)** свидетельствуют об отсутствии индукционного периода в изменении цвета сорбента [2], что подтверждает вывод о совместной адсорбции паров воды и аммиака.

Обсуждение результатов

Исходя из симбатного изменения окраски и величины гистерезиса, можно предположить, что на поверхности ИВС-1 протекают два конкурирующих процесса, затрагивающих функциональные ванадийсодержащие группировки:

— координация молекул H₂O на ванадийоксидных поверхностных группировках [схема (I)] [5], приводящая к появлению окраски ванадийсодержащих

^{*} Физические величины: Справочник / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991. С. 332.

^{**} Справочник химика. Т. 1. Л.: Госхимиздат, 1962. С. 724.

структур [2], и последующая адсорбция паров воды [схема (II)], сопровождающаяся появлением гистерезиса на кривых атомно-силовой спектроскопии; — вытеснение аммиаком молекул воды из состава ванадийоксидных комплексов, тем самым «высветляющих» окраску сорбента.

Из наблюдаемой динамики изменения окраски сорбента и появления в начальный момент взаимодействия гистерезиса на кривых атомно-силовой спектроскопии следует, что адсорбция паров воды протекает намного быстрее адсорбции NH₃. Однако адсорбционные комплексы ванадия с аммиаком существенно прочнее (см. таблицу), что не позволяет молекулам воды вытеснять ранее сорбированный аммиак.

О высокой гидролитической устойчивости аммиачных комплексов с ванадийоксидными центрами можно судить и по факту применения технологии гидротермального синтеза для формирования кристаллических фаз ванадата и поливанадата аммония (NH₄VO₃ [14] и NH₄V₃O₈ [15] соответственно). Удаление аммиака из состава ванадатов в воздушной среде протекает при 500 [15]– 600°C [14], что превышает температуру дегидратации ванадийсодержащего силикагеля (350–400°C [2]).

Несмотря на то что NH₃ способен взаимодействовать не только с ванадийсодержащими структурами (являются льюисовскими кислотами), но и с гидроксогруппами силикатной матрицы (бренстедовские кислотные центры) [6, 10, 16], адсорбция аммиака на координационно-ненасыщенном металлсодержащем центре предпочтительнее взаимодействия с бренстедовскими центрами поверхности [17]. Аммиак, адсорбированный на льюисовских кислотных центрах, вытесняет молекулы воды из комплексов с центрами Льюиса вследствие большей основности [17].

Необходимо отметить, что аммиак образует более прочные (по сравнению с H₂O) комплексы даже в результате физической адсорбции на ОН-группах оксидных матриц [18]. Поэтому аналогичный процесс — замещение аммиаком молекул H₂O в составе координационных комплексов с участием бренстедовских центров — наблюдается и для гидроксогрупп силикатной матрицы, о чем свидетельствуют как исчезновение гистерезиса на кривых атомно-силовой спектроскопии, так и результаты эксплуатации сорбента. В работе [2] установлено, что определение с использованием сорбента ИВС-1 влажности газовой среды в присутствии паров аммиака можно осуществлять только при малых концентрациях последнего (<10 мг·м⁻³) либо при кратковременных измерениях. При больших концентрациях NH₃ и (или) времени контакта адсорбирующийся аммиак будет маскировать окраску индикатора, приобретаемую им в результате взаимодействия с парами воды.

Необходимо отметить, что атом кислорода ванадильной группировки (≡V=О) также способен к координации аммиака, однако прочность адсорбционного комплекса ванадила с NH₃ невелика — десорбция аммиака протекает (как и из координационных структур с гидроксогруппами матрицы) уже при 100°С [19].

Сорбат	Строение центра адсорбции	E_{adc} , кДж·моль ⁻¹	Метод расчета / определения	Литературный источник
NH3	V ₂ O ₅ (010)	-144 ÷ -184	Геометрия сорбционного комплекса — функцио- нал Vosko-Wilk-Nusair локального типа; энергия связи — функционал нелокального типа B88-LYP (Becke 1988 с корреляцией Lee-Yang-Parr)	[6]
	V ₂ O ₅ /TiO ₂	$-75.4 \div -109$	Температурно-программируемая десорбция	[7]
	V ₂ O ₅ /TiO ₂	$-103 \div -124$	Температурно-программируемая десорбция	[8]
	V_2O_5/TiO_2 –108.0 ± 0.4 Температурно-программируемая десорбя		Температурно-программируемая десорбция	[9]
	V ₂ O ₇ H ₄ /TiO ₂	-117÷-128	Модифицированное симметрично ортогональное про- межуточное пренебрежение дифференциальным перекрытием (MSINDO)	[10]
	V ₂ O ₅ -WO ₃ /TiO ₂	$-101 \div -111$	Температурно-программируемая десорбция	[8]
	V ₂ O ₅ -WO ₃ /TiO ₂	$-95.9 \pm 0.8 \div $ $\div -98.0 \pm 0.8$	Температурно-программируемая десорбция	[9]
	V ₂ O ₅ -WO ₃ -TiO ₂	-100 ÷ -130	Экспериментальные измерения в процессе каталити- ческой конверсии NO	[11]
ND ₃	V_2O_5	-101 ± 8	Температурно-программируемая десорбция	[12]
	V ₂ O ₅ /TiO ₂	-101 ± 8	Температурно-программируемая десорбция	[12]
H ₂ O	V ₂ O ₅ (010)	-40.6 ÷ -105	Геометрия сорбционного комплекса — функционал Vosko-Wilk-Nusair с двойным численным базисом и учетом поляризационных функций (DNP)	[13]
	V ₂ O ₅	-58.6 ± 8.4	Температурно-программируемая десорбция	[12]
	V ₂ O ₅ /TiO ₂	-71.2 ± 8.4	Температурно-программируемая десорбция	[12]
	V ₂ O ₇ H ₄ /TiO ₂	-48 ÷ -58	Модифицированное симметрично ортогональное про- межуточное пренебрежение дифференциальным перекрытием (MSINDO)	[10]

Энергия адсорбци	и NH3 и H2C	на ванадийк	ислородных	структурах

Выводы

Методом атомно-силовой микроскопии исследованы процессы, происходящие на поверхности твердотельных материалов. Установлено протекание на поверхности индикаторного ванадийсодержащего силикагеля ИВС-1 в ходе взаимодействия с газовым потоком, содержащим пары воды и аммиака, двух конкурирующих процессов: образования ванадийсодержащих комплексов с участием молекул H₂O (окрашены в желто-красную гамму цветов) и NH₃ (матово-белые); при этом по мере накопления в слое сорбата молекул NH₃ протекает вытеснение аммиаком молекул воды из состава поверхностных ванадийсодержащих комплексов.

Финансирование работы

Исследование выполнено при финансовой поддержке ООО «Ботлихский радиозавод» в рамках комплексного проекта по созданию высокотехнологичного производства (Соглашение с Минобрнауки России № 075-11-2021-037).

Конфликт интересов

Е. А. Соснов заявляет об отсутствии конфликта интересов, требующего раскрытия в данной статье, А. А. Малыгин является заместителем главного редактора Журнала прикладной химии.

Информация об авторах

Соснов Евгений Алексеевич, к.х.н., доцент ORCID: http://orcid.org/0000-0003-1639-9514 Малыгин Анатолий Алексеевич, д.х.н., проф. ORCID: http://orcid.org/0000-0002-1818-7761

Список литературы

- [1] Малыгин А. А., Волкова А. Н., Кольцов С. И., Алесковский В. Б. Исследование взаимодействия треххлористого ванадила с гидроксилированной поверхностью силикагеля // Изв. вузов. Химия и хим. технология. 1973. Т. 16. № 10. С. 1471–1474.
- [2] Белова С. А., Захарова Н. В., Соснов Е. А., Малыгин А.А. Цветовой индикатор на основе ванадийсодержащего силикагеля для экспресс контроля газовых сред // Химические реактивы, реагенты и процессы малотоннажной химии. Минск: Белорус. наука, 2008. С. 304-321.
- [3] Leite F.L., Herrmann P.S. P. Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: A Review // J. Adhes. Sci. Technol. 2005. V. 19. N 3-5. P. 365-405. https://doi.org/10.1163/1568561054352667
- [4] Yaminsky V. V. The hydrophobic force: The Constant volume capillary approximation // Colloids Surf. A. 1999. V. 159. N 1. P. 181–195. https://doi.org/10.1016/S0927-7757(99)00173-9
- [5] Morey M., Davidson A., Eckert H., Stucky G. Pseudotetrahedral O_{3/2}VO centers immobilized on the walls of a mesoporous, cubic MCM-48 support: Preparation, characterization, and reactivity toward water as investigated by ⁵¹V NMR and UV-Vis spectroscopies // Chem. Mater. 1996. V. 8. N 2. P. 486-492. https://doi.org/10.1021/cm950397j
- [6] Yin X., Han H., Gunji I., Endou A., Cheettu Ammal S. S., Kubo M., Miyamoto A. NH3 Adsorption on the Brönsted and Lewis acid sites of V₂O₅(010): A Periodic density functional study // J. Phys. Chem. B. 1999. V. 103. N 22. P. 4701-4706.
 - https://doi.org/10.1021/jp990363p
- [7] Efstathiou A. M., Fliatoura K. Selective catalytic reduction of nitric oxide with ammonia over V₂O₅/ TiO₂ catalyst: A Steady-state and transient kinetic study // Appl. Catal. B. 1995. V. 6. N 1. P. 35-59. https://doi.org/10.1016/0926-3373(94)00062-X
- [8] Tronconi E., Lietti L., Forzatti P., Malloggi S. Experimental and theoretical investigation of the dynamics of the SCR-DeNO_x reaction // Chem. Eng. Sci. 1996. V. 51. N 11. P. 2965-2970. https://doi.org/10.1016/0009-2509(96)00182-0
- [9] Lietti L., Nova I., Camurri S., Tronconi E., Forzatti P. Dynamics of the SCR-DeNO(X) reaction by the transient-response method // AIChE J. 1997. V. 43. N 10. P. 2559-2570.

https://doi.org/10.1002/aic.690431017

- [10] Bredow T., Homann T., Jug K. Adsorption of NO, NH₃ and H₂O on V₂O₅/TiO₂ catalysts // Res. Chem. Intermed. 2004. V. 30. N 1. P. 65-73. https://doi.org/10.1163/156856704322798052
- [11] Koebel M., Elsener M. Selective catalytic reduction of NO over commercial DeNO_x-catalysts: Experimental determination of kinetic and thermodynamic parameters // Chem. Eng. Sci. 1998. V. 53. N 4. P. 657-669. https://doi.org/ 10.1016/S0009-2509(97)00342-4
- [12] Srnak T. Z., Dumesic J. A., Clausen B. S., Törnqvist E., Topsøet N. Y. Temperature-programmed desorption/ reaction and in situ spectroscopic studies of vanadia/ titania for catalytic reduction of nitric oxide // J. Catal. 1992. V. 135. N 1. P. 246-262. https://doi.org/10.1016/0021-9517(92)90283-N
- [13] Yin X., Fahmi A., Han H., Endou A., Ammal S. S. C., Kubo M., Teraishi K., Miyamoto A. Adsorption of H₂O on the V₂O₅(010) surface studied by periodic density functional calculations // J. Phys. Chem. B. 1999. V. 103. N 16. P.3218-3224.

https://doi.org/10.1021/jp9833395

- [14] Da Costa A., Mathieu C., Barbaux Y., Poelman H., Dalmai-Vennik G., Fiermans L. Observation of the $V_2O_5(001)$ surface using ambient atomic force microscopy // Surf. Sci. 1997. V. 370. N 2-3. P. 339-344. https://doi.org/10.1016/S0039-6028(96)00956-9
- [15] An Q., Zhang P., Xiong F., Wei Q., Sheng J., Wang Q., Mai L. Three-dimensional porous V₂O₅ hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries // Nano Res. 2015. V. 8. N 2. P. 481-490.

https://doi.org/10.1007/s12274-014-0638-1

- [16] Rajadhyaksha R. A., Knözinger H. Ammonia adsorption on vanadia supported on titania-silica catalyst: An Infrared spectroscopic investigation // Appl. Catal. 1989. V. 51. N 1. P. 81-92. https://doi.org/10.1016/S0166-9834(00)80197-9
- [17] Busca G., Lietti L., Ramis G., Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A Review // Appl. Catal. B. 1998. V. 18. N 1-2. P. 1-36. https://doi.org/10.1016/S0926-3373(98)00040-X
- [18] Basila M. R., Kantner T. R. Infrared spectrum of ammonia adsorbed on silica-alumina // J. Phys. Chem. 1967. V. 71. N 3. P. 467-472. https://doi.org/10.1021/j100862a001
- [19] Sun D., Liu Q., Liu Z., Gui G., Huang Z. Adsorption and oxidation of NH₃ over V₂O₅/AC surface // Appl. Catal. B. 2009. V. 92. N 3-4. P. 462-467. https://doi.org/10.1016/j.apcatb.2009.09.005